首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alagille syndrome (AGS) is an autosomal dominant disorder with developmental abnormalities of the liver, heart, eyes, vertebrae, and face. Mutations in the JAG1 (Jagged 1) gene, coding a ligand in the evolutionarily conserved Notch signaling pathway, are responsible for AGS. Here we present sixteen different JAG1 gene mutations, among them twelve novel, not described previously. Seven frameshift: c. 172_178del7 (p.Ala58fs), c.509delT (p.Leu170fs), c.1197delG (p.Val399fs), c.1485_1486delCT (p.Pro495fs), c.1809_1810insTGGG (p.Lys604fs), c.2122_2125delCAGT (p.Gln708fs), c.2753delT (p.Ile918fs); five nonsense: c.383G>A (p.Trp128X), c.496C>T (p.Glu166X), c.841C>T (p.Gln281X), c.1207C>T (p.Gln403X), c.1603C>T (p.Gln535X); two splice site: c.388-1G>C, c.3048+1_3048+2insG and two missense mutations: c.359T>A (p.Ile120Asn), c.560G>A (p.Cys187Tyr) were found. Forty percent of the changes were identified in exons 2 and 4, the remaining mutations are distributed along the entire coding sequence of the gene. Seventy-five percent of the mutations lead to creation of premature termination codons. Family studies revealed that the specific mutations were inherited in 3 out of 11 investigated cases. No correlation between genotype and phenotype was observed.  相似文献   

2.
Objective: To perform genetic analysis for 7 patients with Waardenburg syndrome. Methods: Potential mutation of MITF, PAX3, SOX10 and SNAI2 genes was screened by polymerase chain reaction and direct sequencing. Functions of non-synonymous polymorphisms were predicted with Polyphen2 software. Results: Seven mutations, including c. 649-651delAGA (p. R217del), c. 72delG (p. G24fs), c. 185T>C (p. M62T), c. 118C>T (p. Q40X), c. 422T>C (p. L141P), c. 640C>T (p. R214X) and c. 28G>T (p. G43V), were detected in the patients. Among these, four mutations of the PAX3 gene (c. 72delG, c. 185T>C, c. 118C>T and c. 128G>T) and one SOX10 gene mutation (c. 422T>C) were not reported previously. Three non-synonymous SNPs (c. 185T>C, c. 128G>T and c. 422T>C) were predicted as harmful. Conclusion: Genetic mutations have been detected in all patients with Waardenburg syndrome. © 2016, West China University of Medical Sciences. All rights reserved.  相似文献   

3.
4.
Deficiency of the muscle isozyme of glycogen phosphorylase is causative of McArdle disease or Glycogen storage disease type V (GSD-V), the most common autosomal recessive disorder of glycogen metabolism. The typical clinical presentation is characterized by exercise intolerance with cramps, and recurrent myoglobinuria. To date, 46 mutations in the PYGM gene have been detected in GSD-V patients. We report the mutational spectrum in 68 Italian patients. We identified 30 different mutations in the PYGM gene, including 19 mutations that have not been reported previously. The novel mutations include: eight missense mutations (c.475G>A, p.G159R; c.689C>G, p.P230R; c.1094C>T, p.A365E; c.1151C>A, p.A384D; c.1182C>T, p.R428C; c.1471C>T, p.R491C; c.2444A>C, p.D815A; c.2477G>C, p.W826S), two nonsense mutations (c.1475G>A, p.W492X; c.1627A>T, p.K543X), five splice site mutations (c.855 +1G>C; c.1092 +1G>A; c. 1093-1G>T; c.1239 +1G>A; c.2380 +1G>A), and four deletions (c.715_717delGTC, p.V239del; c.304delA, p.N102DfsX4; c.1970_2177del, p.V657_G726; c.2113_2114delGG, p.G705RfsX16). Whereas we confirmed lack of direct correlation between the clinical phenotype and the genotype, we also found that the so-called 'common mutation' (p.R50X) accounted for about 43% of alleles in our cohort and that no population-related mutations are clearly identified in Italian patients.  相似文献   

5.
Lecithin:cholesterol acyltransferase (LCAT) is crucial to the maturation of high-density lipoprotein (HDL). Homozygosity for LCAT mutations underlies rare disorders characterized by HDL-cholesterol (HDL-c) deficiency while heterozygotes have half normal HDL-c levels. We studied the prevalence of LCAT mutations in referred patients with low HDL-c to better understand the molecular basis of low HDL-c in our patients. LCAT was sequenced in 98 patients referred for HDL-c <5th percentile and in four patients referred for low HDL-c and corneal opacities. LCAT mutations were highly prevalent: in 28 of the 98 participants (29%), heterozygosity for nonsynonymous mutations was identified while 18 patients carried the same mutation (p.T147I). The four patients with corneal opacity were compound heterozygotes. All previously identified mutations are documented to cause loss of catalytic activity. Nine novel mutations-c.402G>T (p.E134D), c.403T>A (p.Y135N), c.964C>T (p.R322C), c.296G>C (p.W99S), c.736G>T (p.V246F), c.802C>T (p.R268C), c.945G>A (p.W315X), c.1012C>T (p.L338F), and c.1039C>T (p.R347C)--were shown to be functional through in vitro characterization. The effect of several mutations on the core protein structure was studied by a three-dimensional (3D) model. Unlike previous reports, functional mutations in LCAT were found in 29% of patients with low HDL-c, thus constituting a common cause of low HDL-c in referred patients in The Netherlands.  相似文献   

6.
X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the Bruton tyrosine kinase (BTK) gene. Twenty Australian patients with an XLA phenotype, from 15 unrelated families, were found to have 14 mutations. Five of the mutations were previously described c.83G>A (p.R28H), c.862C>T (p.R288W), c.904G>A (p.R302G), c.1535T>C (p.L512P), c.700C>T (p.Q234X), while nine novel mutations were identified: four missense c.82C>A (p.R28S), c.494G>A (p.C165Y), c.464G>A (p.C155Y), c.1750G>A (p.G584E), one deletion c.142_144delAGAAGA (p.R48_G50del), and four splice site mutations c.241-2A>G, c.839+4A>G, c.1350-2A>G, c.1566+1G>A. Carrier analysis was performed in 10 mothers and 11 female relatives. The results of this study further support the notion that molecular genetic testing represents an important tool for definitive and early diagnosis of XLA and may allow accurate carrier status and prenatal diagnosis.  相似文献   

7.
目的探讨1个遗传性对称性色素异常症(dyschromatosis symmetrica hereditaria, DSH)家系患者的临床特点及基因变异, 明确其致病原因。方法采集先证者及其母亲的外周血样, 应用PCR扩增结合Sanger测序的方法分别对先证者和母亲的ADAR基因进行变异分析, 确定疑似致病变异。同时以100例与本家系无关的正常人作为对照。结果该病例符合DSH的典型表现, 表现为发生在手背, 脚和面部色素沉着、色素减退斑、色素异常斑。Sanger测序显示家系先证者及其母亲均携带ADAR基因第9外显子c.2762+1G>T杂合变异, 100名健康对照均未发现上述变异。根据美国医学遗传学与基因组学学会指南, ADAR基因c.2762+1G>T剪接变异被判定为致病性(PVS1+PM2+PP4)。结论 ADAR基因c.2762+1G>T变异可能为该家系患者的致病原因, 上述结果丰富了ADAR基因的变异谱。  相似文献   

8.
To identify mutations in the retinoschisin (RS1) gene in families with X-linked retinoschisis (XLRS). Twenty families with XLRS were enrolled in this study. All six coding exons and adjacent intronic regions of RS1 were amplified by polymerase chain reaction (PCR). The nucleotide sequences of the amplicons were determined by Sanger sequencing. Ten hemizygous mutations in RS1 were detected in patients from 14 of the 20 families. Four of the ten mutations were novel, including c:176G>A (p:Cys59Tyr) in exon?3, c:531T>G (p:Tyr177X), c:607C>G (p:Pro203Ala) and c:668G>A (p:Cys223Tyr) in exon?6. These four novel mutations were not present in 176 normal individuals. The remaining six were recurrent mutations, including c:214G>A (p:Glu72Lys), c:304C>T (p:Arg102Trp), c:436G>A (p:Glu146Lys), c:544C>T (p:Arg182Cys), c:599G>A (p:Arg200His) and c:644A>T (p:Glu215Val). Our study expanded the mutation spectrum of RS1 and enriches our understanding of the molecular basis of XLRS.  相似文献   

9.
We report the molecular findings in 14 patients (12 families) with X-linked adrenoleukodystrophy (X-ALD, MIM# 300100), a well-defined peroxisomal disorder attributed to mutations in the ABCD1 gene on chromosome Xq28. With the aims of determining the spectrum of mutations and developing an efficient molecular genetic test for analysis of at-risk women whose carrier status is unknown, and to offer molecular confirmation of their status to obligate heterozygotes, regardless of their clinical status, we carried out molecular screening by setting up a denaturing high-performance liquid chromatography (DHPLC)-based protocol. We identified eleven hemizygous base changes in ABCD1, including seven new mutations (c.145underscore;146ins4, c.264C>G, c.919C>T, c.994C>T, c.1027G>A, c.1508T>C, and c.1540A>C, resulting in the p.Pro193fs, p.Cys88Trp, p.Gln307X, p.Gln332X, p.Gly343Ser, p.Leu503Pro, and p.Ser514Arg changes, respectively). Adding new variants to the repertoire of ABCD1 mutations in X-ALD, our data provide an efficient, cost-effective, and reliable DHPLC detection protocol for mutation screening of X-ALD families.  相似文献   

10.
To better characterize Niemann-Pick type C (NPC) in Spain and improve genetic counselling, molecular analyses were carried out in 40 unrelated Spanish patients. The search identified 70/80 alleles (88%) involving 38 different NPC1 mutations, 26 of which are described for the first time. No patient with NPC2 mutations was identified. The novel NPC1 mutations include 14 amino acid substitutions [R372W (c.1114C>T), P434L (c.1301C>T), C479Y (c.1436G>A), K576R (c.1727G>A), V727F (c.2179G>T), M754K (c.2261T>A), S865L (c.2594C>T), A926T (c.2776G>A), D948H (c.2842G>C), V959E (c.2876T>A), T1036K (c.3107C>A), T1066N (c.3197C>A), N1156I (c.3467A>T) and F1224L (c.3672C>G)], four stop codon [W260X (c.780G>A), S425X (c.1274C>A), C645X (c.1935T>A) and R1059X (c.3175C>T)], two donor splice-site mutations [IVS7+1G>A (g.31432G>A) and IVS21+2insG (g.51871insG)], one in-frame mutation [N961_F966delinsS (c.2882del16bpins1bp)] and five frameshift mutations [V299fsX8 (c.895insT), A558fsX11 (c.1673insG), C778fsX10 (c.2334insT), G993fsX3 (c.2973_78delG) and F1221fsX20 (c.3662delT)]. We also identified three novel changes [V562V (c.1686G>A), A580A (c.1740C>G) and A1187A (c.3561G>T)] in three independent NPC patients and five polymorphisms that have been described previously. The combination of these polymorphisms gave rise to the establishment of different haplotypes. Linkage disequilibrium was detected between mutations C177Y and G993fsX3 and specific haplotypes, suggesting a unique origin for these mutations. In contrast, I1061T mutation showed at least two different origins. The most prevalent mutations in Spanish patients were I1061T, Q775P, C177Y and P1007A (10, 7, 7 and 5% of alleles, respectively). Our data in homozygous patients indicate that the Q775P mutation correlates with a severe infantile neurological form and the C177Y mutation with a late infantile clinical phenotype.  相似文献   

11.
Paik KH  Song SM  Ki CS  Yu HW  Kim JS  Min KH  Chang SH  Yoo EJ  Lee IJ  Kwan EK  Han SJ  Jin DK 《Human mutation》2005,26(4):308-314
Mucolipidosis types II and III are autosomal recessive inherited diseases caused by a deficiency in the lysosomal enzyme N-acetylglucosamine-1 phosphotransferase (GlcNAc-phosphotransferase), which adds phosphate to function as a recognition marker for the uptake and transport of lysosomal enzymes. We investigated mutations in the GNPTA (MGC4170) gene, which codes for the alpha/beta subunits of phosphotransferase, and in the GNPTAG gene, which codes for its gamma subunits in five Korean patients with mucolipidosis type II or IIIA. We identified seven mutations in the GNPTA gene, but none in GNPTAG. The mutations in type II patients included p.Q104X (c.310C>T), p.R1189X (c.3565C>T), p.S1058X (c.3173C>G), p.W894X (c.2681G>A), and p.H1158fsX15 (c.3474_3475delTA), all of which are nonsense or frameshift mutations. However, a splicing site mutation, IVS13+1G>A (c.2715+1G>A) was detected along with a nonsense or a frameshift mutation (p.R1189X or p.E858fsX3 (c.2574_2575delGA)) in two mucolipidosis type IIIA patients. This report shows that mutations in the GNPTA gene coding for the alpha/beta subunits of phosphotransferase, and not mutations in the GNPTAG gene, account for most of the genetic mutations found in Korean patients with mucolipidosis type II or IIIA.  相似文献   

12.
Isolated methylmalonic acidemia (MMA) is a genetically heterogeneous organic acid disorder caused by either deficiency of the enzyme methylmalonyl-CoA mutase (MCM), or a defect in the biosynthesis of its cofactor, adenosyl-cobalamin (AdoCbl). Herein, we report and review the genotypes and phenotypes of 14 Thai patients with isolated MMA. Between 1997 and 2011, we identified 6 mut patients, 2 cblA patients, and 6 cblB patients. The mut and cblB patients had relatively severe phenotypes compared to relatively mild phenotypes of the cblA patients. The MUT and MMAB genotypes were also correlated to the severity of the phenotypes. Three mutations in the MUT gene: c.788G>T (p.G263V), c.809_812dupGGGC (p.D272Gfs*2), and c.1426C>T (p.Q476*); one mutation in the MMAA gene: c.292A>G (p.R98G); and three mutations in the MMAB gene: c.682delG (p.A228Pfs*2), c.435delC (p.F145Lfs*69), and c.585-1G>A, have not been previously reported. RT-PCR analysis of a common intron 6 polymorphism (c.520-159C>T) of the MMAB gene revealed that it correlates to deep intronic exonization leading to premature termination of the open reading frame. This could decrease the ATP:cobalamin adenosyltransferase (ATR) activity resulting in abnormal phenotypes if found in a compound heterozygous state with a null mutation. We confirm the genotype-phenotype correlation of isolated MMA in the study population, and identified a new molecular basis of the cblB disorder.  相似文献   

13.
Gaucher disease, the most prevalent sphingolipidosis, is caused by the deficient activity of acid beta-glucosidase, mainly due to mutations in the GBA gene. Over 200 mutations have been identified worldwide, more than 25 of which were in Spanish patients. In order to demonstrate causality for Gaucher disease, some of them: c.662C>T (p.P182L), c.680A>G (p.N188S), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1093G>A (p.E326K), c.1289C>T (p.P391L), c.1292A>T (p.N392I), c.1322T>C (p.I402T), and the double mutants [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), were expressed in Sf9 cells using a baculovirus expression system. Other well-established Gaucher disease mutations, namely c.1226A>G (p.N370S), c.1342G>C (p.D409H), and c.1448T>C (p.L444P), were also expressed for comparison. The levels of residual acid beta-glucosidase activity of the mutant enzymes produced by the cDNAs carrying alleles c.662C>T (p.P182L), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1289C>T (p.P391L), and c.1292A>T (p.N392I) were negligible. The c.1226A>G (p.N370S), c.1322T>C (p.I402T), c.1342G>C (p.D409H), c.1448T>C (p.L444P), and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]) alleles produced enzymes with levels ranging from 6 to 14% of the wild-type. The three remaining alleles, c.680A>G (p.N188S), c.1093G>A (p.E326K), and [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]), showed higher activity (66.6, 42.7, and 23.2%, respectively). Expression studies revealed that the c.1093G>A (p.E326K) change, which was never found alone in a Gaucher disease-causing allele, when found in a double mutant such as [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), decreases activity compared to the activity found for the other mutation alone. These results suggest that c.1093G>A (p.E326K) should be considered a "modifier variant" rather than a neutral polymorphism, as previously considered. Mutation c.680A>G (p.N188S), which produces a mutant enzyme with the highest level of activity, is probably a very mild mutation or another "modifier variant."  相似文献   

14.
Spinal Muscular Atrophy with Respiratory Distress (SMARD) is an autosomal recessive disorder characterized by neurogenic muscular atrophy due to progressive anterior horn cell degeneration and early life-threatening respiratory failure ascribed to diaphragmatic dysfunction. SMARD is clinically and genetically heterogeneous. SMARD type 1 is characterized by onset of respiratory failure within the first weeks of life and has been ascribed to mutations in the immunoglobulin mu-binding protein 2 (IGHMBP2) gene on chromosome 11q13-q21. We report here the identification of nine novel IGHMBP2 mutations in five SMARD1 patients, including seven missense [ c.587A>G (p.Gln196Arg), c.647C>T (p.Pro216Leu), c.752T>C (p.Leu251Pro), c.1693G>A (p.Asp565Asn), c.1730T>C (p.Leu577Pro), c.1807C>T (p.Arg603Cys), c.1909C>T (p.Arg637Cys)] and two nonsense mutations [ c.1488C>A (p.Cys496X), c.2368C>T (p.Arg790X)]. Interestingly, 7 of 9 mutations occurred at highly conserved residues of the putative DNA helicase domain. The identification of novel IGHMBP2 variants will hopefully help diagnosing SMARD1 and contribute to a better functional characterization of IGHMBP2 gene product.  相似文献   

15.
Autosomal recessive congenital hereditary endothelial dystrophy (CHED2) is a severe and rare corneal disorder that presents at birth or shortly thereafter, characterized by corneal opacification and nystagmus. Recently the gene for CHED2 was identified and seven different mutations in the SLC4A11 gene were reported. Here, we report seven novel mutations and two previously identified mutations in families from India and the United Kingdom with recessive CHED. The novel changes include two nonsense (p.Trp240X; p.Gln800X) three missense (p.Glu143Lys; p.Cys386Arg; p.Arg755Trp) and two splice site mutations (c.2240+1G>A; c.2437-1G>A). Interestingly, the c.2398C>T (p.Gln800X) and c.2437-1G>A identified in two affected siblings represent the first compound heterozygous mutations in the SLC4A11 gene.  相似文献   

16.
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is an autosomal, recessively inherited disease caused by mutations in the MLC1 gene. Most of the previously published studies have been carried out in ethnic populations other than the Chinese. In this study, the analysis of clinical features and MLC1 mutation screening were performed in 13 Chinese patients for the first time. A total of 10 MLC1 mutations were identified in these patients, including five novel missense mutations (c.65G>A, p.R22Q; c.95C>T, p.A32V; c.218G>A, p.G73E; c.823G>A, p.A275T; c.832T>C, p.Y278H), one novel splicing mutation (c.772-1G>C in IVS9-1), one novel small deletion (c.907_930del, p.V303_L310del), one known nonsense mutation (c.593delCTCA, p.Y198X) and two known missense mutations (c.206C>T, p.S69L; c.353C>T, p.T118M). Mutation c.772-1G>C in IVS9-1, accounting for 27.3% (3/11) of the total number of genetically confirmed patients found in this study, is thus a putative hot-spot mutation in the present study group. The existence of a unique MLC1 mutation spectrum in Chinese MLC patients was shown. A systemic study to assess the mutation spectra in different populations should be undertaken.  相似文献   

17.
Classical galactosemia is an autosomal recessive disorder of galactose metabolism due to galactose-1-phosphate uridyltransferase (GALT) deficiency. Treatment through restriction of dietary galactose intake is lifesaving, but, in spite of this diet, most patients develop abnormalities. In this paper we report the mutational spectrum of classical galactosemia in a cohort of 123 Dutch patients, all with biochemically proven classical galactosemia. In the human GALT gene, which is located on chromosome 9p13, we identified 24 different mutations, including nine mutations that have not been reported previously. The novel mutations include five missense mutations (c.152G>A/p.R51Q, c.404C>T/p.S135W, c.687G>T/p.K229N, c.756G>T/p.Q252H, and c.1140A>C/p.X380C), a frame shift mutation (c.410dupT), a splice site mutation (c.821-2A>G), a possible branch point mutation (c.508-29delT), and a large deletion encompassing at least exons 1-11. Six of these novel mutations were found in patients of Dutch descent: p.R51Q, p.S135W, p.K229N, p.Q252H, p.X380C, and c.410dupT.  相似文献   

18.
We used the denaturing gradient gel electrophoresis (DGGE) method to define mutations in the promoter region, the 18 exons, and their flanking intronic sequences of the low-density lipoprotein (LDL) receptor gene LDLR, causing familial hypercholesterolemia (FH) phenotype in 100 German and in 100 Greek hypercholesterolemic individuals. In addition, we tested all patients for the presence of mutations in codons 3456-3553 of the gene encoding apolipoprotein B-100 (APOB). Twenty-six aberrant DGGE patterns were identified and subsequently directly sequenced. In LDLR, two novel missense mutations (c.1957G>T/p.V653F, c.647 G>A/p.C216Y) and one novel homozygous base substitution c.1-156 C>T in the repeat 2 of the promoter region were identified among German FH patients; one novel splice site c.1060+10C>G was identified among Greek FH patients. One of the German FH patients was a carrier for the mutations c.1171G>A/p.A391T and p.V653F, and two of the Greek FH patients were compound heterozygotes for the mutations c.1150C>T/p.Q384X and c.1158C>G/p.D386E. Two German FH patients carried the mutation p.R3500Q within APOB. Comparing the mutations within the LDLR gene of the two European FH populations, the German population seems to be more heterogeneous than the Greek cohort. Further studies in progress are trying to elucidate the responsiveness to drug therapy in association with LDLR genotype and the nutritional habits of the two FH populations.  相似文献   

19.
Myofibrillar myopathy (MFM) encompasses a genetically heterogeneous group of human diseases caused by mutations in genes coding for structural proteins of muscle. Mutations in the intermediate filament (IF) protein desmin (DES), a major cytoskeletal component of myocytes, lead to severe forms of "desminopathy," which affects cardiac, skeletal, and smooth muscle. Most mutations described reside in the central alpha-helical rod domain of desmin. Here we report three novel mutations--c.1325C>T (p.T442I), c.1360C>T (p.R454W), and c.1379G>T (p.S460I)--located in desmin's non-alpha-helical carboxy-terminal "tail" domain. We have investigated the impact of these and four--c.1237G>A (p.E413K), c.1346A>C (p.K449T), c.1353C>G (p.I451M), and c.1405G>A (p.V469M)--previously described "tail" mutations on in vitro filament formation and on the generation of ordered cytoskeletal arrays in transfected myoblasts. Although all but two mutants (p.E413K, p.R454W) assembled into IFs in vitro and all except p.E413K were incorporated into IF arrays in transfected C2C12 cells, filament properties differed significantly from wild-type desmin as revealed by viscometric assembly assays. Most notably, when coassembled with wild-type desmin, these mutants revealed a severe disturbance of filament-formation competence and filament-filament interactions, indicating an inherent incompatibility of mutant and wild-type protein to form mixed filaments. The various clinical phenotypes observed may reflect altered interactions of desmin's tail domain with different components of the myoblast cytoskeleton leading to diminished biomechanical properties and/or altered metabolism of the individual myocyte. Our in vitro assembly regimen proved to be a very sensible tool to detect if a particular desmin mutation is able to cause filament abnormalities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号