首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, a severe combined immunodeficiency syndrome with a deficiency of CD8+ peripheral T cells and a TCR signal transduction defect in peripheral CD4+ T cells was associated with mutations in ZAP-70. Since TCR signaling is required in developmental decisions resulting in mature CD4 (and CD8) T cells, the presence of peripheral CD4+ T cells expressing TCRs incapable of signaling in these patients is paradoxical. Here, we show that the TCRs on thymocytes, but not peripheral T cells, from a ZAP-70-deficient patient are capable of signaling. Moreover, the TCR on a thymocyte line derived from this patient can signal, and the homologous kinase Syk is present at high levels and is tyrosine phosphorylated after TCR stimulation. Thus, Syk may compensate for the loss of ZAP-70 and account for the thymic selection of at least a subset of T cells (CD4+) in ZAP-70-deficient patients.  相似文献   

2.
The pre-T cell receptor (TCR) complex regulates early T cell development and consists of a heterodimer of the TCR-beta subunit in association with the pre-TCR-alpha chain. Notably, in contrast to alpha/beta-expressing T cells, several studies suggested that the TCR- zeta chain is not stably associated with this pre-TCR complex. To examine the proximal signaling processes mediated by the pre-TCR complex and the role of the TCR-zeta chain in these processes, we stimulated pre-TCR-expressing cells and analyzed the interactions of the TCR/CD3 invariant chains with the Syk/ZAP-70 family of protein tyrosine kinases. Stimulation of the pre-TCR complex led to the tyrosine phosphorylation of the CD3 epsilon and TCR-zeta chains, as well as the phosphorylation and association of ZAP-70 and Syk with phosphorylated CD3 epsilon and TCR-zeta. These results demonstrate that the pre-TCR complex is functionally coupled to the TCR-zeta subunit and to the ZAP-70 and Syk protein tyrosine kinases.  相似文献   

3.
As a result of interaction with epithelial cells in the thymic cortex, immature CD4(+)8(+) (double positive, DP) thymocytes express relatively few T cell receptors (TCRs) and contain diminished numbers of coreceptor-associated p56(lck) (lck) PTK molecules. As a result, TCR signal transduction in DP thymocytes is significantly impaired, despite its importance for repertoire selection. We report here that, in DP thymocytes, tyrosine phosphorylation of TCR signaling motifs (ITAMs) by lck, an early event in TCR signal transduction, is dependent upon ZAP-70 protein independent of ZAP-70's kinase activity. Furthermore, the dependence on ZAP-70 protein for ITAM phosphorylation diminishes as available lck increases. Importantly, ZAP-70's role in ITAM phosphorylation in DP thymocytes is not limited to protecting phosphorylated ITAMs from dephosphorylation. Rather, this study indicates that ZAP-70 protein augments ITAM phosphorylation in DP thymocytes and so compensates in part for the relative deficiency of coreceptor-associated lck.  相似文献   

4.
The Src-family and Syk/ZAP-70 family of protein tyrosine kinases (PTK) are required for T cell receptor (TCR) functions. We provide evidence that the Src-family PTK Lck is responsible for regulating the constitutive tyrosine phosphorylation of the TCR zeta subunit in murine thymocytes. Moreover, ligation of the TCR expressed on thymocytes from Lck-deficient mice largely failed to induce the phosphorylation of TCR- zeta, CD3 epsilon, or ZAP-70. In contrast, we find that the TCR-zeta subunit is weakly constitutively tyrosine phosphorylated in peripheral T cells isolated from Lck-null mice. These data suggest that Lck has a functional role in regulation of TCR signal transduction in thymocytes. In peripheral T cells, other Src-family PTKs such as Fyn may partially compensate for the absence of Lck.  相似文献   

5.
Stimulation of antigen receptors in T and B cells leads to the activation of the Src and Syk families of protein tyrosine kinases (PTK). These PTKs subsequently phosphorylate numerous intracellular substrates, including the 95-kD protooncogene product Vav. Vav is essential for both T and B cell development and T and B cell antigen receptor–mediated signal transduction. After receptor ligation, Vav associates with phosphorylated Syk and ZAP-70 PTKs, an interaction that depends upon its SH2 domain. Here we demonstrate that a point mutation of tyrosine 315 (Y315F) in ZAP-70, a putative Vav SH2 domain binding site, eliminated the Vav– ZAP-70 interaction. Moreover, the Y315 mutation impaired the function of ZAP-70 in antigen receptor signaling. Surprisingly, this mutation also resulted in marked reduction in the tyrosine phosphorylation of ZAP-70, Vav, SLP-76, and Shc. These data demonstrate that the Vav binding site in ZAP-70 plays a critical role in antigen receptor–mediated signal transduction.  相似文献   

6.
7.
Although T cell receptor (TCR) signals are essential for intrathymic T cell-positive selection, it remains controversial whether they only serve to initiate this process, or whether they are required throughout to promote thymocyte differentiation and survival. To address this issue, we have devised a novel approach to interfere with thymocyte TCR signaling in a developmental stage-specific manner in vivo. We have reconstituted mice deficient for Zap70, a tyrosine kinase required for TCR signaling and normally expressed throughout T cell development, with a Zap70 transgene driven by the adenosine deaminase (ADA) gene enhancer, which is active in CD4(+)CD8(+) thymocytes but inactive in CD4(+) or CD8(+) single-positive (SP) thymocytes. In such mice, termination of Zap70 expression impaired TCR signal transduction and arrested thymocyte development after the initiation, but before the completion, of positive selection. Arrested thymocytes had terminated Rag gene expression and up-regulated TCR and Bcl-2 expression, but failed to differentiate into mature CD4 or CD8 SP thymocytes, to be rescued from death by neglect or to sustain interleukin 7R alpha expression. These observations identify a TCR-dependent proofreading mechanism that verifies thymocyte TCR specificity and differentiation choices before the completion of positive selection.  相似文献   

8.
The unique tyrosine kinase binding (TKB) domain of Cbl targets phosphorylated tyrosines on activated protein tyrosine kinases (PTKs); this targeting is considered essential for Cbl proteins to negatively regulate PTKs. Here, a loss-of-function mutation (G304E) in the c-Cbl TKB domain, first identified in Caenorhabditis elegans, was introduced into a mouse and its effects in thymocytes and T cells were studied. In marked contrast to the c-Cbl knockout mouse, we found no evidence of enhanced activity of the ZAP-70 PTK in thymocytes from the TKB domain mutant mouse. This finding contradicts the accepted mechanism of c-Cbl-mediated negative regulation, which requires TKB domain targeting of phosphotyrosine 292 in ZAP-70. However, the TKB domain mutant mouse does show aspects of enhanced signaling that parallel those of the c-Cbl knockout mouse, but these involve the constitutive activation of Rac and not enhanced PTK activity. Furthermore, the enhanced signaling in CD4(+)CD8(+) double positive thymocytes appears to be compensated by the selective down-regulation of CD3 on mature thymocytes and peripheral T cells from both strains of mutant c-Cbl mice.  相似文献   

9.
During T cell development in the thymus, pre-T cell receptor (TCR) complexes signal CD4(-) CD8(-) (double negative [DN]) thymocytes to differentiate into CD4(+) CD8(+) (double positive [DP]) thymocytes, and they generate such signals without apparent ligand engagements. Although ligand-independent signaling is unusual and might be unique to the pre-TCR, it is possible that other TCR complexes such as alphabeta TCR or alphagamma TCR might also be able to signal the DN to DP transition in the absence of ligand engagement if they were expressed on DN thymocytes. Although alphagamma TCR complexes efficiently signal DN thymocyte differentiation, it is not yet certain if alphabeta TCR complexes are also capable of signaling DN thymocyte differentiation, nor is it certain if such signaling is dependent upon ligand engagement. This study has addressed these questions by expressing defined alphabeta TCR transgenes in recombination activating gene 2(-/-) pre-Talpha(-/-) double deficient mice. In such double deficient mice, the only antigen receptors that can be expressed are those encoded by the alphabeta TCR transgenes. In this way, this study definitively demonstrates that alphabeta TCR can in fact signal the DN to DP transition. In addition, this study demonstrates that transgenic alphabeta TCRs signal the DN to DP transition even in the absence of their specific MHC-peptide ligands.  相似文献   

10.
11.
A variant of severe combined immunodeficiency syndrome (SCID) with a selective inability to produce CD8 single positive T cells and a signal transduction defect in peripheral CD4+ cells has recently been shown to be the result of mutations in the ZAP-70 gene. T cell receptor (TCR) signaling requires the association of the ZAP-70 protein tyrosine kinase with the TCR complex. Human T cell leukemia virus type I- transformed CD4+ T cell lines were established from ZAP-70-deficient patients and normal controls. ZAP-70 was expressed and appropriately phosphorylated in normal T cell lines after TCR engagement, but was not detected in T cell lines from ZAP-70-deficient patients. To determine whether signaling could be reconstituted, wild-type ZAP-70 was introduced into deficient cells with a ZAP-70 retroviral vector. High titer producer clones expressing ZAP-70 were generated in the Gibbon ape leukemia virus packaging line PG13. After transduction, ZAP-70 was detected at levels equivalent to those observed in normal cells, and was appropriately phosphorylated on tyrosine after receptor engagement. The kinase activity of ZAP-70 in the reconstituted cells was also appropriately upregulated by receptor aggregation. Moreover, normal and transduced cells, but not ZAP-70-deficient cells, were able to mobilize calcium after receptor ligation, indicating that proximal TCR signaling was reconstituted. These results indicate that this form of SCID may be corrected by gene therapy.  相似文献   

12.
During antigen recognition by T cells, CD4 and the T-cell receptor (TCR)/CD3/zeta complex are thought to interact with the same major histocompatibility complex II molecule in a stable ternary complex. Evidence has suggested that the association of CD4 with TCR/CD3/zeta requires the interaction of the protein tyrosine kinase p56lck with CD4. We have taken a biochemical approach to understand the mechanism by which p56lck and, in particular, its src homology (SH) 2 domain contributes to the association of CD4 with TCR/CD3/zeta during activation. We have previously shown that the p56lck SH2 domain binds directly to tyrosine-phosphorylated ZAP-70. Here we formally demonstrate the in vivo association of p56lck with the homologous protein tyrosine kinases Syk and ZAP-70 after CD3 stimulation of Jurkat cells. A tyrosine-phosphorylated peptide containing the sequence predicted to be optimal for binding to the SH2 domain of src family kinases specifically competes for this association, indicating that tyrosine-phosphorylated ZAP-70 and Syk bind to p56lck by an SH2- mediated interaction. We also show that the same peptide is able to compete for the activation-dependent TCR/CD4 association in Jurkat cells. Moreover, ZAP-70 and CD4 cocap only after CD3 stimulation in human T lymphoblasts. We propose that the interaction of the p56lck SH2 domain with zeta-associated tyrosine-phosphorylated ZAP-70 and/or Syk enables CD4 to associate with antigen-stimulated TCR/CD3/zeta complexes.  相似文献   

13.
Tec family kinases are implicated in T cell receptor (TCR) signaling, and combined mutation of inducible T cell kinase (Itk) and resting lymphocyte kinase (Rlk)/Txk in mice dramatically impairs mature T cell function. Nonetheless, mutation of these kinases still permits T cell development. While itk(-)(/)- mice exhibit mild reductions in T cells with decreased CD4/CD8 cell ratios, rlk(-)(/)-itk(-)(/)- mice have improved total T cell numbers yet maintain decreased CD4/CD8 ratios. Using TCR transgenics and an in vitro thymocyte deletion model, we demonstrate that mutation of Tec kinases causes graded defects in thymocyte selection, leading to a switch from negative to positive selection in rlk(-)(/)-itk(-)(/)- animals. The reduction in both positive and negative selection and decreased CD4/CD8 ratios correlates with decreased biochemical parameters of TCR signaling, specifically defects in capacitive Ca(2+) influx and activation of the mitogen-activated kinases extracellular signal-regulated kinase 1 and 2. Thus, Tec kinases influence cell fate determination by modulating TCR signaling, leading to altered thresholds for thymocyte selection. These results provide support for a quantitative model for thymic development and provide evidence that defects in negative selection can substantially alter thymic cellularity.  相似文献   

14.
In attempt to elucidate the mechanism of the HIV infection induced T cell unresponsiveness, we studied signal-transducing molecules proximal to the T cell receptor (TCR) in T lymphocytes of HIV-infected individuals. Total amounts of protein tyrosine kinases (PTKs) Lck, Fyn, and ZAP-70 and the zeta chain of the TCR were found significantly decreased in T cells of symptomatic/AIDS patients as well as in T cells of individuals in acute and early asymptomatic stages of HIV infection. Unexpectedly, the detection of Lck, Fyn, and ZAP-70 was reversed after the treatment of cell lysates with dithiothreitol. This suggests that PTKs Lck, Fyn, and ZAP-70 were modified by a mechanism altering the status of sulfhydryl groups. Moreover, this mechanism seems to affect selectively T cells of HIV infected patients since B cell PTKs Syk and Lyn were detected structurally and functionally intact. Interestingly, similar alterations of signaling molecules were not detected in T cells of HIV-infected long-term asymptomatic individuals. Modification of T cell PTKs may thus underlie the HIV-induced impairment of lymphocyte function and may potentially predict disease progression.  相似文献   

15.
The evolutionarily conserved, secreted protein Twisted gastrulation (Tsg) modulates morphogenetic effects of decapentaplegic (dpp) and its orthologs, the bone morphogenetic proteins 2 and 4 (BMP2/4), in early Drosophila and vertebrate embryos. We have uncovered a role for Tsg at a much later stage of mammalian development, during T cell differentiation in the thymus. BMP4 is expressed by thymic stroma and inhibits the proliferation of CD4(-)CD8(-) double-negative (DN) thymocytes and their differentiation to the CD4(+)CD8(+) double-positive (DP) stage in vitro. Tsg is expressed by thymocytes and up-regulated after T cell receptor signaling at two developmental checkpoints, the transition from the DN to the DP and from the DP to the CD4(+) or CD8(+) single-positive stage. Tsg can synergize with the BMP inhibitor chordin to block the BMP4-mediated inhibition of thymocyte proliferation and differentiation. These data suggest that the developmentally regulated expression of Tsg may allow thymocytes to temporarily withdraw from inhibitory BMP signals.  相似文献   

16.
p56lck interacts via its src homology 2 domain with the ZAP-70 kinase   总被引:18,自引:7,他引:18       下载免费PDF全文
p56lck, a member of the src family of protein tyrosine kinases, is an essential component in T cell receptor (TCR) signal transduction. p56lck contains a src homology 2 (SH2) domain found in a number of proteins involved in intracellular signaling. SH2 domains have been implicated in protein-protein interactions by binding to sequences in target proteins containing phosphorylated tyrosine. Using an in vitro assay, we have studied specific binding of tyrosine-phosphorylated proteins to a recombinant p56lck SH2 domain. In nonactivated Jurkat cells, two tyrosine-phosphorylated proteins were detected. Stimulation with anti-CD3 monoclonal antibodies induced the binding of seven additional tyrosine-phosphorylated proteins to the SH2 domain of p56lck. We have identified the zeta-associated tyrosine kinase, ZAP-70, as one of these proteins. Evidence suggests that binding of ZAP-70 to p56lck SH2 is direct and not mediated by zeta. The significance of this interaction was further investigated in vivo. p56lck could be coprecipitated with the zeta/ZAP-70 complex and conversely, ZAP-70 was detected in p56lck immunoprecipitates of activated Jurkat cells. The physical association of p56lck and ZAP-70 during activation supports the recently proposed functional cooperation of these two tyrosine kinases in TCR signaling.  相似文献   

17.
18.
CD27 is a lymphocyte-specific member of the TNF receptor family and has a TNF-related transmembrane ligand, CD70. The CD27/CD70 receptor-ligand pair cooperates with the TCR in the regulation of the peripheral T cell response. The study presented here reveals that CD27 may play a similar role in thymic pre-T cell development. We have previously cloned the cDNA encoding murine CD27, prepared specific mAbs and observed that murine CD27 is expressed on virtually all thymocytes, with the exception of a subpopulation of CD4-8- precursor T cells. It is shown here that induction of murine CD27 expression occurs at the transition from the CD4-8-25+ to the CD4-8-25- precursor T cell stage and is regulated by the pre-TCR. Therefore, we investigated whether CD27 contributes to pre-TCR-mediated thymocyte development. Pre-TCR function was mimicked by the induction of CD3 signaling in thymocytes of recombination activating gene (RAG)-deficient mice. This in vivo anti- CD3 epsilon mAb treatment induces an about fifty fold numerical expansion of CD4-8-25+ thymocytes and their differentiation to the CD4+8+25- stage. Co-injection of anti-CD27 mAb inhibited the CD3- mediated expansion and differentiation of the CD4-8-25+ precursor population. Also, injection of anti-CD27 mAb in TCR alpha-/- mutant mice led to a reduction in the absolute number of CD4+8+25- thymocytes. We present evidence that in these in vivo systems, anti-CD27 mAb inhibits CD27-ligand interaction. Therefore, we conclude that CD27 may contribute to normal murine T cell development by synergizing with the pre-TCR-mediated signal.  相似文献   

19.
Maturational changes at the CD4(-)CD8(-) double negative (DN) to CD4(+)CD8(+) double positive (DP) transition are dependent on signals generated via the pre-T cell receptor (TCR) and the nonreceptor protein tyrosine kinase p56(lck) (Lck). How Lck activities are stimulated or relayed after pre-TCR formation remains obscure. Our structure-function mapping of Lck thymopoietic properties reveals that the noncatalytic domains of Lck are specialized to signal efficient cellular expansion at DN to DP transition. Moreover, although substitution of the Lck catalytic domain with FynT sequences minimally impacts DP development, single positive thymocytes are most efficiently produced in the presence of kinases containing both the NH(2)-terminal and catalytic regions of Lck. These findings demonstrate that the Lck structure is uniquely adapted to mediate signals at both major transitions in thymopoiesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号