首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. The hepatic and thyroid gland effects of the constitutive androstane receptor (CAR) activator sodium phenobarbital (NaPB) and the pregnane X receptor (PXR) activator pregnenolone-16α-carbonitrile (PCN) were examined in male Sprague-Dawley wild-type (WT) and knockout (KO) rats lacking both hepatic CAR and PXR receptors (CAR KO/PXR KO rats).

  2. The treatment of WT rats for 7?d with 500?ppm NaPB in the diet and 100?mg/kg/d PCN by gavage resulted in increased relative liver weight, hepatocyte hypertrophy, increased hepatocyte replicative DNA synthesis (RDS) and induction of cytochrome P450 CYP2B and CYP3A subfamily enzymes. NaPB and PCN also induced thyroid gland follicular cell RDS and hepatic microsomal UDP-glucuronosyltransferase activity towards thyroxine as substrate. These effects were not observed in the liver and thyroid gland of CAR KO/PXR KO rats.

  3. Male C57BL/6?J (WT) and CAR KO/PXR KO mice were given 1000?ppm NaPB in the diet for 7?d. In WT, but not in CAR KO/PXR KO, mice NaPB treatment resulted in liver hypertrophy and induction of hepatocyte RDS and Cyp2b enzymes.

  4. These results suggest that the CAR KO/PXR KO rat and mouse models are useful experimental models for mode of action studies with rodent CAR activators.

  相似文献   

2.
  1. The evaluation of drug-mediated cytochrome P450 (P450) induction using human hepatocytes is important for predicting drug interactions. In this study, we prepared hepatocytes from chimeric mice with humanised livers (Hu-Liver mice) and evaluated the expression and inducibility of P450s in these hepatocytes.

  2. Up to 95% of the Hu-Liver cells stained positive for human leukocyte antigen and the mean viability exceeded 85% (n?=?10). Monolayer-cultured Hu-Liver cells displayed a similar morphology to cultures of the corresponding human hepatocytes used as transplantation donors.

  3. The mRNA expression levels in Hu-Liver cells of 16 P450 forms belonging to P450 subfamilies 1–4 correlated well with the expression levels of the same enzymes in human hepatocytes. The variations in individual P450 mRNA levels between Hu-Liver cells and the corresponding human hepatocytes were within five-fold for 13 P450 forms.

  4. The production of 6β-hydroxytestosterone in Hu-Liver cells was significantly increased (p?<?.05) following treatment with the CYP3A inducer, rifampicin.

  5. Hu-Liver cells have characteristics similar to those of human hepatocytes in terms of mRNA expression levels and the inducibility of the various P450 forms. Thus, Hu-Liver cells can potentially be used for in vitro drug-mediated induction assays of human hepatic P450s.

  相似文献   

3.
  1. Cytochrome P450 (CYP) enzymes constitute an essential xenobiotic metabolizing system that regulates the elimination of lipophilic compounds from the body. Convenient and affordable assays for CYP enzymes are important for assessing these metabolic pathways.

  2. In this study, 10 novel profluorescent coumarin derivatives with various substitutions at carbons 3, 6 and 7 were developed. Molecular modeling indicated that 3-phenylcoumarin offers an excellent scaffold for the development of selective substrate compounds for various human CYP forms, as they could be metabolized to fluorescent 7-hydroxycoumarin derivatives. Oxidation of profluorescent coumarin derivatives to fluorescent metabolites by 13 important human liver xenobiotic-metabolizing CYP forms was determined by enzyme kinetic assays.

  3. Four of the coumarin derivatives were converted to fluorescent metabolites by CYP1 family enzymes, with 6-methoxy-3-(4-trifluoromethylphenyl)coumarin being oxidized selectively by CYP1A2 in human liver microsomes. Another set of four compounds were metabolized by CYP2A6 and CYP1 enzymes. 7-Methoxy-3-(3-methoxyphenyl)coumarin was oxidized efficiently by CYP2C19 and CYP2D6 in a non-selective fashion.

  4. The advantages of the novel substrates were (1) an excellent signal-to-background ratio, (2) selectivity for CYP1 forms, and (3) convenient multiwell plate measurement, allowing for precise determination of potential inhibitors of important human hepatic forms CYP1A2, CYP2C19 and CYP2D6.

  相似文献   

4.
  1. The metabolism of the pyrethroids deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in human expressed cytochrome P450 (CYP) and carboxylesterase (CES) enzymes.

  2. DLM, CPM and TPM were metabolised by human CYP2B6 and CYP2C19, with the highest apparent intrinsic clearance (CLint) values for pyrethroid metabolism being observed with CYP2C19. Other CYP enzymes contributing to the metabolism of one or more of the three pyrethroids were CYP1A2, CYP2C8, CYP2C9*1, CYP2D6*1, CYP3A4 and CYP3A5. None of the pyrethroids were metabolised by CYP2A6, CYP2E1, CYP3A7 or CYP4A11.

  3. DLM, CPM and TPM were metabolised by both human CES1 and CES2 enzymes.

  4. Apparent CLint values for pyrethroid metabolism by CYP and CES enzymes were scaled to per gram of adult human liver using abundance values for microsomal CYP enzymes and for CES enzymes in liver microsomes and cytosol. TPM had the highest and CPM the lowest apparent CLint values for total metabolism (CYP and CES enzymes) per gram of adult human liver.

  5. Due to their higher abundance, all three pyrethroids were extensively metabolised by CES enzymes in adult human liver, with CYP enzymes only accounting for 2%, 10% and 1% of total metabolism for DLM, CPM and TPM, respectively.

  相似文献   

5.
  1. Leelamine is a diterpene compound found in the bark of pine trees and has garnered considerable interest owing to its potent anticancer properties. The aim of the present study was to investigate the metabolic profile of leelamine in human liver microsomes (HLMs) and mice using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

  2. We found that leelamine undergoes only Phase I metabolism, which generates one metabolite that is mono-hydroxylated at the C9 carbon of the octahydrophenanthrene ring (M1) both in vitro and in vivo. The structure and metabolic pathway of M1 were determined from the MSn fragmentation obtained by collision-induced dissociation using LC-MS/MS in HLMs.

  3. Cytochrome p450 (CYP) 2D6 was found to be the dominant CYP enzyme involved in the biotransformation of leelamine to its hydroxylated metabolite, whereas CYP2C19, CYP1A1, and CYP3A4 contributed to some extent.

  4. Moreover, we identified only one metabolite M1, in the urine, but none in the feces. In conclusion, leelamine was metabolized to a mono-hydroxyl metabolite by CYP2D6 and mainly excreted in the urine.

  相似文献   

6.
  1. The roles of human cytochrome P450 (P450 or CYP) 2A6 in the oxidation of flavanone [(2R)- and (2S)-enantiomers] and flavone were studied in human liver microsomes and recombinant human P450 enzymes.

  2. CYP2A6 was highly active in oxidizing flavanone to form flavone, 2′-hydroxy-, 4′-, and 6-hydroxyflavanones and in oxidizing flavone to form mono- and di-hydroxylated products, such as mono-hydroxy flavones M6, M7, and M11 and di-hydroxy flavones M3, M4, and M5.

  3. Liver microsomes prepared from human sample HH2, defective in coumarin 7-hydroxylation activity, were very inefficient in forming 2′-hydroxyflavanone from flavanone and a mono-hydroxylated product, M6, from flavone. Coumarin and anti-CYP2A6 antibodies strongly inhibited the formation of these metabolites in microsomes prepared from liver samples HH47 and 54, which were active in coumarin oxidation activities.

  4. Molecular docking analysis showed that the C2′-position of (2R)-flavanone (3.8 Å) was closer to the iron center of CYP2A6 than the C6-position (10 Å), while distances from C2′ and C6 of (2S)-flavanone to the CYP2A6 were 6.91 Å and 5.42 Å, respectively.

  5. These results suggest that CYP2A6 catalyzes site-specific oxidation of (racemic) flavanone and also flavone in human liver microsomes. CYP1A2 and CYP2B6 were also found to play significant roles in some of the oxidations of these flavonoids by human liver microsomes.

  相似文献   

7.
  1. GNE-617 (N-(4-((3,5-difluorophenyl)sulfonyl)benzyl)imidazo[1,2-a]pyridine-6-carboxamide) is a potent, selective nicotinamide phosphoribosyltransferase (NAMPT) inhibitor being explored as a potential treatment for human cancers.

  2. Plasma clearance was low in monkeys and dogs (9.14?mL min?1?kg?1 and 4.62?mL min?1?kg?1, respectively) and moderate in mice and rats (36.4?mL min?1?kg?1 and 19.3?mL min?1?kg?1, respectively). Oral bioavailability in mice, rats, monkeys and dogs was 29.7, 33.9, 29.4 and 65.2%, respectively.

  3. Allometric scaling predicted a low clearance of 3.3?mL min?1?kg?1 and a volume of distribution of 1.3?L kg?1 in human.

  4. Efficacy (57% tumor growth inhibition) in Colo-205 CRC tumor xenograft mice was observed at an oral dose of 15?mg/kg BID (AUC?=?10.4?µM h).

  5. Plasma protein binding was moderately high. GNE-617 was stable to moderately stable in vitro. Main human metabolites identified in human hepatocytes were formed primarily by CYP3A4/5. Transporter studies suggested that GNE-617 is likely a substrate for MDR1 but not for BCRP.

  6. Simcyp® simulations suggested a low (CYP2C9 and CYP2C8) or moderate (CYP3A4/5) potential for drug-drug interactions. The potential for autoinhibition was low.

  7. Overall, GNE-617 exhibited acceptable preclinical properties and projected human PK and dose estimates.

  相似文献   

8.
  1. Contributions of cytochrome P450 (CYP450) isoforms to drug metabolism are often predicted using relative activity factor (RAF) method, assuming RAF values were independent of probe. We aimed to report probe-dependent characteristic of RAF values using CYP3A4 or CYP2C9 probes.

  2. Metabolism of four CYP3A4 probes (testosterone, midazolam, verapamil and atorvastatin) and three CYP2C9 probes (tolbutamide, diclofenac and S-warfarin) in human liver microsomes (HLM) and cDNA-expressed recombinant CYP450 (Rec-CYP450) systems were characterized and RAFCL value was estimated as ratio of probe intrinsic clearance in HLM to that in Rec-CYP450. CYP450i contributions to metabolic reaction of a probe were predicted using other probes and compared with data from specific inhibitions. Contributions of CYP3A4 and CYP2C9 to metabolism of deoxypodophyllotoxin and nateglinide were also predicted.

  3. RAF values were dependent on probes, leading to probe-dependently predicted contributions. Predicted contributions of CYP3A4 to formations of 6β-hydroxytestosterone, 1′-hydroxymidazolam, norverapamil, ortho-hydroxyatorvastatin and para-hydroxyatorvastatin using other probes were 47.46–219.46%, 21.62–98.87%, 186.49–462.44%, 21.87–101.15% and 53.62–247.97%, respectively. Predicted contributions of CYP3A4 and CYP2C9 to nateglinide metabolism were 8.18–37.84% and 36.08–94.04%, separately.

  4. In conclusion, CYP450i contribution to drug metabolism in HLM estimated using RAF approach were probe-dependent. Therefore, contribution of each isoform must be confirmed by multiple probes.

  相似文献   

9.
  1. Mavacamten is a small molecule modulator of cardiac myosin designed as an orally administered drug for the treatment of patients with hypertrophic cardiomyopathy. The current study objectives were to assess the preclinical pharmacokinetics of mavacamten for the prediction of human dosing and to establish the potential need for clinical pharmacokinetic studies characterizing drug–drug interaction potential.

  2. Mavacamten does not inhibit CYP enzymes, but at high concentrations relative to anticipated therapeutic concentrations induces CYP2B6 and CYP3A4 enzymes in vitro. Mavacamten showed high permeability and low efflux transport across Caco-2 cell membranes. In human hepatocytes, mavacamten was not a substrate for drug transporters OATP, OCT and NTCP. Mavacamten was determined to have minimal drug–drug interaction risk.

  3. In vitro mavacamten metabolite profiles included phase I- and phase II-mediated metabolism cross-species. Major pathways included aromatic hydroxylation (M1), aliphatic hydroxylation (M2); N-dealkylation (M6), and glucuronidation of the M1-metabolite (M4). Reaction phenotyping revealed CYPs 2C19 and 3A4/3A5 predominating.

  4. Mavacamten demonstrated low clearance, high volume of distribution, long terminal elimination half-life and excellent oral bioavailability cross-species.

  5. Simple four-species allometric scaling led to predicted plasma clearance, volume of distribution and half-life of 0.51?mL/min/kg, 9.5?L/kg and 9?days, respectively, in human.

  相似文献   

10.
  1. The objectives of this study were to determine the absolute bioavailability of lesinurad and to characterized its disposition in humans.

  2. The oral bioavailability assessment was performed using a clinical design of simultaneous dosing of a therapeutic oral dose of lesinurad with an intravenous infusion of [14C]lesinurad microdose. The bioavailability of lesinurad was determined to be 100%.

  3. The disposition of lesinurad in humans involves hepatic oxidation and renal elimination following administration of oral [14C]lesinurad dose.

  4. Metabolism of lesinurad occurred post-systemically with low circulating levels of metabolites <3% of total radioactivity as 74.2% of total radioactivity was attributed to lesinurad.

  5. In vitro metabolism studies identified CYP2C9 as the predominant isoform, and summation of metabolites indicated that it was responsible for ~50% of metabolism.

  相似文献   

11.
  1. The objective is to evaluate methoxsalen as an in vitro phenotyping tool in comparison to ABT as a nonspecific inactivator of P450 mediated metabolism.

  2. The reversible inhibition of methoxsalen and ABT against the P450, FMO, AO, MAO-A and -B, enzymes were evaluated using standard marker probe reactions. The time-dependent inhibition of P450 enzymes was evaluated in human liver microsomes. CES1 activities were determined by monitoring the depletion of known substrate, the clopidogrel. The metabolism of P450 substrates in the presence and absence of methoxsalen or ABT was evaluated in human liver microsomes.

  3. Methoxsalen is a direct inhibitor and inhibited the activities (>90%) of all enzymes at a concentration of 300?µM except for CYP2C9. Methoxsalen is also a potent time-dependent inhibitor of all P450 enzymes except for CYP2C19 (moderate) at a concentration of 300?µM. Methoxsalen inhibited the metabolism of P450 substrates in the pre-incubation mode. ABT is a potent TDI of several P450 except for CYP2C19 (47%) and CYP2C9 (27%).

  4. The results indicate that methoxsalen is a potent pan P450 inhibitor than ABT and can be a better tool in distinguishing P450 mediated metabolism form non-P450 metabolism in human liver microsomes.

  相似文献   

12.
  1. Paritaprevir (PTV) is a non-structural protein 3/4A protease inhibitor developed for the treatment of hepatitis C disease as a fixed dose combination of ombitasvir (OBV) and ritonavir (RTV) with or without dasabuvir.

  2. The aim of this study was to evaluate the effects of cytochrome P450 (CYP) 3A5 on in vitro PTV metabolism using human recombinant CYP3A4, CYP3A5 (rCYP3A4, rCYP3A5) and human liver microsomes (HLMs) genotyped as either CYP3A5*1/*1, CYP3A5*1/*3 or CYP3A5*3/*3.

  3. The intrinsic clearance (CLint, Vmax/Km) for the production of a metabolite from PTV in rCYP3A4 was 1.5 times higher than that in rCYP3A5. The PTV metabolism in CYP3A5*1/*1 and CYP3A5*1/*3 HLMs expressing CYP3A5 was comparable to that in CYP3A5*3/*3 HLMs, which lack CYP3A5.

  4. CYP3A4 expression level was significantly correlated with PTV disappearance rate and metabolite formation. In contrast, there was no such correlation found for CYP3A5 expression level.

  5. This study represents that the major CYP isoform involved in PTV metabolism is CYP3A4, with CYP3A5 having a minor role in PTV metabolism. The findings of the present study may provide foundational information on PTV metabolism, and may further support dosing practices in HCV-infected patients prescribed PTV-based therapy.

  相似文献   

13.
14.
  1. The absorption, distribution, metabolism, and excretion of fasiglifam were investigated in rats, dogs, and humans.

  2. The absolute oral bioavailability of fasiglifam was high in all species (>76.0%).

  3. After oral administration of [14C]fasiglifam, the administered radioactivity was quantitatively recovered and the major route of excretion of radioactivity was via feces in all species.

  4. Fasiglifam was a major component in the plasma and feces in all species. Its oxidative metabolite (M-I) was observed as a minor metabolite in rat and human plasma (<10% of plasma radioactivity). In human plasma, hydroxylated fasiglifam (T-1676427), the glucuronide of fasiglifam (fasiglifam-G), and the glucuronide of M-I were detected as additional minor metabolites (<2% of plasma radioactivity). None of these metabolites were specific to humans. Fasiglifam-G was the major component in the rat and dog bile.

  5. In vitro cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) reaction phenotyping indicated that oxidation (to form M-I and T-1676427) and glucuronidation of fasiglifam are mainly mediated by CYP3A4/5 and UGT1A3, respectively.

  6. Fasiglifam and fasiglifam-G are substrates of BCRP and Mrp2/MRP2, respectively.

  7. Glucuronidation of fasiglifam-G was found to be the predominant elimination pathway of fasiglifam in all species tested, including humans.

  相似文献   

15.
  1. A 1,2,4-oxadiazole ring-containing compound DS-8500a was developed as a novel G protein-coupled receptor 119 agonist. In vivo metabolic fates of [14C]DS-8500a differently radiolabeled in the benzene ring or benzamide side carbon in rats were investigated.

  2. Differences in mass balances were observed, primarily because after the oxadiazole ring-opening and subsequent ring-cleavage small-molecule metabolites containing the benzene side were excreted in the urine, while those containing the benzamide side were excreted in the bile.

  3. DS-8500a was detected at trace levels in urine and bile, demonstrating extensive metabolism prior to urinary/biliary excretion. At least 16 metabolite structures were proposed in plasma, urine, and bile samples from rats treated with [14C]DS-8500a.

  4. Formation of a ring-opened metabolite (reduced DS-8500a) in hepatocytes of humans, monkeys, and rats was confirmed; however, it was not affected by typical inhibitors of cytochrome P450s, aldehyde oxidases, or carboxylesterases in human hepatocytes. Extensive formation of the ring-opened metabolite was observed in human liver microsomes fortified with an NADPH-generating system under anaerobic conditions.

  5. These results suggest an in vivo unique reductive metabolism of DS-8500a is mediated by human non-cytochrome P450 enzymes.

  相似文献   

16.
  1. The metabolism of deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in liver microsomes, liver cytosol and plasma from male Sprague–Dawley rats aged 15, 21 and 90 days and from adult humans.

  2. DLM and CPM were metabolised by rat hepatic microsomal cytochrome P450 (CYP) enzymes and to a lesser extent by microsomal and cytosolic carboxylesterase (CES) enzymes, whereas TPM was metabolised to a greater extent by CES enzymes.

  3. In human liver, DLM and TPM were mainly metabolised by CES enzymes, whereas CPM was metabolised by CYP and CES enzymes.

  4. The metabolism of pyrethroids by cytosolic CES enzymes contributes to the overall hepatic clearance of these compounds.

  5. DLM, CPM and TPM were metabolised by rat, but not human, plasma CES enzymes.

  6. This study demonstrates that the ability of male rats to metabolise DLM, CPM and TPM by hepatic CYP and CES enzymes and plasma CES enzymes increases with age. In all instances, apparent intrinsic clearance values were lower in 15 than in 90?day old rats. As pyrethroid-induced neurotoxicity is due to the parent compound, these results suggest that DLM, CPM and TPM may be more neurotoxic to juvenile than to adult rats.

  相似文献   

17.
  1. This was the first study to construct a physiologically-based pharmacokinetic (PBPK) model for mirabegron which incorporates the overall elimination pathways of metabolism by cytochrome P450 (CYP) 3A4, uridine 5'-diphosphate-glucuronosyltransferase (UGT) 2B7, and butyrylcholinesterase (BChE) and renal excretion. The objective was to assess the risk of drug-drug interactions (DDIs) by estimating the contribution of each elimination pathway and simulating the magnitude of the DDIs with UGT2B7 inhibitors.

  2. A PBPK model for mirabegron was constructed to reproduce the plasma concentration-time curves from a phase 1 study and the magnitude of the DDI with ketoconazole taking into account the overall elimination pathways. The PBPK model was subsequently verified using data from other DDI studies.

  3. The constructed PBPK model estimated the contribution for each elimination pathway: 44% and 29% for CYP3A4 and UGT2B7 in the liver, 1.6% for UGT2B7 in the kidney, 3.2% for BChE in plasma, and 22% for renal excretion.

  4. Co-administration of probenecid (an UGT2B7 inhibitor) or fluconazole (an UGT2B7 and CYP3A4 inhibitor) was predicted to increase area under the curve for mirabegron to 115% or 174%, respectively.

  5. In conclusion, PBPK modeling and simulation revealed a low DDI risk for mirabegron following co-administration with BChE or UGT2B7 inhibitors.

  相似文献   

18.
  1. A causal association is reported between prolonged exposures to elevated levels of estrogen and breast cancer. Therefore inhibiting aromatase (CYP19A), which catalyses the conversion of androgens to estrogens, is an important approach in prevention and treatment of estrogen receptor positive (ER+) breast cancer.

  2. Melatonin, a natural indolic hormone, is reported to prevent free radical induced carcinogenesis and block local estrogen synthesis in breast tissue via aromatase inhibition. However several features of melatonin limit its therapeutic use.

  3. In the present study aromatase inhibiting potential of 2-methyl indole hydrazones are investigated, and compared with melatonin, by two in vitro models; a cell-free assay using a fluorescence substrate and a cell-based assay where cell proliferation was determined in ER?+?human breast cancer cells (MCF-7 BUS) in the absence of estrogen and the presence of testosterone. Aromatase inhibitory effect is also explored by molecular modelling studies.

  4. In biological activity assays monochloro substituted indole hydrazones were found to have stronger aromatase inhibitory activity among all tested derivatives and were more active than melatonin. This finding is further confirmed by molecular modelling.

  5. These results may be useful in the design and synthesis of novel melatonin analogues with higher inhibitory potency against aromatase.

  相似文献   

19.
  1. Tanshinone I (TSI) is a lipophilic diterpene in Salvia miltiorrhiza with versatile pharmacological activities. However, metabolic pathway of TSI in human is unknown.

  2. In this study, we determined major metabolites of TSI using a preparation of human liver microsomes (HLMs) by HPLC-UV and Q-Trap mass spectrometer. A total of 6 metabolites were detected, which indicated the presence of hydroxylation, reduction as well as glucuronidation.

  3. Selective chemical inhibition and purified cytochrome P450 (CYP450) isoform screening experiments revealed that CYP2A6 was primarily responsible for TSI Phase I metabolism. Part of generated hydroxylated TSI was glucuronidated via several glucuronosyltransferase (UGT) isoforms including UGT1A1, UGT1A3, UGT1A7, UGT1A9, as well as extrahepatic expressed isoforms UGT1A8 and UGT1A10. TSI could be reduced to a relatively unstable hydroquinone intermediate by NAD(P)H: quinone oxidoreductase 1 (NQO1), and then immediately conjugated with glucuronic acid by a panel of UGTs, especially UGT1A9, UGT1A1 and UGT1A8. Additionally, NQO1 could also reduce hydroxylated TSI to a hydroquinone intermediate, which was immediately glucuronidated by UGT1A1.

  4. The study demonstrated that hydroxylation, reduction as well as glucuronidation were the major pathways for TSI biotransformation, and six metabolites generated by CYPs, NQO1 and UGTs were found in HLMs and S9 subcellular fractions.

  相似文献   

20.
  1. Metabolite identification is an integral part of both preclinical and clinical drug discovery and development. Synthesis of drug metabolites is often required to support definitive identification, preclinical safety studies and clinical trials.

  2. Here we describe the use of microbial biotransformation as a tool to produce drug metabolites, complementing traditional chemical synthesis and other biosynthetic methods such as hepatocytes, liver microsomes and recombinant human drug metabolizing enzymes.

  3. A workflow is discussed whereby microbial strains are initially screened for their ability to form the putative metabolites of interest, followed by a scale-up to afford quantities sufficient to perform definitive identification and further studies.

  4. Examples of the microbial synthesis of several difficult-to-synthesize hydroxylated metabolites and three difficult-to-synthesize glucuronidated metabolites are described, and the use of microbial biotransformation in drug discovery and development is discussed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号