首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
原发性无精子症与严重少精子症患者AZF微缺失筛查   总被引:2,自引:1,他引:1  
目的:观察Y染色体AZF微缺失与原发性无精子症和严重少精子症之间的关系。方法:所有筛选入实验组的研究对象均进行外周血生殖内分泌激素卵泡刺激素(FSH)、黄体生成素(LH)、睾酮(T)的检测及染色体核型分析,排除激素水平异常者及染色体结构与数目异常者。将符合纳入标准的实验对象67例分为原发性无精子症组(A组)49例与原发性严重少精子症组(B组)18例,正常生育男性对照(C组)40例。确定了8个实验用序列标签位点(STS),分别是:sY84、sY86、sY127、sY134、sY152、sY153、sY254、sY255,并以X/Y连锁锌指蛋白基因(ZFX/Y)为内对照进行多重PCR筛查AZF微缺失。结果:67例实验组样本中,共检测出AZF微缺失8例,缺失率为11.94%,其中AZFc区缺失的有4例,AZFa+AZFc区缺失的有2例,AZFb+AZFc区缺失的有1例,AZFb区缺失的有1例。对照组未检出AZF基因微缺失。经χ2检验,实验组与对照组AZF区域STS总缺失率有显著性差异,实验组高于对照组。结论:Y染色体长臂AZF微缺失与原发性无精子症和严重少精子症相关,多重PCR是一种快速、有效的筛查方法。  相似文献   

2.
The present study investigated the frequency of chromosome aberrations and AZF microdeletions in infertile patients with nonobstructive azoospermia (NOA) or severe oligozoospermia. Additionally, the effect of the AZFc microdeletions on the success of microdissection testicular sperm extraction (microTESE) and intracytoplasmic sperm injection (ICSI) methods were evaluated. Peripheral blood samples were received from 1,300 infertile men with NOA and severe oligozoospermia. Karyotyping and FISH analysis were performed according to standard methods. AZF microdeletions were analysed using multiplex polymerase chain reaction or GML Y‐chromosome Microdeletion Detection System consisting of 14 markers. The chromosomal aberrations and the AZF microdeletions frequency among 1,300 infertile men were 10.6% and 4.0% respectively. Either ejaculated spermatozoa or microTESE was performed on only in 19 out of 26 patients with AZFc deletions. Of the 19 patients, four had severe oligozoospermia and 15 had NOA. In eight out of 15 NOA patients, testicular mature spermatozoa were obtained (53.3%) and then ICSI was applied to mature oocytes. After undergoing ICSI treatment, clinical pregnancy and live birth outcome rates were found to be 37.5% and 25% respectively. These results suggest that infertile patients with AZFc microdeletion could achieve successful fertilisation pregnancies with the help of assisted reproductive technology.  相似文献   

3.
Wu Q  Wang H  Liu YL  Xu Y  Wang P  Shi HJ  Feng Y 《中华男科学杂志》2011,17(5):391-395
目的:探讨中国人群无精子因子c(azoosperm ia factor c,AZFc)微缺失的类型及AZF多重PCR筛查时序列标签位点(sequence taged sites,STSs)的选择。方法:采用多重PCR反应测定9个STS位点(sY84、sY86、sY127、sY134、sY152、sY145、sY255、sY254、sY157)筛查164例严重少精子症或非梗阻性无精子症汉族男性Y染色体微缺失,并以精子浓度正常的男性105例作为对照;同时对来自多中心的180例已确诊为sY254、sY255缺失的男性进行sY145、sY152和sY157位点分析。结果:164例严重少精子症或无精子症男性中AZFc缺失者14例(8.5%);共194例sY254、sY255缺失男性的sY145、sY152均未缺失,而sY157未缺失者仅2例。发现1例单sY157缺失的严重少精子症男性为sY1206缺失和DAZ基因中DAZ3/DAZ4基因拷贝缺失。结论:sY254、sY255和sY157缺失是中国人群AZFc缺失的最常见类型;sY145和sY152微缺失在入选的研究对象中未曾出现,因此不建议作为AZFc常规筛查的位点。"sY157的单一缺失"可能是中国人群AZFc部分缺失的一种新类型,其临床意义值得进一步探讨。  相似文献   

4.
目的探讨严重少精子症及非梗阻性无精子症与Y染色体长臂微缺失之间的关系。方法该病例对照研究包括216例严重少精子症、189例非梗阻性无精子症患者及100例精液参数正常的对照。采用多重PCR对Y染色体AZFa、AZFb、AZFc及AZFd区域进行检测。玷果在严重性少精子症患者中,AZF总缺失率为10.65%(23/216),其中以AZFc区缺失最常见,占缺失的78.26%(18/23);在非梗阻性无精子症患者中,AZF总缺失率为13.76%(26/189),其中也以AZFc区缺失最常见,占缺失的57.69%(15/26);在正常对照中发现1例AZFb缺失,两病例组AZF区缺失分别与对照组相比较均具有显著差异(X^2=9.066,P=0.003;X^2=10.74,P=0.001)。结论通过对Y染色体微缺失的检查可以从基因水平寻找生精障碍的原因以及为优生优育提供可靠的遗传信息依据。  相似文献   

5.
目的:通过对不育患者进行Y染色体微缺失筛查以及部分微缺失患者的家系追踪调查,探讨Y染色体微缺失父子间的自然垂直遗传特点。方法:对1 052例患者进行Y染色体无精子因子(AZF)检测,并对12例AZFc缺失患者,1例AZFb和1例AZFb+c缺失患者进行家系追踪调查,绘制AZF缺失患者男性直系家族成员男性不育家系系谱图。结果:1 052例患者,共发现Y染色体微缺失89例,其中AZFc缺失56例,AZFa缺失6例,AZFb缺失5例,AZFb+c缺失14例,AZFa+b+c缺失8例。在追踪调查的AZF缺失家系中,AZFb和AZFb+c仅先证者存在缺失,12例AZFc缺失患者中5例重度少精子症患者存在家族垂直遗传,另外1例重度少精子症患者和6例无精子症患者家系中除先证者有缺失外,其家系成员未发现缺失。结论:通过对Y染色体微缺失患者进一步的家系调查发现,仅重度少精子症的AZFc缺失患者可能由父亲垂直遗传而来,但与父系表型有差异。对AZF缺失的无精子症患者,无论何种缺失类型,由父亲垂直遗传而来的可能都不大。  相似文献   

6.
目的 用分子生物学方法检测无精子症和严重少精子症患者无精子基因 (AZF)AZF/DAZ基因微缺失。 方法 应用聚合酶链反应 (PCR)技术对无精子症 4 7例、严重少精子症 4例进行Y染色体AZFa、AZFb、AZFc/DAZ、SRY的微缺失检测。 结果  5 1例患者缺失率为 35 .3% (18/ 5 1) ,其中AZFa、AZFb、AZFc的微缺失分别为 4例 (7.8% )、5例 (9.8% )和 4例 (7.8% )。无精子症患者 1例 (1.9% )为AZFa、AZFb的双重缺失 ,2例 (3.9% )为AZFb、AZFc的双重缺失 ;2例 (3.9% )为AZFa、AZFb和AZFc的三重缺失 ;5 1例SRY基因PCR扩增均为阳性。 5例已有生育的正常男性均无AZFa、AZFb、AZFc、SRY的微缺失。 结论 AZF/DAZ(包括AZFa、AZFb、AZFc/DAZ)基因的微缺失是引起无精子和严重少精子导致男性不育的重要原因之一。AZF/DAZ基因微缺失的分子生物学检测对不明原因的不育男性行胞浆内单精子注射 (ICSI)时有指导意义。  相似文献   

7.
Objective: To identify microdeletions in azoospermia factor(AZF) gene loci in patients with idiopathic azoospermia and severe oligozoospermia in Fujian. Methods: Molecular genetic detection method was used to detect microdeletion at the AZFa, AZFb, AZFc /DAZ,SRY region of Y chromosome in 47 azoospermia and 4 severe oligozoospermia patients. Genomic DNA was extracted from peripheral blood. The sequence tagged site (STS) primers tested in each cases were sY84(AZFa), sY 143(AZFb) sY254(AZFc).SRY region of Y chromosome for control. The PCR products were analyzed on a 2.0% agarose gel. Results: Microdeletions of the Y-chromosomal AZF loci were revealed in 18(35.3%,18/51) of 51 patients with idiopathic azoospermia and severe oligozoospermia. AZFa deletion was found in four (7.8%) patients, AZF b in five (9.8%) patients, AZF c in four (7.8%) patients. AZF a+b in one(1.9%)patient, AZF b+c in two (3.9%) patients, AZF a+b+c in two (3.9%)patients respectively. No deletion of SRY region was found. No deletion of AZF a, AZF b, AZF c/DAZ,SRY regions was found in five fertile male who had at least one or more children. Conclusions: Microdeletions on AZF/DAZ gene loci were major genetics defects leading to azoospermia and severe oligozoospermia in male idiopathic infertility in Fujian. It is necessary to have genetic counseling and carry out microdeletion detection on AZF/DAZ gene loci before performing intracytoplasmic sperm injection (ICSI).  相似文献   

8.
9.
目的:观察嵌合型Klinefelter综合征的外周血染色体、Y染色体上SRY基因和AZF基因微缺失发生情况。方法:对1例嵌合型Klinefelter综合征患者及父母进行外周血染色体核型分析,确定9个实验用序列标签位点(STS),分别是:sY84、sY86、sY127、sY129、sY134、sY254、sY255、sY242、sY152,同时检测SRY基因,并以X/Y连锁锌指蛋白基因(ZFX/ZFY)为内对照进行多重PCR筛查AZF微缺失。结果:患者核型为46,XY/47,XXY/48,XXYY/49,XXXXY,其中48,XXYY占56%;47,XXY占30%;46,XY占12%;49,XXXXY占2%,患者父母核型正常;患者及父母SRY基因检测与染色体性别一致,患者检出Y染色体AZF微缺失,缺失位点为sY86和sY127,缺失类型为AZFa+AZFb缺失。结论:Klinefelter综合征患者存在Y染色体AZF微缺失,染色体核型分析和Y染色体AZF微缺失是Klinefelter综合征患者重要的遗传检测指标。  相似文献   

10.
目的:探讨中国汉族人群Y染色体AZFc微缺失的规律。方法:采用9个STS位点(sY84、sY86、sY127、sY134、sY152、sY145、sY255、sY254、sY157)的多重PCR,排除sY84、sY86、sY127、sY134缺失的患者,共有194例严重少弱精子症或非梗阻性无精子症汉族男性发生AZFc微缺失;对其中192例sY254、sY255、sY157缺失的患者,再通过sY1191、sY1197、sY1054、sY1125及sY1206 STS位点检测,分析其缺失规律。结果:192例sY254、sY255、sY157缺失患者存在5种缺失模式,其中常见的为sY1197(+)、sY1191(-)、sY1206(-)、sY1054(-)、sY1125(+),占54.17%(104/192);sY1197(+)、sY1191(+)、sY1206(-)、sY1054(-)、sY1125(+),占28.12%(54/192);sY1197(+)、sY1191(-)、sY1206(-)、sY1054(+)、sY1125(+),占14.58%(28/192)。70.83%的AZFc微缺失患者,近端缺失区域发生在sY1197和sY1191之间(属于b2区域);82.29%的AZFc微缺失患者,远端缺失区域发生在sY1054和sY1125之间(属于b4区域)。结论:中国汉族人群AZFc微缺失有5种缺失模式,AZFc微缺失近、远端缺失位点基本集中于复制子b2和b4。  相似文献   

11.
目的:探讨精索静脉曲张(varicocele,VC)不育患者Y染色体微缺失特点及其与临床表型的关系,为评价VC不育患者是否行手术治疗或ICSI提供依据。方法:VC不育患者174例,分为3组,A组:无精子症47例;B组:严重少精子症57例;C组:轻度少精子症70例;设立正常生育的健康志愿者男性28例作为对照组(D组)。抽取外周血提取DNA,选取Y染色体上AZFa、AZFb、AZFc区共6个序列标签位点,应用多重PCR进行扩增;已生育女性26例作为阴性对照,分别运用琼脂糖凝胶电泳分离,对照阅读扩增产物,判定有无缺失存在以及缺失类型。结果:174例男性不育患者中有22例检测到Y染色体微缺失,缺失率12.64%;A组11例存在微缺失,B组11例存在微缺失,C组未检测到微缺失。A组与C组、B组与C组比较,差异均有显著性。A组缺失病例中有6例为AZFc区缺失,1例为AZFa缺失,2例为AZFb区缺失,2例为AZFb、AZFc区共同缺失;B组缺失病例中有8例为AZFc缺失,2例为AZFb缺失,1例为AZFb、AZFc区共同缺失。结论:①精液异常VC不育与Y染色体微缺失有关;②VC不育患者特别是无精子症和严重少精子症患者,应该进行Y染色体微缺失的检测。  相似文献   

12.
目的 探讨男性特发性不育患者外周血和睾丸组织中无精子因子(AZF)基因表达的临床意义.方法 特发性不育患者62例,其中严重少精子症29例.无精子症33例.抽取患者外周血样本检测,8对引物为sY84和sY86(AZFa区).sY127和sY134(AZFb区),sY254和sY255(AZFc区)及内对照SRY(sY14)和ZFY.PCR检测包括MixA:SRY(sY14)-ZFY-sY84-sY134-sY255和MixB:SRY(sY14)-ZFY-sY86-sY127-sY254;穿刺获得患者睾丸标本,Trizol方法提取总RNA,反转录为cDNA.PCR检测包括SRY(sY14)-DFFRY-RBM-DAZ-β-actin.结果 外周血PCR结果显示:62例患者中AZF基因微缺失12例(19.4%),其中无精子症组9例,严重少精子症组3例.睾丸组织RT-PCR结果显示:62例均可见SRY阳性表达;RBM mRNA无表达2例,RBM和DAZ mRNA无表达1例,DAZ mRNA无表达12例,其中3例外周血细胞内DAZ基因正常.结论 特发性不育患者睾丸组织存在AZF基因表达缺失,睾丸组织RT-PCR检测有助于确定患者病因,结合外周血PCR检测有助于指导睾丸精子穿刺一胞浆内单精子注射治疗.  相似文献   

13.
精子发生障碍患者Y染色体AZF区微缺失的筛查及意义   总被引:5,自引:2,他引:3  
目的 探讨精子发生障碍患者Y染色体AZF区微缺失情况及意义。 方法 选取 6个Y染色体特异性序列标签位点 (STS) ,用PCR技术检测 2 7例精子发生障碍患者AZF区微缺失情况。 结果  2 7例中AZF区微缺失 2例 ,表现为无精症。缺失均在AZFc区 ,1例为DAZ(sY2 5 4、sY2 5 5 )缺失 ,另 1例为DAZ加sY15 7缺失。 结论 与其他人种一样 ,Y染色体AZF区微缺失也可能是中国人精子发生障碍的原因之一 ,因而精子发生障碍患者在行辅助生育技术前进行AZF区微缺失的筛查是必要的。  相似文献   

14.
目的建立一套全新的基因诊断方法,检测Y染色体无精子因子(azoospermia factor,AZF)区域微缺失,并对Y染色体微缺失与男性不育相关性进行初步探讨。方法按照欧洲男科协会和欧洲分子遗传实验质控网检测指南推荐标准,采用多重PCR-液态芯片技术对648例精子发生障碍的患者和100例合格捐精者进行Y染色体微缺失筛查。结果648例精子发生障碍的患者中,发现62例患者存在Y染色体AZF区域微缺失,对应于5种缺失模式AZFa,AZFb,AZFc,AZFb c,AZFa b c。按区域统计,AZFc区域缺失的频率最高,其次是AZFb,AZFa的检出率最低。无精子症患者中微缺失的发生率为12.31%,严重少精子患者中微缺失发生率为5.43%。100例对照组没有发现任何缺失,两组比较,差异显著(P<0.001)。结论男性不育与Y染色体微缺失密切相关,本研究建立的多重PCR方法-液态芯片技术平台,用于男性不育患者的YqAZF区域筛查,结果可靠、快捷、重复性好、通量高。  相似文献   

15.
Azoospermia factor (AZF) microdeletions are the most frequent genetic cause of male infertility after Klinefelter's syndrome. Although some assisted reproductive techniques such as intracytoplasmic sperm injection (ICSI) have been successfully introduced to clinical treatment for infertile males, the AZF microdeletions might be transmitted from infertile fathers to their male offspring during these procedures. Thus, it is important to carefully evaluate AZF microdeletions in infertile males before assisted reproductive techniques are performed. In this article, we aimed to investigate the frequencies of AZF microdeletions in 137 infertile males with azoospermia and severe oligozoospermia from Jilin province of China and analyse the relationship between the levels of reproductive hormones and AZF microdeletions. Result analysis showed that AZF microdeletions were present in 8 (8.70%) azoospermic males and 3 (6.67%) severely oligozoospermic males. The most frequent microdeletions were detected in the AZFc region, followed by AZFb + c, AZFb and AZFa. And there was no significant correlation between the AZF microdeletion and the levels of reproductive hormones. These findings reinforce the necessity of AZF microdeletion testing among infertile males prior to employment of assisted reproduction techniques in Jilin province of China.  相似文献   

16.
Aim: To evaluate for the first time the frequency of Y chromosome microdeletions and the occurrence of the partial deletions of AZFc region in Moroccan men, and to discuss the clinical significance of AZF deletions. Methods: We screened Y chromosome microdeletions and partial deletions of the AZFc region of a consecutive group of infertile men (n = 149) and controls (100 fertile men, 76 normospermic men). AZFa, AZFb, AZFc and partial deletions of the AZFc region were analyzed by polymerase chain reaction (PCR) according to established protocols. Results: Among the 127 infertile men screened for microdeletion, four subjects were found to have microdeletions: two AZFc deletions and two AZFb+AZFc deletions. All the deletions were found only in azoospermic subjects (4/48, 8.33%). The overall AZFc deletion frequency was low (4/127, 3.15%). AZF microdeletions were not observed in either oligoasthenoteratozoospermia (OATS) or the control. Partial deletions of AZFc (gr/gr) were observed in a total of 7 of the 149 infertile men (4.70%) and 7 partial AZFc deletions (gr/gr) were found in the control group (7/176, 3.98%). In addition, two b2/b3 deletions were identified in two azoospermic subjects (2/149, 1.34%) but not in the control group. Conclusion: Our results suggest that the frequency of Y chromosome AZF microdeletions is elevated in individuals with severe spermatogenic failure and that gr/gr deletions are not associated with spermatogenic failure.  相似文献   

17.
Azoospermia factor (AZF) genes on the long arm of the human Y chromosome are involved in spermatogenesis, and microdeletions in the AZF region have been recognised to be the second major genetic cause of spermatogenetic failure resulting in male infertility. While screening for these microdeletions can avoid unnecessary medical and surgical treatments, current methods are generally time‐consuming. Therefore, we established a new method to detect and analyse microdeletions in the AZF region quickly, safely and efficiently. In total, 1,808 patients with spermatogenetic failure were recruited from three hospitals in southern China, of which 600 patients were randomly selected for screening for Y chromosome microdeletions in AZF regions employing real‐time polymerase chain reaction with a TaqMan probe. In our study, of 1,808 infertile patients, 150 (8.3%) were found to bear microdeletions in the Y chromosome using multiplex PCR, while no deletions were found in the controls. Among the AZF deletions detected, two were in AZFa, three in AZFb, 35 in AZFc, three in AZFb+c and two in AZFa+b+c. Our method is fast—it permits the scanning of DNA from a patient in one and a half hours—and reliable, minimising the risk of cross‐contamination and false‐positive and false‐negative results.  相似文献   

18.
Objective:To investigate the chromosomal abnormality and Y chromosome microdeletion in patients with azoospermia and oligozoospermia.Methods:Cytogenetic karyotype analysis and multiplex PCR were used to detect chromosomal abnormality and Y chromosome microdeletion in 99 azoospermic and 57 oligospermic patients(total 156).45 fertile men were includ-ed as controls.Results:31 patients were found with chromosomal abnormalities in 156 cases(31/156,19.9 %),20 cases showed 47,XXY,2 cases showed 46,XY/47,XXY,7 cases had Y chromosome structural abnormalities and 2 had autosomal chromosome abnormalities.There were significant differences between the frequency of AZF microde-letion in 125 cases with normal karyotype and 45 controls(P<0.01).The frequency of AZF microdeletion in 68 azoospermic and 57 oligospermic patients were 14.7%(10/68)and 15.8%(9/57)respectively,the difference was not significant(P>0.05).AZFa,AZFb,AZFa+b,AZFb+c,AZFa+b+d and AZFb+c+d mierodeletions were found in azoospermic patients.AZFb,AZFc,AZFd,AZFb+c+d and AZFc+d microdeletions were found in oligo-spermic patients.Conxlusion:The frequency of chromosomal abnormality was 19.9% and the frequency of Y chromosome mi-crodeletion was 15.2% in patient with azoospermia and oligozoospermia.We should pay close attention to this prob-lem.  相似文献   

19.
Aim: To identify submicroscopic interstitial deletions in azoospermia factor (AZF) loci in idiopathic and non-idiopathic cases of male infertility in Indians. Methods: One hundred and twenty two infertile males with oligozoospermia or azoospermia were included in this study. Semen analysis was done to determine the sperm density, i. e., normospermia (>20 million/mL), oligozoospermia (<20 million/mL) or azoospermia. They were subjected to detailed clinical examination and endocrinological and cytogenetic study. Thirty G-banded metaphases were analyzed in the 122 cases and polymerase chain reaction (PCR) microdeletion analysis was done in 70 cytogenetically normal subjects. For this genomic DNA was extracted using peripheral blood. The STS primers tested in each case were sY84, sY86 (AZFa); sY127, sY134 (AZFb); sY254, sY255 (AZFc). PCR amplifications found to be negative were repeated at least 3 times to confirm the deletion of a given marker. The PCR products were analyzed on a 1.8% agarose gel. Results:  相似文献   

20.
目的 探讨男性不育症与染色体畸变及Y染色体微缺失之间的关系.方法临床诊断男性不育患者1975例,采集外周血淋巴细胞常规培养,Giemsa染色,镜下观察并分析染色体核型;选取Y染色体特异性序列标签点(STS),应用PCR技术对无精子症及少精子症患者进行Y染色体微缺失检测.结果 1975例患者中,染色体核型异常305例(15.44%),其中常染色体异常101例(5.11%),患者主要表现为少精子症、畸形精子症;性染色体异常204例(10.33%),主要表现以克氏征(5.62%)为主.728例无精子症或少精子症患者中,Y染色体微缺失109例(14.97%),其中AZFa区缺失3例(2.75%),均表现为无精子症;AZFb区缺失5例(4.59%),表现为无精子症2例、严重少精子症2例,精液正常1例;AZFc区缺失者68例(62.39%),患者主要表现为无精子症和严重少精子症;AZFa区和AZFc区均缺失者5例(4.59%),均表现为无精子症;AZFb区和AZFc区均缺失者15例(13.76%),患者以无精子症表现为主;AZFa区、AZFb区和AZFc区均缺失者6例(5.50%),均表现为无精子症.结论染色体异常及Y染色体微缺失均为男性不育的重要病因.
Abstract:
Objective To study the relationship between chromosomal abnormality and Y chromosome microdeletions and male infertility. Methods Lymphocytes were cultured from peripheral blood of 1975 male infertility patients and stained with Giemsa. The chromosomes were analyzed under microscope. Y chromosome specific sequence tags (STS) were selected, then the Y chromosome microdeletions in AZF regions were screened by polymerase chain reaction (PCR) in azoospermia and oligozoospermia patients. Results There were 305 cases of detected chromosomal abnormalities (15.44%) in the 1975 cases. There were 101 cases (5.11 %) with autosome abnormalities which clinically manifested as oligozoospermia and teratospermia. There were 204 cases (10. 33%) of sexual chromosome abnormalities and the patients were mainly characterized with Klinefelter's syndrome. Y chromosome microdeletions were detected in 109 (14.97 %) of the 728 cases of azoospermia or oligozoospermia. The most common microdeletion of Y chromosome was AZFc (62.39%) and these patients were characterized with azoospermia and oligozoospermia. Five patients (4. 59%) who suffered Y chromosome microdeletion in AZFa region and AZFb region were characterized with azoospermia. Fifteen cases (13.76%) with microdeletion in AZFb region and AZFc region were mainly characterized with azoospermia. There were 6 cases (5. 50 % ) of microdeletion in AZFa, AZFb and AZFc regions,these patients were all characterized with azoospermia. Conclusions Both Chromosome abnormalities and Y chromosome microdeletions are important causes for male infertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号