首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cardiovascular and renal responses to AHR-16303B, a novel antagonist of 5-hydroxytryptamine (5-HT2) receptors and calcium channels, were examined in spontaneously hypertensive (SHR) and normotensive rats (NTR) and compared with verapamil and ritanserin. In SHR, AHR-16303B (10-300 mg/kg orally, p.o.) produced dose-related reductions in mean arterial blood pressure (MABP), accompanied by modest isokaliuretic diuresis and unchanged heart rate (HR). In NTR, 10-30 mg/kg p.o. AHR-16303B had no effect on MABP or renal excretory function; 100 and 300 mg/kg reduced MABP but had only transient effects on HR; 100 mg/kg produced antidiuresis in NTR. Both strains of rats tolerated doses of AHR-16303B as high as 300 mg/kg. In both SHR and NTR, verapamil (10-100 mg/kg p.o.) produced dose-related reductions in MABP, antinatriuresis at 60 and 100 mg/kg, and variable effects on HR. Oral ritanserin had no effect on MABP of SHR or NTR at 3 or 10 mg/kg. AHR-16303B is unique in that it simultaneously antagonizes 5-HT2 receptors and produces safe and effective reduction of elevated BP without altering HR or triggering renal compensatory antidiuresis. At effective 5-HT2/calcium antagonistic doses, AHR-16303B has no effect on cardiorenal homeostasis in normotensive animals.  相似文献   

2.
A series of pharmacological and biochemical studies were conducted to characterize AHR-16462B 4-[bis(4-fluorophenyl)methyl]-1-(2-naphthalenylmethyl)piperidine (HCI), a novel antagonist of voltage-sensitive calcium channels. AHR-16462B displaced [3H]-nimodipine binding from calcium channels on rabbit skeletal muscle membranes (IC50 = 118 nM) and inhibited depolarization-induced changes in intracellular free calcium in cultured PC-12 cells (IC50 = 125 nM), but had virtually no effects on binding of specific radioligands to 5-HT1a, 5-HT2, alpha1, alpha2, dopamine2, beta1, beta2, muscarinic M1, or histamine H1 receptors. AHR-16462B antagonized CaCI2-induced contractions of depolarized rabbit aortic strips (pA2 = 8.83), but had no negative chronotropic, and only slight negative inotropic effects on isolated guinea pig atria. In anesthetized dogs, cumulative doses of 0.1, 0.4, and 1.4 mg/kg, i. v., AHR-16462B decreased coronary vascular resistance and blood pressure; the magnitude and duration of these effects were dose related. Heart rate and Lead 2 ECG waveforms remained unaltered at all doses. In conscious spontaneously hypertensive rats (SHR), 3 to 100 mg/kg, p. o., AHR-16462B produced marked, long-lasting, and dose-related antihypertensive actions. Heart rate remained unaltered following 3, 10, and 30 mg/kg AHR-16462B, and bradycardia was evoked by 100 mg/kg. Effective antihypertensive doses of AHR-16462B had modest natriuretic and/or chloruretic actions.  相似文献   

3.
The 5-HT2A receptor ligand 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbonitrile HCl (EMD 281014) selectively binds to human (h) and rat 5-HT2A receptors (IC50 values 0.35 and 1 nM, respectively; vs. 1334 nM for h5-HT2C) and inhibited 5-HT-stimulated [35S]guanosine 5'-O-3-thiotriphosphate (GTPgammaS)-accumulation in h5-HT2A transfected Chinese hamster ovary cells (IC50 9.3 nM). EMD 28014 counteracted the N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-induced decrease of [3H]ketanserin binding in rat frontal cortex (ID50 0.4 mg/kg p.o.) and R-(-)-1-(2,5-dimethoxy-4-iodophenyl)-aminopropane (DOI)-induced head-twitch behaviour in mice (ID50 0.01 mg/kg s.c., 0.06 mg/kg p.o.), demonstrating unique selectivity and efficacy.  相似文献   

4.
We have evaluated the anti-platelet and vascular pharmacology of AR246686, a novel 5-hydroxytryptamine2A (5-HT2A) receptor antagonist. AR246686 displayed high affinity binding to membranes of HEK cells stably expressing recombinant human and rat 5-HT2A receptors (Ki=0.2 nM and 0.4 nM, respectively). Functional antagonism (IC50=1.9 nM) with AR246686 was determined by inhibition of ligand-independent inositol phosphate accumulation in the 5-HT2A stable cell line. We observed 8.7-fold and 1360-fold higher affinity of AR246686 for the 5-HT2A receptor vs. 5-HT2C and 5-HT2B receptors, respectively. AR246686 inhibited 5-HT-induced amplification of ADP-stimulated human platelet aggregation (IC50=21 nM). Similar potency was observed for inhibition of 5-HT stimulated DNA synthesis in rat aortic smooth muscle cells (IC(50)=10 nM) and 5-HT-mediated contraction in rat aortic rings. Effects of AR246686 on arterial thrombosis and bleeding time were studied in a rat model of femoral artery occlusion. Oral dosing of AR246686 to rats resulted in prolongation of time to occlusion at 1 mg/kg, whereas increased bleeding time was observed at a dose of 20 mg/kg. In contrast, both bleeding time and time to occlusion were increased at the same dose (10 mg/kg) of clopidogrel. These results demonstrate that AR246686 is a high affinity 5-HT2A receptor antagonist with potent activity on platelets and vascular smooth muscle. Further, oral administration results in anti-thrombotic effects at doses that are free of significant effects on traumatic bleeding time.  相似文献   

5.
A new psychoactive 5H-2,3-benzodiazepine with a unique spectrum of activity   总被引:1,自引:0,他引:1  
The neuropharmacological effects of 1-(4-amino-phenyl)-4-methyl-7,8-dimethoxy-5H-2,3-benzodiazepine (GYKI 52 322) were investigated and compared with those of chlordiazepoxide and chlorpromazine. This novel 2,3-benzodiazepine displays neuroleptic activity in the apomorphine-climbing (ED50 = 1.15 mg/kg i.p.) and swim-induced grooming (ED50 = 6.9 mg/kg i.p.) tests in mice and it inhibits the conditioned avoidance response in rats (ED50 = 8.2 mg/kg i.p. and 9.8 mg/kg p.o.). However, it does not antagonize apomorphine-evoked vomiting in dogs; or stereotypy, hypermotility and turning in rats even at as high a dose as 50 mg/kg i.p. On the other hand it is active in the hole board test in mice (MED (minimal effective dose) = 0.5 mg/kg i.p.) and in the lick conflict assay in rats (MED = 5 mg/kg i.p.), indicating anxiolytic property. It shows antiaggressive effect in the fighting mice test (ED50 = 8.1 mg/kg p.o.) and the carbachol-rage procedure in cats (active at 10 mg/kg i.p.) According to the biochemical findings, this compound does not bind to the central dopamine receptors (IC50 greater than 10(-4) mol/l), but it shows affinity to the 5-HT1 receptors (IC50 = 7.1 x 10(-6) mol/l) and inhibits brain cAMP-phosphodiesterase (IC50 = 2.4 x 10(-5) mol/l). The substance causes no elevation of dopamine turnover and serum prolactin level suggesting fewer side effects. So the term "atypical neuroleptic agent" is proposed to characterize this molecule.  相似文献   

6.
Bucindolol is a nonselective beta-adrenergic receptor antagonist that has additional vasodilating properties. Because some beta-adrenergic receptor antagonists such as cyanopindolol are used as 5-HT1A/5-HT1B receptor antagonists, we tested the hypothesis that bucindolol can interact with 5-HT receptors. Both in vitro and in vivo methods were used to examine the interaction of bucindolol with 5-HT receptors relevant to the cardiovascular system-the 5-HT1A, 5-HT1D, 5-HT2A, and 5-HT2B receptors-and with alpha1-adrenergic receptors. In binding studies, bucindolol displayed high affinity for the 5-HT1A receptor (Ki, 11 nM), modest affinity for the 5-HT2A receptor (Ki, 382 nM), and no measurable affinity for the 5-HT1D receptor; binding affinity for the 5-HT2B receptor was not studied. Bucindolol also displayed significant binding affinity (Ki, 69 nM) for the alpha1-adrenergic receptors. Alpha1-Adrenergic receptor antagonist activity was confirmed by the ability of bucindolol (1 mg/kg) to act as a competitive antagonist against 0.01-30 microg/kg phenylephrine-induced pressor responses in conscious rats. In conscious permanently instrumented rats, bucindolol (0.1-3.0 mg/kg, i.v.) did not cause bradycardia similar to that elicited by the 5-HT1A-receptor agonist 8-OH-DPAT (3-300 microg/kg, i.v.), nor did bucindolol (1 mg/kg) block the 8-OH-DPAT-induced bradycardia. Bucindolol (10(-9)-10(-5) M) did not cause relaxation in the PGF2alpha-contracted, endothelium-intact porcine coronary artery, nor did bucindolol (10(-5) M) block 5-HT-induced coronary artery relaxation, indicating that bucindolol does not have significant interactions at the 5-HT1D receptor. Bucindolol also displayed no agonist activity at the 5-HT2A and 5-HT2B receptor (endothelium-denuded rat thoracic aorta and rat stomach fundus, respectively), but did act as a weak 5-HT2A-receptor antagonist (-log K(B) [M] = 5.4+/-0.1) and 5-HT2B-receptor antagonist (-log K(B) [M] = 7.8+/-0.1). Thus, these data suggest that bucindolol lacks the ability to activate the 5-HT1A, 5-HT1D, 5-HT2A, and 5-HT2B receptor, but can block alpha1-adrenergic receptors and act as a weak 5-HT2A- and 5-HT2B-receptor antagonist. The relevance of these serotoninergic effects as it pertains to the mechanism of bucindolol-induced vasodilation is unknown.  相似文献   

7.
Wy 27569 (1,4 dihydro-2-[imidazol-1-yl-methyl]-6-methyl-4- [3-nitrophenyl] pyridine-3,5, dicarboxylic acid 3-ethyl 5-methyl diester) is a combined calcium channel blocker and thromboxane synthetase inhibitor. This article reports the in vivo and in vitro pharmacological studies demonstrating these properties. Wy 27569 evoked rightward shifts and depressed the maximum of calcium dose response curves in potassium depolarised rat aortas [concentration required to inhibit the response by 50% (IC50) = 7.3 nM]. The calcium channel blocker nitrendipine exhibited a similar profile to, although more potent than, Wy 27569 (IC50 = 0.28 nM). Comparison of the data obtained in aortas with the effects of these compounds in electrically stimulated isolated ventricle strips (IC50 for Wy 27569 = 8.3 microM, IC50 for nitrendipine = 0.41 microM) suggests that Wy 27569, like nitrendipine, is a vascular selective calcium channel blocker. Wy 27569 and the thromboxane synthetase inhibitor dazoxiben inhibited the collagen-stimulated production of thromboxane B2 (TXB2, IC50 = 3.9 and 2.8 microM, respectively) and, over the same concentration range, enhanced the production of immunoreactive 6 keto prostaglandin F1 alpha (6 keto-PGF1 alpha) by human platelet rich plasma. Single doses of Wy 27569 (0.3-10 mg kg-1 p.o.) or dazoxiben (3-10 mg kg-1 p.o.) evoked a dose-related reduction of TXB2 and enhancement of immunoreactive 6 keto PGF1 alpha levels in rat plasma and serum. Nitrendipine (0.3-10 mg kg-1 p.o.) had no significant effect on either eicosanoid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Neurochemical profile of eltoprazine   总被引:1,自引:0,他引:1  
In this paper we present the neurochemical profile of eltoprazine, a drug that specifically inhibits offensive aggression. Eltoprazine interacts selectively with serotonin (5-HT) receptor subtypes (Ki-values for 5-HT1A, 5-HT1B and 5-HT1C receptors are 40, 52 and 81 nM respectively). Affinity for other neurotransmitter receptors is much lower (Ki-values greater than 400 nM) than for 5-HT1 receptors. The selective interaction with 5-HT1 receptor subtypes is confirmed by in vitro autoradiographic studies using radiolabelled eltoprazine. The overall distribution of [3H]eltoprazine bears a strong resemblance to the localization of 5-HT1 binding sites labelled by [3H]5-HT, although some differences are observed. Eltoprazine (1 microM) inhibits the forskolin stimulated c-AMP production in hippocampus slices of the rat, indicating an agonistic action on the 5-HT1A receptor. The K+ stimulated release of 5-HT from rat cortex slices is inhibited by eltoprazine (pD2 = 7.8). The maximal response, however, was clearly less than that of the full agonist 5-HT, indicating partial agonistic activity on the 5-HT1B receptor (alpha = 0.5). Eltoprazine has a weak antagonistic action (IC50 = 7 microM) on the 5-HT1C receptor as revealed by inhibition of the 5-HT-induced accumulation of inositol phosphates in the choroid plexus of the pig. In vivo, eltoprazine reduces 5-HIAA levels in the striatum, without affecting the 5-HT levels. Eltoprazine also reduces the 5-HT synthesis rate as shown by 5-HTP accumulation after decarboxylase inhibition. These data indicate that eltoprazine acts as a 5-HT agonist in vivo in a dose range that affects aggressive behaviour (0.3-3 mg/kg p.o.). Taken together from a variety of neurochemical studies there is strong evidence both in vitro and in vivo that the pharmacological actions of eltoprazine can be attributed to an interaction with the 5-HT system, most probably via a (partial) agonistic action on 5-HT1A and 5-HT1B receptors.  相似文献   

9.
AHR-13268D (4-[3-[4-[Bis(4-fluorophenyl)hydroxymethyl]-1- piperidinyl]propoxy]benzoic acid, sodium salt) is a potent, long-acting water soluble, antiallergic and antihistaminic agent. AHR-13268D protects sensitive guinea pigs from collapse induced by aerosolized antigen; 1, 5, and 24 h ED50s in the test were 0.27, 0.25, 0.93 mg/kg, PO, respectively. AHR-13268D was also active when given as an aerosol, the 1 h ED50 = 0.29%. In the rat passivefoot anaphylaxis test. AHR-13268D was slightly more active (1.55 times) than AHR-5333B when given orally 1 h prior to challenge and equipotent to cromolyn when given intravenously immediately prior to challenge. AHR-13268D displayed potent, long-acting antihistaminic activity in naive guinea pigs; the 1, 5, and 24 h oral ED50s being in the range of 0.3 mg/kg. AHR-13268D (10 to 20 mg/kg, PO) attenuated the skin responses to ascaris antigen in sensitive dogs and did not alter the EEG pattern or sleep/wake patterns of cats at doses in vast excess of its antihistaminic activity. In vitro, AHR-13268D was a potent inhibitor of histamine release from rat peritoneal mast cells (IC50 = 0.51 nM) and was as potent as the reference 5-LO inhibitor phenidone in inhibiting antigen-induced contractions of guinea pig ileum in the presence of pyrilamine, atropine, and imidazole (IC50 approximately 300 microM). AHR-13268B was bioavailable (approximately 88%) from capsules or from oral solutions.  相似文献   

10.
Employing a Fixed-Ratio 10, food-reinforced protocol, rats were trained to recognize the discriminative stimulus (DS) properties of the novel, potent, 5-HT2C agonist, Ro 60-0175 (2.5 mg/kg, i.p.). This schedule generated appropriate drug versus vehicle responding after 50 + 5 training sessions and Ro 60-0175 elicited full (100%) drug selection with an effective dose50 (ED50) of 0.6 mg/kg, i.p.. The 5-HT2C receptor agonists, mCPP and MK 212, fully generalized to Ro 60-0175 with ED50s of 0.8 and 0.4 mg/kg, s.c., respectively, whereas the preferential 5-HT2B agonist, BW 723C86 ( > 10.0 mg/kg, s.c.) and the 5-HT2A agonist, DOI ( > 2.5 mg/kg, s.c.), were ineffective. The 5-HT2A/2B/2C receptor antagonist, mianserin, dose-dependently blocked the DS properties of Ro 60-0175 with an ED50 of 0.7 mg/kg, s.c. This action was mimicked by the novel, 5-HT2B/2C antagonist, SB 206,553 (ED50 = 0.3 mg/kg, s.c.), whereas the selective 5-HT2A antagonist, MDL 100,907 ( > 0.63 mg/kg, s.c.), was ineffective. Further, the selective 5-HT2C antagonist, SB 242,084, dose-dependently and fully blocked drug selection (ED50 = 0.2 mg/kg, i.p.), whereas the selective 5-HT2B antagonist, SB 204,741, was not active ( > 0.63 mg/kg, i.p.). In conclusion, these data demonstrate that Ro 60-0175 generates a robust DS and suggest that activation of 5-HT2C receptors is the principal mechanism underlying its DS properties.  相似文献   

11.
Noncompetitive N-methyl-D-aspartate (NMDA) blockers induce schizophrenic-like symptoms in humans, presumably by impairing glutamatergic transmission. Therefore, a compound potentiating this neurotransmission, by increasing extracellular levels of glycine (a requisite co-agonist of glutamate), could possess antipsychotic activity. Blocking the glycine transporter-1 (GlyT1) should, by increasing extracellular glycine levels, potentiate glutamatergic neurotransmission. SSR504734, a selective and reversible inhibitor of human, rat, and mouse GlyT1 (IC50=18, 15, and 38 nM, respectively), blocked reversibly the ex vivo uptake of glycine (mouse cortical homogenates: ID50: 5 mg/kg i.p.), rapidly and for a long duration. In vivo, it increased (minimal efficacious dose (MED): 3 mg/kg i.p.) extracellular levels of glycine in the rat prefrontal cortex (PFC). This resulted in an enhanced glutamatergic neurotransmission, as SSR504734 potentiated NMDA-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal slices (minimal efficacious concentration (MEC): 0.5 microM) and intrastriatal glycine-induced rotations in mice (MED: 1 mg/kg i.p.). It normalized activity in rat models of hippocampal and PFC hypofunctioning (through activation of presynaptic CB1 receptors): it reversed the decrease in electrically evoked [3H]acetylcholine release in hippocampal slices (MEC: 10 nM) and the reduction of PFC neurons firing (MED: 0.3 mg/kg i.v.). SSR504734 prevented ketamine-induced metabolic activation in mice limbic areas and reversed MK-801-induced hyperactivity and increase in EEG spectral energy in mice and rats, respectively (MED: 10-30 mg/kg i.p.). In schizophrenia models, it normalized a spontaneous prepulse inhibition deficit in DBA/2 mice (MED: 15 mg/kg i.p.), and reversed hypersensitivity to locomotor effects of d-amphetamine and selective attention deficits (MED: 1-3 mg/kg i.p.) in adult rats treated neonatally with phencyclidine. Finally, it increased extracellular dopamine in rat PFC (MED: 10 mg/kg i.p.). The compound showed additional activity in depression/anxiety models, such as the chronic mild stress in mice (10 mg/kg i.p.), ultrasonic distress calls in rat pups separated from their mother (MED: 1 mg/kg s.c.), and the increased latency of paradoxical sleep in rats (MED: 30 mg/kg i.p.). In conclusion, SSR504734 is a potent and selective GlyT1 inhibitor, exhibiting activity in schizophrenia, anxiety and depression models. By targeting one of the primary causes of schizophrenia (hypoglutamatergy), it is expected to be efficacious not only against positive but also negative symptoms, cognitive deficits, and comorbid depression/anxiety states.  相似文献   

12.
1. The pharmacological properties have been examined of FCC5 (2-N-carboxamidinonormianserin) and FCC13 (2-N-carboxamidonormianserin), two novel analogues of mianserin. 2. FCC5 or FCC13 (100 micrograms/kg, i.v.) caused long-lasting (greater than 1 h) abolition of 5-hydroxytryptamine (5-HT) and histamine-induced bronchoconstriction in the anaesthetized guinea-pig. Both analogues had no effect (up to 1 mg/kg, i.v.) on bronchoconstriction caused by acetylcholine (25-50 micrograms/kg, i.v.). 3. The pressor effects of 5-HT in pithed rats were significantly attenuated by FCC5 (0.1 mg/kg, i.v.) or FCC13 (0.5 mg/kg, i.v.). 4. Oedema in the rat hind paw caused by intraplantar 5-HT was inhibited by FCC5 (ID50 0.76 mg/kg, i.p.; 2.7 mg/kg, p.o.) or FCC13 (ID50 0.65 mg/kg, i.p.; 5.8 mg/kg, p.o.). 5. In the central nervous system (CNS), FCC13 caused antagonism of 5-HT activity. It inhibited: (i) L-5-hydroxytryptophan (L-5-HTP)-induced head twitches in mice (ID50 1.85 mg/kg, i.p.), (ii) fenfluramine-induced facilitation of flexor reflex activity (FRA) in spinalized decerebrate rats (SDR) (IC50 0.57 mg/kg, i.p.). 6. FCC5 (less than or equal to 30 mg/kg, i.p. and less than or equal to 3 mg/kg, i.p., respectively) had no effect in either test. In contrast to mianserin, it also had no overt central actions as (less than or equal to 30 mg/kg, i.p.) had no effect on: (i) morphine-induced catalepsy (MIC) or (ii) clonidine-induced facilitation of FRA in SDR. However, high doses of FCC13 inhibited MIC (ID50 20 mg/kg, i.p.), but had no effect on (ii) (less than or equal to 10 mg/kg, i.p.). 7. Thus, FCC5 and FCC13 are potent, orally active H1 and 5-HT receptor antagonists. However, in contrast to FCC13 and mianserin, FCC5 did not cause CNS-mediated effects.  相似文献   

13.
Clinical studies have shown that folic acid plays a role in the pathophysiology of depression. However, very few studies have investigated its effect in behavioral models of depression. Hence, this study tested its effect in the forced swimming test (FST) and the tail suspension test (TST), two models predictive of antidepressant activity, in mice. Folic acid administered by oral route (p.o.) produced a reduction in the immobility time in the FST (50-100mg/kg) and in the TST (10-50mg/kg). The administration of folic acid by i.c.v. route also reduced the immobility time in the FST (10nmol/site) and in the TST (1-10nmol/site). Both folic acid administered by oral and i.c.v. route produced no psychostimulant effect, which indicates that its antidepressant-like effect is specific. Pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100mg/kg, i.p., an inhibitor of serotonin (5-HT) synthesis, for 4 consecutive days), ketanserin (5mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), prazosin (1mg/kg, i.p., an alpha(1)-adrenoceptor antagonist) or yohimbine (1mg/kg, i.p., an alpha(2)-adrenoceptor antagonist) prevented the anti-immobility effect of folic acid (50mg/kg, p.o.) in the FST. Moreover, the pretreatment of mice with WAY100635 (0.1mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) blocked the decrease in immobility time in the FST elicited by folic acid (50mg/kg, p.o.), but produced a synergistic effect with a subeffective dose of folic acid (10mg/kg, p.o.). In addition, a subeffective dose of folic acid (10mg/kg, p.o.) produced a synergistic antidepressant-like effect with fluoxetine (10mg/kg, p.o.) in the FST. Overall, the results firstly indicate that folic acid produced an antidepressant-like effect in FST and in TST and that this effect appears to be mediated by an interaction with the serotonergic (5-HT(1A) and 5-HT(2A/2C) receptors) and noradrenergic (alpha(1)- and alpha(2)-adrenoceptors) systems.  相似文献   

14.
Rationale Serotonin (5-HT) and norepinephrine (NE) re-uptake inhibitors (SNRIs) have been proposed to have a higher efficacy and/or faster onset of action than previously available antidepressants. Objectives We examined in biochemical, electrophysiological and behavioural assays the antidepressant properties of (S)-(−)-4-[(3-fluorophenoxy)-phenyl]methyl-piperidine (F-98214-TA), a compound that displays very high affinity for 5-HT and NE transporters. Results F-98214-TA potently inhibited the uptake of both 5-HT and NE into rat brain synaptosomes (IC50=1.9 and 11.2 nM, respectively) and decreased the electrical activity of dorsal raphe serotonergic neurones (ED50=530.3 μg/kg i.v.), an effect completely abolished by the 5-HT1A antagonist WAY100,635. In acute behavioural assays in mice, the orally administered compound potentiated the 5-hydroxy-tryptophan (5-HTP)-induced syndrome [minimal effective dose (MED)=10 mg/kg], antagonized the hypothermia induced by a high dose of apomorphine (ED50=2 mg/kg) and reduced the immobility in the tail suspension test (MED=10 mg/kg). Moreover, it also decreased the immobility in the forced swimming test in mice and rats (30 mg/kg, p.o.). Chronic administration of F-98214-TA (14 days, 30 mg kg−1 day−1, p.o.) attenuated the hyperactivity induced by olfactory bulbectomy in rats, confirming its antidepressant-like properties. Interestingly, the same dosage regimen significantly increased the social interaction time in rats, suggesting an additional potential anxiolytic activity. In most assays the compound was more potent than fluoxetine, venlafaxine and desipramine. Conclusions F-98214-TA is a novel SNRI that displays greater potency than other reference antidepressants in animal models predictive of antidepressant and anxiolytic activities. A preliminary report of this work was presented at the 30th Annual Meeting of the Society for Neuroscience, New Orleans, LA, 2000.  相似文献   

15.
In this study we have functionally characterized aripiprazole (OPC-14597; 7-(4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butyloxy-3,4-dihydro-2-(1H)-quinolinone), the prototype of a new generation antipsychotic drug termed dopamine-serotonin-system stabilizer, in cells expressing 5-hydroxytryptamine2 (5-HT2) receptor subtypes in comparison with olanzapine. In Chinese hamster ovary (CHO) cells stably expressing 5-HT2 receptors, aripiprazole displayed a dual agonist/antagonist profile for 5-HT2C receptor (VNI isoform) mediated calcium signaling (EC50 1070 nM, IC50 281 nM). It exhibited no appreciable 5-HT2A or 5-HT2B agonism, whereas it antagonized 5-HT-stimulated calcium increase at either 5-HT2A or 5-HT2B receptor expressed in CHO cells (IC50s of 369 and 0.46 nM, respectively). In comparison, olanzapine was devoid of agonism but was an antagonist at all three subtypes, with a potency rank order of 5-HT2A (IC50, 2.5 nM)>5-HT2B (47 nM)>5-HT2C (69 nM). In human embryonic kidney (HEK) cells transiently expressing 5-HT2C receptor isoforms, aripiprazole exhibited full agonism at the unedited INI, but partial agonism at the partially edited VNI and fully edited VSV isoforms (EC50s of 571, 1086 and 2099 nM, respectively). A partial antagonism was also observed for aripiprazole at the two edited isoforms (IC50s of 1138 and 1000 nM, respectively). In contrast, while lacking agonist activity at the VNI and VSV, olanzapine showed inverse agonism at the INI isoform (IC50 594 nM), reaching a maximal attenuation of 20%. In addition, olanzapine was a full antagonist at all three isoforms, with a rank order of potency of VNI (IC50, 79 nM)>VSV (101 nM)>INI (3856 nM). The modest 5-HT2A antagonism and 5-HT2C partial agonism, along with reported D2 and 5-HT1A partial agonism, may allow aripiprazole to stabilize the disturbed dopamine-serotonin interplay in schizophrenia with a moderate yet adequate pharmacological intervention. 5-HT2C agonism may also underlie the minimal weight gain seen with aripiprazole.  相似文献   

16.
The serotonin 5-HT3 receptor antagonist effects of DAT-582, the (R) enantiomer of AS-5370 ((+/-)-N-[1-methyl-4-(3-methyl-benzyl)hexahydro-1H-1,4-diazepin-6- yl]-1H- indazole-3-carboxamide dihydrochloride), and its antipode were compared with those of AS-5370 and existing 5-HT3 receptor antagonists. In anesthetized rats, DAT-582 antagonized 2-methyl-5-HT-induced bradycardia with an ED50 value of 0.25 microgram/kg i.v., whereas the (S) enantiomer was without effect even at 1000 micrograms/kg i.v. In antagonizing the bradycardia, DAT-582 was as potent as granisetron, slightly more potent than AS-5370, and 2, 5 and 18 times more potent than ondansetron, ICS 205-903 and renzapride, respectively, although it was less potent than zacopride. DAT-582 inhibited cisplatin (10 mg/kg i.v.)-induced emesis in ferrets with an ED50 value of 3.2 micrograms/kg i.v. twice. The antiemetic activity of DAT-582 was more potent than that of the existing 5-HT3 receptor antagonists examined, except zacopride. In contrast, the (S) enantiomer had little effect at 1000 micrograms/kg i.v. twice. In isolated guinea-pig ileum, DAT-582 inhibited 5-HT-induced contractions with an IC50 value of 91 nM, whereas the (S) enantiomer hardly inhibited them even at 1000 nM. These results suggest that DAT-582, the (R) enantiomer of AS-5370, potently and selectively blocks 5-HT3 receptors.  相似文献   

17.
1. The pharmacological and biophysical properties of a recombinant 5-HT3 receptor have been studied by use of patch-clamp techniques applied to HEK 293 cells stably transfected with the murine 5-HT3 R-A cDNA. 2. At a holding potential of -60 mV, 77% of cells investigated responded to ionophoretically applied 5-HT with an inward current. Such currents were unaffected by methysergide (1 microM), or ketanserin (1 microM), but were antagonized in a concentration-dependent and reversible manner by the selective 5-HT3 receptor antagonist, ondansetron (IC50 = 440 pM) and the non-selective antagonists (+)-tubocurarine (IC50 = 1.8 nM) and metoclopramide (IC50 50 nM). 3. The 5-HT-induced current reversed in sign (E5-HT) at approximately -2mV and exhibited inward rectification. The influence of extra- and intracellular ion substitutions upon E5-HT indicates the 5-HT-evoked current to be mainly mediated by a mixed monovalent cation conductance. 4. Calcium and magnesium (0.1-10 nM) produced a concentration-dependent, voltage-independent, inhibition of the 5-HT-induced response. Zinc (0.3-300 microM) exerted a biphasic effect with low concentrations enhancing, and high concentrations depressing, the 5-HT-evoked current. 5. Fluctuation analysis of inward currents evoked by a low (1 microM) concentration of 5-HT suggests the current to be mediated by the opening of channels with a conductance of 420 fS. 6. The pharmacological and biophysical properties of the 5-HT3 R-A are similar to those previously described for 5-HT3 receptors native to murine neuroblastoma cell lines, with the exception that the function of the recombinant receptor was enhanced by low concentrations of zinc. This observation suggests that the properties of the native receptor are not completely represented by the 5-HT3 R-A subunit alone.  相似文献   

18.
The antithrombotic activity of N-[2-(4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidino)ethyl]-1-formyl-4-piperidinecarboxamide monohydrochloride monohydrate (AT-1015; a 5-HT(2A) receptor antagonist) was studied in a photochemically induced arterial thrombosis (PIT) model in the rat femoral artery, and in the tail transection bleeding time test. Ticlopidine (an antiplatelet agent) and sarpogrelate (a selective 5-HT(2A) receptor antagonist) were studied as reference compounds. Pretreatment with AT-1015 (1 mg/kg, p.o.) significantly prolonged the time required to occlusion of the artery with thrombus, and the effect (3 mg/kg, p.o.) persisted for 24 h with significant inhibition of 5-HT-induced vascular contraction. Ticlopidine and sarpogrelate also significantly prolonged the time to occlusion at 100 mg/kg, p.o. Sarpogrelate (300 mg/kg, p.o.) showed the similar antithrombotic efficacy to AT-1015 (3 mg/kg, p.o.), while the effect disappeared within 6 h. No significant bleeding time prolongation was observed at 10 mg/kg of AT-1015, which is 10 times higher than the antithrombotic effective dose; whereas ticlopidine significantly prolonged bleeding time at the same dose as the antithrombotic effective dose. These results suggested that AT-1015 is a potent and long-acting oral antithrombotic agent in this model, which may be elucidated by its potent and long-acting inhibition of vasoconstriction through 5-HT(2A) receptor.  相似文献   

19.
NNC-711 (1-(2-(((diphenylmethylene)amino)oxy)ethyl)-1,2,5,6-tetrahydro-3- pyridinecarboxylic acid hydrochloride) is a novel, potent and selective gamma-aminobutyric acid (GABA) uptake inhibitor. NNC-711 inhibited synaptosomal (IC50 = 47 nM), neuronal (IC50 = 1238 nM) and glial (IC50 = 636 nM) GABA uptake in vitro NNC-711 lacked affinity for other neurotransmitter receptor binding sites, uptake sites and ion channels examined in vitro. In vivo, NNC-711 was a potent anticonvulsant compound against rodent seizures induced by methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) (ED50 (clonic) = 1.2 mg/kg i.p.), pentylenetetrazole (PTZ) (ED50 (tonic) = 0.72 mg/kg i.p., mouse; and ED50 (tonic) = 1.7 mg/kg, rat), or audiogenic (ED50 (clonic and tonic) = 0.23 mg/kg i.p.). At higher doses NNC-711 produced behavioral side effects characterized by inhibition of traction (ED50 = 23 mg/kg i.p.), rotarod (ED50 = 10 mg/kg i.p.) and exploratory locomotor activity (ED50 = 45 mg/kg i.p.) in the mouse. Following acute (3-h) in vivo pretreatment with NNC-711, behavioral tolerance developed to its motor impairing side effects (inhibition of traction, rotarod or exploratory locomotor activity) without corresponding tolerance to the anticonvulsant effects. These data suggest that NNC-711 will be useful for future in vitro and in vivo experiments to elucidate the role of the GABA uptake carrier in the central nervous system.  相似文献   

20.
Pancopride ((+-)N-(1-azabicyclo-[2,2,2]-oct-3-yl)-2-cyclopropylmethoxy-4-ami no-5-chlorobenzamide) is a new potent and selective 5-HT3 receptor antagonist, orally and parenterally effective against cytotoxic drug-induced emesis. In vitro, pancopride displayed high affinity (Ki = 0.40 nM) for [3H]GR65630-labelled 5-HT3 recognition sites in membranes from the cortex of rat brains. In vivo, pancopride antagonized 5-HT-induced bradycardia in anaesthetized rats when administered i.v. 5 min (ID50 = 0.56 microgram/kg) or p.o. 60 min (ID50 = 8.7 micrograms/kg) before 5-HT challenge. A single oral dose (10 micrograms/kg) of pancopride produced a significant inhibition of the bradycardic reflex over an 8-h period. Pancopride dose dependently inhibited the number of vomiting episodes and delayed the onset of vomiting induced by cisplatin in dogs (ID50 = 3.6 micrograms/kg i.v. and 7.1 micrograms/kg p.o.). Pancopride was also effective in blocking mechlorethamine- and dacarbazine-induced emesis. Unlike metoclopramide, pancopride was shown to lack any measurable antidopaminergic activity both in vitro and in vivo. These results support clinical data, indicating that pancopride will be a useful drug for treating cytostatic-induced emesis in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号