首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
目的 通过综合应用神经导航结合脑立体定向技术获取患者三维立体脑电图以精确定位颅内致痫灶指导外科手术治疗,观察在难治性癫痫患者治疗中的安全性、有效性。方法 我科收治的14例药物难治性癫痫患者行颅脑三维磁共振及头颅静脉成像,利用Brain-LAB神经导航系统融合影像数据,建立立体大脑及皮层静脉模型,设计路径避开皮层血管,导航生成靶点坐标,然后在Leksell立体定向下植入立体定向电极,分析其安全性及有效性。结果 14例患者共植入94枚电极,所有电极均成功植入,主要并发症是一例电极植入位置偏移及该电极导致的颅内少量出血及一例间接颅内感染,术后进行视频脑电监测,确定颅内致痫灶并进行手术(一例患者脑深部电刺激治疗),术后随访疗效满意。结论 建立立体大脑及皮层静脉模型有效避免电极植入出血;立体定向电极植入作为侵袭性评估致痫灶的方法是安全、有效的,并在行硬膜下皮层电极植入术后效果不佳的病例中体现优越性。  相似文献   

2.
目的探讨应用立体定向引导微创手术选择性海马切除治疗颞叶内侧癫痫的方法的可行性.方法11例内侧颞叶癫痫病例,根据EEG、MRI、PET-CT等资料,初步确定癫痫灶位于一侧海马,然后在立体定向引导下置深部电极于海马,确认癫痫灶位于海马后即以深部电极为手术导向标志在显微镜下作选择性海马切除术.结果随访1~2年疗效满意8例(72.7%),显著改善2例(18.2%),良好1例(9.1%).术后无其他神经系统并发症,无死亡病例.结论综合应用影像学、核素检查,海马深部电极植入记录海马脑电,对内侧颞叶癫痫灶定位可以明确诊断;癫痫病灶的起源精确定位于海马后,在立体定向引导下作单纯选择性海马切除治疗颞叶内侧癫痫可获得满意疗效.  相似文献   

3.
目的 观察应用脑立体定向微创穿刺技术植入海马电极监测颞叶内侧癫痫的效果.方法 13例耐药性颞叶内侧癫痫患者,主要表现为复杂部分性癫痫发作及继发性全身强直阵挛性发作.根据临床症状、MRI等资料初步确定癫痫灶位于海马区域,在脑立体定向仪引导下于双侧海马植入8-触点深部电极,监测24 ~ 72 h,从而确认癫痫灶是否位于海马区域.结果 13例患者经过72 h监测,共监测到7例有29次临床发作,发作期脑电变化表现为在背景波形基础上出现阵发性高幅慢波或棘尖慢复合波,从某个电极点开始,迅速扩展到同侧其他电极点甚至对侧电极;头皮脑电在延迟1~2s后出现3~4 Hz的高幅δ节律.6例未监测到临床发作的患者,海马电极监测到发作性局灶性高幅慢波或尖慢综合波,而头皮电极未监测到明显异常.13例患者中6例接受选择性海马杏仁核切除或立体定向病灶损毁术,随访3~8个月,效果满意.结论 脑立体定向植入海马电极监测颞叶内侧癫痫是一种安全可靠的方法,可以判断癫痫病灶的起源,为外科进行选择性海马杏仁核切除提供有力依据,对于视频脑电图或其他手段难以记录到癫痫样波形或难以判断癫痫样放电起源的患者可进行脑立体定向深部电极脑电图监测.  相似文献   

4.
目的评价几种外科手术治疗顽固性癫痫的优缺点.方法单纯病灶切除15例,皮层电极监测下致痫灶切除及脑软膜下横纤维切断术20例,立体定向脑内靶点毁损术28例.结果单纯病灶切除者近期效果尚好,半年后40%的病人癫痫复发,病情同术前.致痫灶切除,术后癫痫均基本停止,半年后约25%的病人复发,但症状较术前减轻,持续时间较术前短.立体定向手术,术后98%的病人癫痫停止发作,半年后约18%的病人复发,但发作次数明显减少,症状明显减轻,持续时间缩短.结论脑内有病灶的癫痫应首先考虑切除病灶,最好在皮层电极监测下切除致痫灶.脑立体定向手术,操作简便,侵袭轻微,适应证广泛,效果可靠,是一种可取的癫痫外科治疗方法.  相似文献   

5.
<正>立体定向脑电图(Stereoelectroencephalography,SEEG)是一种介入方法和分析方法,它主要探讨影像解剖学-电生理-临床症状学相互之间的关系,用于耐药性局灶性癫痫的定位。它是采用立体定向的方法,向脑内植入深部电极,利用深部电极对癫痫放电在三维空间内进行实时记录并提供客观依据,从时间和空间上对癫痫样放电进行评估,以明确癫痫放电的起源灶、传播形式及所涉及的皮层结构,从而精确定位致痫灶,为“解剖-电-临床关联分析”及精确外科切除致痫灶提供依据[1]。武汉脑科医院神经外科于2021年12月对一例顽固性癫痫患者在神经外科机器人辅助下行SEEG定位致痫灶,随后开颅切除左枕叶致痫灶,取得了满意的效果,现报道如下。  相似文献   

6.
深部电极对颞叶癫痫定位的应用研究   总被引:1,自引:1,他引:0  
目的 探讨深部电极脑电监测对颞叶癫痫灶定位的意义和安全性。方法 对12例颞叶癫痫病例,无创检查难以定位或定侧者,在立体定向指引下颅骨钻孔行双侧或单侧海马区深部电极植入,脑电监测对癫痫灶定位,根据手术中皮层电极及深部电极癫痫灶的定位、手术后疗效评价及术后脑电检查结果,研究深部电极脑电监测对致痫灶定位的准确性和安全性。结果 12例病人埋置深部电极23只,留置时间平均5天;监测时间平均10小时,明确定位5例(37.5%),定侧的7例(62.5%),并在术中和术后得到验证。所有病例无颅内出血和感染等并发症发生。结论 深部电极植入脑电监测对颞叶癫痫灶定位是行之有效的方法,可作为颞叶癫痫致痫灶定位的可靠指标;电极植入安全,定位准确性高。  相似文献   

7.
长程颅内电极记录定位致痫灶的效果分析   总被引:2,自引:0,他引:2  
目的 讨论应用颅内埋藏电极进行长程视频脑电(Video-EEG)监测,对于致痫灶的定位作用。方法 应用立体定向技术,向颅内可疑部位植入深部电极和/或硬膜下条状电极。采用DaVinci系统,进行长程视频脑电监测,记录发作间期及发作期EEG变化,确定癫痫起源部位。在皮层电极脑电图(ECoG)监测下,手术切除致痫灶或行立体定向毁损术。结果 本组17例患者颅内电极埋藏时间4~17天,平均9天。各例均记录到明确的发作间期异常放电和/或发作期EEG变化。手术切除致痫灶16例(联合胼胝体切开术1例);行双侧杏仁核毁损术1例。术后复查Vidoo-EEG,显示痫性放电基本消失15例,改善2例(集中于手术对侧1例)。按照Engel术后效果分级:Ⅰ级15例,Ⅲ级1例,Ⅳ级1例。所有病例均未出现因长时间埋藏颅内电极引起的并发症。结论 在致痫灶定位困难的难治性癫痫患者中,应用埋藏式颅内深部电极和/或硬膜下条状电极,进行长程颅内电极记录,可以精确定位致痫灶,可改变外科治疗计划,从而提高了癫痫的治愈率及手术成功率。  相似文献   

8.
癫痫切除手术前精确定位致痫灶至关重要,目前,对于综合无创性评估仍无法定位致痫灶或区分功能区的患者,国际上常采用硬膜下电极脑电图监测(Subduralel ectrodes EEG, SDEG)和立体定向脑电图(SEEG)两种侵袭性颅内脑电图(intracranial electroencephalography, iEEG)评估方法进一步定位致痫灶及区分功能区。SDEG优势在于其相邻皮质覆盖连续性较好、皮层与电极的解剖关系清楚以及功能区定位相对容易;缺点主要在于对深部脑组织覆盖监测较差、癫痫起源的三维结构难以体现、双侧或相隔较远的多个区域植入困难以及创伤较大、并发症比例较高。SEEG的优点在于定位深部皮质相对容易、癫痫起源的三维结构清楚、微创性高、适合双侧或相隔较远的多个区域植入;缺点在于相邻皮质覆盖连续性较差、功能区定位相对困难、植入过程中可损伤颅内血管导致颅内出血。近年来,iEEG监测快速发展,但仍需进一步探索,如通过技术的不断改进及创新实现精确植入电极及降低植入并发症,通过设计临床前瞻性研究进一步研究SDEG和SEEG在定位致痫灶、切除范围及术后疗效的差异等。目前,SDEG和SEEG在术前定位致痫灶方面各有优缺点,临床上应根据患者的具体情况个体化选择方案。  相似文献   

9.
目的探讨应用立体定向技术双侧海马置入深部电极脑电监测对颞叶癫痫的定侧定位价值。方法对15例无创影像及脑电检查难以定侧定位的颞叶癫痫患者,在MR定位引导下行立体定向双侧海马深部电极置入,视频脑电监测描记发作期及发作间期脑电图,根据监测结果对癫痫灶进行定侧定位,行个体化癫痫外科手术治疗,术后正规口服抗癫痫药物并随访。结果术后随访最长44个月,最短8个月,平均21个月。疗效满意8例(54%),显著改善5例(33%),良好2例(13%)。术后1例出现视野缺损,无其他严重并发症。结论立体定向双侧海马深部电极置入及脑电监测,微创、安全、准确,是难治性颞叶癫痫定侧定位的可靠的方法,对制定个体化手术方案具有决定性作用。  相似文献   

10.
目的:探讨立体定向技术植入的深部电极构成的立体定位脑电图对药物难治性癫(痫)致(痫)灶的定位阳性率和近期手术效果.方法:对于头皮脑电、CT、MRI难以确定致(痫)灶位置的药物难治性癫(痫)的10例患者,采用立体定向方法植入深部电极2根6例、3根4例,长程记录发作3次以上,结合发作间期和发作期深部电极脑电确定致(痫)灶,外科治疗后随访术后发作改善情况.结果:外科术前监测106例,实行手术33例,其中10例患者需要植入深部电极辅助定位.此10例中无植入电极并发症,均有发作间期局灶(痫)样放电和发作期局灶性起源位置,其中局灶性起源7例、区域性起源3例.参照深部电极脑电图结果采取外科手术治疗,术后9~20个月,癫(痫)缓解4例,2例好转90%以上,4例好转50%以上,无手术并发症.结论:立体定位脑电图可对头皮脑电难以确定致(痫)灶的患者进行定位,为外科提供定位性诊断信息,提高外科手术效果.  相似文献   

11.
目的探讨机器人无框架立体定向手术辅助系统(ROSA)引导下颅内深部电极置入术在儿童难治性癫痫定位中的作用以及安全性、有效性。方法 2014年10月至2015年12月收治19例年龄在14岁以下药物难治性癫痫,经过术前无创评估,包括MRI、头皮脑电图、电-临床症状学、PET-CT等,应用ROSA机器人将电极置入颅内相应部位,然后行长程视频脑电图监测发作间期及发作期脑电图,确定癫痫灶起始,最终手术治疗。结果 19例患儿均成功置入电极,左侧置入11例,右侧置入7例,双侧置入1例;共置入深部电极222根,平均11.7根(8~17根)。置入电极后无出血、脑脊液漏、电极断裂、感染等并发症。19例均明确致痫灶,并全部行癫痫灶切除术,术后2例出现一过性轻偏瘫。术后随访12~24个月,Engel分级Ⅰ级15例(78.9%),Ⅱ级1例(5%),Ⅲ级1例(5%),Ⅳ级2例(11.1%)。结论 ROSA引导下立体定向脑深部电极置入术,微创、并发症少、安全性高,适合儿童难治性癫痫的外科治疗。  相似文献   

12.
The advent of modern image-guided surgery has revolutionized depth electrode implantation techniques. Stereoelectroencephalography (SEEG), introduced by Talairach in the 1950s, is an invasive method for three-dimensional analysis on the epileptogenic zone based on the technique of intracranial implantation of depth electrodes. The aim of this article is to discuss the principles of SEEG and their evolution from the Talairach era to the image-guided surgery of today, along with future prospects. Although the general principles of SEEG have remained intact over the years, the implantation of depth electrodes, i.e. the surgical technique that enables this method, has undergone tremendous evolution over the last three decades, due the advent of modern imaging techniques, computer systems and new stereotactic techniques. The use of robotic systems, the constant evolution of imaging and computing techniques and the use of depth electrodes together with microdialysis probes will open up enormous prospects for applying depth electrodes and SEEG both for investigative use and for therapeutic use. Brain stimulation of deep targets and the construction of "smart" electrodes may, in the near future, increase the need to use this method.  相似文献   

13.
Neuronavigation in epilepsy surgery enables surgeons to accurately resect deep targets inside the brain, especially lesions that are unable to be visually differentiated from adjacent normal brain. The usefulness of visualizing subdural electrodes with postimplantation fusion CT/MRI was investigated. The use of platinum subdural electrodes made it possible to obtain postimplantation MRI. The postimplantation MRI and CT scans were fused on the surgical navigation system workstation to form three-dimensional (3D) images, and the epileptogenic regions were marked using the visualized electrodes. Immediately after a craniotomy was performed, the subdural electrodes were removed and the epileptogenic region was successfully resected using the neuronavigation guide. During neuronavigation-guided surgery to target deep brain epileptogenic lesions adjacent to eloquent areas, which are often invisible, we found visualization of the subdural electrodes with postimplantation fusion CT/MRI very useful.  相似文献   

14.
Stereotactic implantation of deep SEEG electrodes performed as a prelude to surgery in some patients with drug-resistant focal epilepsy requires previous "in vivo" identification and localization of the cortical and subcortical structures to be explored, visualized "semi-directly" "or directly" by neuroradiological imaging techniques. Stereoscopic stereotactic teleangiography is a safety factor in transcutaneous electrode implantation and biopsies, but it also localizes the cortical sulci in a "semi-direct" manner by identifying vascular segments deeply buried in this sulci, which constitute their lamina vascularis. Although RMI greatly contributes to the study of the pallium, visualizing fragments of sulci and gyri does not necessarily mean that these structures can be identified with certainty, notably on the convexity of the brain. To solve this problem, RMI sections are enlarged by a photographic process, then combined with the images obtained from neuroradiological stereotaxis by means of anatomical landmarks that are common to both types of documents, using the bicommissural reference systems, bicallosal l/nl or vascular segments. This enables the angiographic laminae vascularis, which define the sulci in a "semi-direct" manner, to be used a kind of "Ariadne's clew" to identify cortical structures on RMI sections. In percutaneous stereotactic electrode implantation, the choice of the trajectories results from a compromise between the need to reach the desired anatomical structures, identified and localized within the stereotactic space, and the necessity to avoid the blood vessels displayed by stereoangiography. In some cases, the accuracy of anatomical definition can be verified during the SEEG study and/or by the evoked potential technique. Once the electrodes have been removed, their traces can be identified in a control RMI examination which constitutes a further verification.  相似文献   

15.
Purpose: We present two methods of implantation for the investigation of suspected insular and perisylvian epilepsy that combine depth and subdural electrodes to capitalize on the advantages of each technique. Methods: Retrospective study of all intracranial EEG studies that included insular electrodes from 2004–2010. Patients were divided according to the implantation scheme. The first method (type 1) consisted of a craniotomy, insertion of insular electrodes after microdissection of the sylvian fissure, orthogonal implantation of mesiotemporal structures with neuronavigation, and coverage of the adjacent lobes with subdural electrodes. The second method (type 2) consisted of magnetic resonance imaging (MRI)–stereotactic frame‐guided depth electrode implantation into insula and hippocampus using sagittal axes, and insertion of subdural electrodes through burr holes to cover the adjacent lobes. The combined implantations were developed and performed by one neurosurgeon (AB). Key Findings: Nineteen patients had an intracranial study that sampled the insula, among other regions. Sixteen patients were implanted using the first method, which allowed a mean of 4, 5, 20, 15, and 42 contacts per patient to be positioned into/over the insular, mesial temporal, neocortical temporal, parietal, and frontal areas, respectively. The second method (three patients) allowed a mean of 8, 7, 16, 6, and 9 contacts per patient to sample the same areas, respectively. The four patients in whom transient neurologic deficits occurred were investigated with use of type 1 implantation. Significance: Combined depth and subdural electrodes can be used safely to investigate complex insular/perisylvian refractory epilepsy. Choice of implantation scheme should be individualized according to presurgical data and the need for functional localization.  相似文献   

16.
目的探讨运用颅内电极埋藏进行视频脑电图监测在定位困难的枕叶癫痫中的作用。方法通过对9例枕叶癫痫但定侧定位困难的患者,向颅内可疑部位植入硬膜下条状电极,进行视频脑电图监测,记录发作间期及发作期脑电图变化,确定癫痫病灶起始区。通过手术切除致痫灶。结果本组9例埋藏时间为3~9d,平均5d,均记录到间歇期痫样放电及发作期脑电图情况。行枕叶局部皮层切除6例及枕叶切除3例。术后按照Engel评分,I级7例,II级2例。所有病例均未出现埋藏电极引起的并发症。结论在致痫灶定位困难的顽固性枕叶癫痫中,采用颅内电极埋藏进行脑电图监测,可以精确定位致痫灶,从而提高癫痫的治愈率。  相似文献   

17.
目的 探讨影像融合及颅内电极三维重建在癫痫术前计划中的应用价值。方法 对于行开颅颅内电极植入术以进行慢性皮层脑电评估的癫痫患者,获取其术前MRI及电极植入术后CT的影像资料,利用SynergyCranial软件将两种影像进行融合,并对颅内电极、脑表面及颅骨进行三维重建,以显示出颅内电极与骨窗、脑表面的相对位置,为致痫灶的定位及下一步手术计划的制定提供准确的解剖信息。结果 在2015年4月至8月共对10例需慢性皮层脑电监测的癫痫患者进行了开颅颅内电极植入术。通过术前MRI与电极植入术后CT影像融合技术,可以在MRI断层图像上观察到皮层电极中各触点与脑沟、脑回的相对平面位置,克服了术后无法行MRI检查的弊端。通过对影像融合后的颅内电极、脑表面及颅骨进行三维模型重建,可以立体直观地观察到颅内电极与脑表面和骨窗的相对空间位置,电极触点的重建成功率达90%。根据重建出的三维融合影像,结合皮层脑电图的监测结果,划定出致痫灶的位置与范围,制定手术计划,进行致痫灶切除术,术后所有患者均取得了良好效果。结论 在对行颅内电极监测的癫痫患者制定手术计划时,利用影像融合和颅内电极三维重建技术,可以获得更为准确且直观的致痫灶定位信息,有利于提高致痫灶切除术的准确性和安全性。  相似文献   

18.
目的研究神经外科机器人立体定向辅助系统(robotized stereotactic assistant,ROSA)在癫痫外科中的应用价值。方法自2013年3月至6月,对11例顽固性癫痫患者,经过电一临床症状学、影像学、头皮脑电图等无创手段严谨的术前评估,设计颅内电极埋置方案。在ROSA引导下,定向植入脑深部电极。埋置电极后进行颅内脑电图长程监测,最终手术治疗。结果11例患者平均年龄26.3岁(13~48岁),平均病史11.9年(1~23年)。共植入72根深部电极,1例患者进行单侧植入,10例系双侧植入。其中包括额叶17根,颞叶52根,岛叶3根。平均每根电极植入时间小于10分钟。术后复查CT,与术前MRI相融合之后分析,可见各电极末端位置与植入术前计划靶点位置基本一致,平均位置误差1.7mm(0.3~3.1mm)。1例患者在电极入路点有少量蛛网膜下腔出血,仅表现轻微头痛。本组患者均无显著的颅内出血等并发症发生。结论ROSA引导植入脑深部电极应用于顽固性癫痫的外科治疗,克服了传统的框架式立体定向仪应用的局限性,更加安全、精准、便捷。  相似文献   

19.
OBJECTIVES: To evaluate a novel method for localization of subdural electrodes in presurgical assessment of patients with drug-resistant focal epilepsy. METHODS: We studied eight consecutive patients with posterior epilepsy in whom subdural electrodes were implanted for presurgical evaluation. Electrodes were detected on post-implantation brain CT scans through a semiautomated procedure based on a MATLAB routine. Then, post-implantation CT scans were fused with pre-implantation MRI to localize the electrodes in relation to the underlying cortical structures. The reliability of this procedure was tested by comparing 3D-rendered MR images of the electrodes with electrode position as determined by intraoperative digital photography. RESULTS: In each patient, all electrodes could be correctly localized and visualized in a stereotactic space, thus allowing optimal surgery planning. The agreement between the procedure-generated images and the digital photographs was good according to two independent raters. The mean mismatch between the 3D images and the photographs was 2 mm. CONCLUSIONS: While our findings need confirmation on larger samples including patients with anterior epilepsy, this procedure allowed to localize subdural electrodes and to establish the spatial relationship of each electrode to the underlying brain structure, either normal or damaged, on brain convessity, basal and medial cortex. SIGNIFICANCE: Being simple, rapid, unexpensive, and reliable, this procedure holds promise to be useful to optimize epilepsy surgery planning.  相似文献   

20.
目的研究利用三维重建脑表面成像辨识中央前回的方法及其可靠性。方法难治性癫痫经术前评估需要进行颅内电极植入的病例12例,术前行3T磁共振结构像扫描及运动功能磁共振测试,颅内电极植入后行头颅CT扫描。利用磁共振数据,用Brainvoige软件进行脑表面三维重建,并与硬膜下电极CT融合。根据中央前回的形状走行特点,在重建的脑表面上标记中央前回,进而辨识标记术区中央前回。用皮层电刺激和功能磁共振验证所标记中央前回的可靠性。结果 12例均进行了脑表面三维重建,并标记出了中央前回,硬膜下电极CT电极点与三维脑表面融合。统计中央前回上电极点101个,电刺激运动响应73个,响应率72%;对照组中央前回前1cm(统计中央前沟前2个电极范围),130个电极,17个电极有运动响应,响应率13%,p值小于0.05;功能磁共振手的运动100%中央前回有激活,中央前回前无明显激活。电刺激及功能核磁均验证了本研究方法确定中央前回准确可靠。结论脑表面成像辨识中央前回准确可行,可以利用各初级运动皮层分布的距离进行详细的初级运动皮层的绘制定位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号