首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
c-kit, the transmembrane tyrosine kinase receptor for stem cell factor, is required for melanocyte and mast cell development, hematopoiesis, and differentiation of spermatogonial stem cells. We show here that in the heart, c-kit is expressed not only by cardiac stem cells but also by cardiomyocytes, commencing immediately after birth and terminating a few days later, coincident with the onset of cardiomyocyte terminal differentiation. To examine the function of c-kit in cardiomyocyte terminal differentiation, we used compound heterozygous mice carrying the W (null) and W(v) (dominant negative) mutations of c-kit. In vivo, adult W/W(v) cardiomyocytes are phenotypically indistinguishable from their wild-type counterparts. After acute pressure overload adult W/W(v) cardiomyocytes reenter the cell cycle and proliferate, leading to left ventricular growth; furthermore in transgenic mice with cardiomyocyte-restricted overexpression of the dominant negative W(v) mutant, pressure overload causes cardiomyocytes to reenter the cell cycle. In contrast, in wild-type mice left ventricular growth after pressure overload results mainly from cardiomyocyte hypertrophy. Importantly, W/W(v) mice with pressure overload-induced cardiomyocyte hyperplasia had improved left ventricular function and survival. In W/W(v) mice, c-kit dysfunction also resulted in an approximately 14-fold decrease (P<0.01) in the number of c-kit(+)/GATA4(+) cardiac progenitors. These findings identify novel functions for c-kit: promotion of cardiac stem cell differentiation and regulation of cardiomyocyte terminal differentiation.  相似文献   

2.
Transplantation of marrow stromal cells may provide a means of modulating hematopoiesis and serve as a form of cell therapy. We employed a murine transplant model using Sl/Sl(d) mice, which have macrocytic anemia due to defective expression of stem cell factor (SCF) on bone marrow stromal cells. Donor cells were derived from the complementary mutant strain W/W(v), which also exhibit anemia, due to mutations in c-kit, the SCF receptor expressed on hematopoietic stem cells. The strength of this model is that any correction of the Sl/Sl(d) anemia from the infusion of W/W(v) stromal cells can be attributed to the effect of the stromal cells and not to contaminating W/W(v) hematopoietic stem cells, a major concern in experiments involving wild-type animals. Cultured stromal cells were infused into unconditioned non-splenectomized Sl/Sl(d) mice. Engraftment of donor stromal cells reached levels of up to 1.0% of total marrow cells 4 months post transplant. However, stromal engraftment was not detectable in the spleen. Recipients of W/W(v) stroma showed a significant increase in the committed erythroid progenitors compared with those receiving Sl/Sl(d) stromal cells: 109 +/- 26 vs 68 +/- 5 CFU-E per 10(5) BMC, P = 0.002; 25 +/- 10 vs 15 +/- 5 BFU-E per 10(5) BMC, P = 0.037, for W/W(v) and Sl/Sl(d) stroma recipients, respectively. Despite this increase in erythroid progenitors, the anemia was not corrected. Our data suggest that in this murine model, splenic erythropoiesis may influence stromal cell therapy, and that higher levels of marrow engraftment may be necessary to obtain a clinically significant effect.  相似文献   

3.
Proliferation of murine mast cells is induced by both T-cell-derived and fibroblast-derived growth factors. Because the most potent T-cell-derived mast cell growth factor, interleukin-3, promotes the migration of mast cells, we investigated whether fibroblast-derived growth factors had the chemoattractive activity as well. Conditioned medium (CM) of BALB/3T3 fibroblasts induced the migration of cultured mast cells (CMC) derived from normal (+/+) mice. BALB/3T3-CM contained the mast cell growth factor (MGF)/stem cell factor (SCF)/kit ligand (KL), which is the ligand for the receptor encoded by the W (c-kit) gene. CMC derived from the spleen of W/W mice lack the extracellular domain of the W (c-kit) receptor, and W/W CMC did not proliferate in response to BALB/3T3-CM. However, W/W CMC did migrate normally toward BALB/3T3-CM and, moreover, the antibody to the extracellular domain of the W (c-kit) receptor did not inhibit the chemoattractive activity of +/+ CMC toward BALB/3T3-CM. These results indicated that MGF/SCF/KL itself did not represent the major chemoattractive activity. On the other hand, BALB/3T3-CM induced neither proliferation nor migration of CMC derived from mi/mi mice. Both W/W and mi/mi mice are deficient in mast cells, but the present results suggest that the mechanism of the abnormality is different between W/W and mi/mi mice.  相似文献   

4.
Colucci F  Di Santo JP 《Blood》2000,95(3):984-991
Fetal liver kinase ligands (flk2L/flt3L) and stem cell factor (SCF) have been shown to promote natural killer (NK) cell differentiation from hematopoietic stem cell (HSC) precursors in vitro. However, the contribution of signaling through the receptors for these growth factors for in vivo NK cell development remains ill-defined. We have analyzed the role of the SCF receptor c-kit in NK cell differentiation by reconstituting NK-deficient mice with fetal liver (FL) HSCs of c-kit(-/-) (W/W) mice. Although c-kit(-/-)NK cells were generated in W/W chimeras, they were reduced in number, contained a lower percentage of CD45R (B220)(+) cells, and were poorly cytolytic. In vitro experiments showed that generation of NK cells from FL precursors was reduced in the absence of c-kit signaling and that SCF promoted the survival of peripheral c-kit(+) NK cells. We conclude that c-kit/SCF interactions in vivo are dispensable for the commitment of HSC to the NK lineage, but they provide essential signals for generating normal numbers of fully mature NK cells.  相似文献   

5.
The W locus of mice encodes the c-kit receptor tyrosine kinase. Heterozygous WJic/+ and Wn/+ mice and homozygous Wf/Wf mice were similar in appearance; all of them have large depigmented areas lacking any well-defined pattern. The WJic, Wn, and Wf mutant alleles were characterized and their molecular nature was correlated with the mast cell differentiation in the skin and the biologic features of cultured mast cell (CMC). All WJic, Wn, and Wf were point mutations at the tyrosine kinase domain, and c-kit mRNA was normally transcribed from all of them. The mature 145-Kd form of the c-kit protein was produced from the WJic and Wf alleles, but not from the Wn allele. c-kit proteins produced by the WJic or Wf allele were expressed on the surface of CMCs, but those of the Wn allele were not. When double heterozygous mice were produced between W and WJic and between W and Wn, both W/WJic and W/Wn mice lacked skin mast cells. W/WJic CMCs and W/Wn CMCs did not survive in the coculture with fibroblasts. W/WJic CMCs normally attached to fibroblasts, but W/Wn CMCs did not. The defect of W/Wn CMCs in the attachment was attributed to the deficient extracellular expression of the c-kit protein. The number of skin mast cells was compared among WJic/+, Wn/+, Wf/+, and Wf/Wf mice. Mast cells decreased in WJic/+ and Wf/Wf mice, but not in Wn/+ and Wf/+ mice. Although the Wn was a point mutation at the kinase domain, the biologic effect of the Wn was comparable with that of the W mutant allele, which produces truncated c-kit protein without the transmembrane domain. The weak phenotype of Wn/+ mice may be explained by the deficient extracellular expression of c-kit proteins produced by the Wn allele. When WJic/WJic, Wn/Wn, and Wf/Wf CMCs were stimulated by the recombinant c-kit ligand, autophosphorylation activity was observed only in Wf/Wf CMCs. This result was consistent with the weak biologic effect of the Wf mutant allele.  相似文献   

6.
Evidence suggests that bone marrow (BM) cells may give rise to a significant proportion of smooth muscle cells (SMCs) that contribute to intimal hyperplasia after vascular injury; however, the molecular pathways involved and the timeline of these events remain poorly characterized. We hypothesized that the stem cell factor (SCF)/c-Kit tyrosine kinase signaling pathway is critical to neointimal formation by BM-derived progenitors. Wire-induced femoral artery injury in mice reconstituted with wild-type BM cells expressing yellow fluorescent protein was performed, which revealed that 66+/-12% of the SMCs (alpha-smooth muscle actin-positive [alphaSMA(+)] cells) in the neointima were from BM. To characterize the role of the SCF/c-Kit pathway, we used c-Kit deficient W/W(v) and SCF-deficient Steel-Dickie mice. Strikingly, vascular injury in these mice resulted in almost a complete inhibition of neointimal formation, whereas wild-type BM reconstitution of c-Kit mutant mice led to neointimal formation in a similar fashion as wild-type animals, as did chronic administration of SCF in matrix metalloproteinase-9-deficient mice, a model of soluble SCF deficiency. Pharmacological antagonism of the SCF/c-Kit pathway with imatinib mesylate (Gleevec) or ACK2 (c-Kit antibody) also resulted in a marked reduction in intimal hyperplasia. Vascular injury resulted in the local upregulation of SCF expression. c-Kit(+) progenitor cells (PCs) homed to the injured vascular wall and differentiated into alphaSMA(+) cells. Vascular injury also caused an increase in circulating SCF levels which promoted CD34(+) PC mobilization, a response that was blunted in mutant and imatinib mesylate-treated mice. In vitro, SCF promoted adhesion of BM PCs to fibronectin. Additionally, anti-SCF antibodies inhibited adhesion of BM PCs to activated SMCs and diminished SMC differentiation. These data indicate that SCF/c-Kit signaling plays a pivotal role in the development of neointima by BM-derived PCs and that the inhibition of this pathway may serve as a novel therapeutic target to limit aberrant vascular remodeling.  相似文献   

7.
Stem cell factor (SCF) is the ligand for the receptor encoded by the c-kit proto-oncogene. Mutations of either c-kit or the SCF gene are responsible for the defects of W and SI mutant mice, which both suffer a macrocytic anemia, the former associated with defective stem cells and the latter with a defective hematopoietic microenvironment. PEGylated recombinant rat SCF was administered to normal or splenectomized mice for up to 21 days. SCF was found to be a modest stimulator of peripheral blood neutrophil numbers in both groups of animals. The peak in neutrophil numbers was higher and occurred earlier in splenectomized mice. Bone marrow and spleen cellularity changed little during treatment but the content of interleukin-3-responsive progenitor cells and spleen colony-forming cells (CFU-S) reached very high levels, particularly in the spleen. Using recombinant human granulocyte colony-stimulating factor (rhG-CSF), we have shown that SCF induces a greater than additive increase in both blood neutrophils and blood-borne CFU-S. This synergy was seen throughout the dose range and may indicate a clinical role for SCF either alone or in augmenting the activity of G-CSF upon blood neutrophils and transplantable stem cells.  相似文献   

8.
It is well known that mast cells are derived from hematopoietic stem cells. However, in adult hematopoiesis, a committed mast cell progenitor has not yet been identified in any species, nor is it clear at what point during adult hematopoiesis commitment to the mast cell lineage occurs. We identified a cell population in adult mouse bone marrow, characterized as Lin(-)c-Kit(+)Sca-1(-)-Ly6c(-)FcepsilonRIalpha(-)CD27(-)beta7(+)T1/ST2+, that gives rise only to mast cells in culture and that can reconstitute the mast cell compartment when transferred into c-kit mutant mast cell-deficient mice. In addition, our experiments strongly suggest that these adult mast cell progenitors are derived directly from multipotential progenitors instead of, as previously proposed, common myeloid progenitors or granulocyte/macrophage progenitors.  相似文献   

9.
Broudy  VC; Lin  NL; Priestley  GV; Nocka  K; Wolf  NS 《Blood》1996,88(1):75-81
The phenotypes of mice that harbor a defect in the genes encoding either stem cell factor (SCF) or its receptor, c-kit, indicate that this ligand/receptor pair is necessary for maintenance of normal hematopoiesis in the adult. Our objective was to determine whether SCF, like erythropoietin, is necessary for acute erythroid expansion during recovery from hemolytic anemia. Monoclonal antibody ACK2, which recognizes the murine c-kit receptor, was used to selectively block the hematopoietic growth-promoting effects of SCF. Mice were treated with phenylhydrazine on day 0 and day 1 to induce hemolytic anemia and also received no antibody, control IgG, or ACK2 on day 0. The mice were killed on day 3 and the hematocrit (Hct), reticulocyte count, and numbers of erythroid and myeloid hematopoietic progenitor cells (colony- forming unit-erythroid [CFU-E], burst-forming unit [BFU]-E, and CFU- granulocyte-macrophage [GM]) were quantitated in the femoral marrow and spleen using hematopoietic colony-forming assays. Induction of hemolytic anemia with phenylhydrazine resulted in a drop in the Hct from approximately 50% to 30%, and an approximate 8- to 10-fold increase in the reticulocyte count. The numbers of CFU-E increased modestly in the femur, and approximately 25- to 50-fold in the spleen, in comparison with normal mice. BFU-E and CFU-GM values did not increase in the femur but expanded 6- to 10-fold in the spleen, in comparison with normal mice. This confirms that much of the erythroid expansion in response to hemolytic anemia occurs in the murine spleen. Neutralizing quantities of the ACK2 antibody reduced femoral CFU-E, BFU- E, and CFU-GM content to less than half that found in phenylhydrazine- treated control mice and nearly totally ablated splenic hematopoiesis. These results suggest that c-kit receptor function may be required for optimal response to acute erythropoietic demand and that erythropoiesis in the splenic microenvironment is more dependent on SCF/c-kit receptor interaction than is erythropoiesis in the marrow microenvironment. Because expansion of late erythropoiesis in the spleen was preferentially blocked, we tested the hypothesis that homing of more primitive hematopoietic cells to the spleen was dependent on c-kit receptor function. Lethally irradiated mice were injected with marrow cells obtained from mice that had received phenylhydrazine plus control IgG or with marrow cells obtained from mice that had received phenylhydrazine plus ACK2. In parallel experiments, normal murine marrow cells were treated in vitro with control IgG or with ACK2 and were injected into lethally irradiated mice. The fraction of BFU-E and CFU-GM retrieved from the marrow and spleen of the recipient mice 4 hours later was reduced by approximately 75% when progenitor cells had been exposed to ACK2, in comparison with control IgG. These data suggest that interaction of SCF with the c-kit receptor affects the homing behavior of hematopoietic progenitor cells in the adult animal.  相似文献   

10.
We have evaluated the in vivo amplification potential of purified murine hematopoietic stem cells, identified as Wheat Germ Agglutinin+ (WGA+), 15-1.1(-) , Rhodamine 123 Dull (Rho-dull) cells, by serial transplantation into stem cell defective nonmyeloablated W/Wv mice. C57BL Rho-dull cells (250/ 500 cells/mouse) permanently engrafted nonablated W/Wv mice as defined by the presence of > 95% red and > 20% white donor-derived circulating cells for at least 1.5 years following transplantation. At this time, approximately 61% of Rho-dull cells and all the Rho-bright progenitor and colony forming cells of the engrafted mice were found to be donor-derived by c-Kit genotyping and by their response to stem cell factor (SCF). Retransplantation of 250-1000 Rho-dull cells from primary into secondary W/Wv recipients generated C57BL hematopoiesis in 40%-64% of animals revealing the presence of donor derived hematopoietic stem cells (HSC) in the bone marrow of the primary recipients. One and half years after transplantation, the bone marrow of the secondary engrafted animals contained C57BL Rho-dull cells approximately = 51% by genotype), which were capable of reconstituting tertiary W/Wv recipients. In this respect, 25% of tertiary mice expressed C57BL hematopoiesis when transplanted with 250-1000 Rhodull cells purified from secondary W/Wv recipients. On the basis of the number of Rho-dull cells purified from a single mouse, we calculate that approximately 7.3x10(4) Rho-dull cells, which are genotypically and functionally defined as C57BL long-term repopulating stem cells, were generated in the marrow of reconstituted primary W/Wv recipients transplanted 1.5 years earlier with 250-500 C57BL Rho-dull cells. We conclude that murine HSC have extensive amplification capacity in nonmyeloablated animals.  相似文献   

11.
AIMS: Recent studies have shown that stem cell therapy may alleviate the detrimental effects of myocardial infarction. Yet, most of these reports observed only modest effects on cardiac function, suggesting that there still is need for improvement before widespread clinical use. One potential approach would be to increase migration of stem cells to the heart. We therefore tested whether local administration of stem cell factor (SCF) improves myocardial homing of intravenously infused lin-/c-kit+ stem cells after myocardial infarction. METHODS AND RESULTS: Myocardial infarction was induced in mice via ligation of the left anterior descending artery and 2.5 microg of SCF were injected into the peri-infarct zone. Sham-operated mice and animals with intramyocardial injection of phosphate-buffered saline (PBS) served as controls. Twenty-four hours after myocardial infarction, lin-/c-kit+ stem cells were separated from murine bone marrow by magnetic cell sorting, labelled with the green fluorescent cell tracker CFDA or 111 Indium, and subsequently 750 000 labelled cells were systemically infused via the tail vein. Another 24 or 72 h later, respectively (i.e. 48 and 96 h after myocardial infarction), hearts were removed and analysed for myocardial homing of stem cells. Green fluorescent stem cells were exclusively detected in the peri-infarct zone of animals having prior SCF treatment. Radioactive measurements revealed that an intramyocardial SCF injection significantly amplified myocardial homing of lin-/c-kit+ stem cells compared to animals with PBS injections (3.58 +/- 0.53 vs. 2.28 +/- 0.23 cpm/mg/10(6)cpm, +60%, P < 0.05) and sham-operated mice without myocardial infarction (3.58 +/- 0.53 vs. 1.95 +/- 0.22 cpm/mg/10(6)cpm, +85%, P < 0.01). Similar results were obtained 72 h after stem cell injection. CONCLUSION: We demonstrate that intramyocardial administration of SCF sustainably directs more lin-/c-kit+ stem cells to the heart. Future studies will have to show whether higher levels of myocardial SCF (i.e. by virus-mediated gene transfer) can further improve homing of systemically delivered c-kit+ stem cells and thus favourably influence cardiac remodelling following myocardial infarction.  相似文献   

12.
The proto-oncogene c-kit encodes a transmembrane tyrosine kinase receptor for stem cell factor (SCF). The c-kit/SCF signal is expected to have an important role in hematopoiesis. A monoclonal antibody (ACK-2) against the murine c-kit molecule was prepared. Flow cytometric analysis showed that the bone marrow cells that expressed the c-kit molecule (approximately 5%) were B220(B)-, TER119(erythroid)-, Thy1negative-low, and WGA+. A small number of Mac-1(macrophage)+ or Gr-1(granulocyte)+ cells were c-kit-low positive. Colony-forming unit in culture (CFU-C) and day-8 and day-12 CFU-spleen (CFU-S) existed exclusively in the c-kit-positive fraction. About 20% of the Lin(lineage)-c-kit+ cells were rhodamine-123low and this fraction contained more day-12 CFU-S than day-8 CFU-S. On the basis of these findings, murine hematopoietic stem cells were enriched with normal bone marrow cells. One of two and one of four Thy-1lowLin-WGA+c-kit+ cells were CFU-C and CFU-S, respectively. Long-term repopulating ability was investigated using B6/Ly5 congenic mice. Eight and 25 weeks after transplantation of Lin-c-kit+ cells, donor-derived cells were found in the bone marrow, spleen, thymus, and peripheral blood. In peripheral blood, T cells, B cells, and granulocyte-macrophages were derived from donor cells. Injection of ACK-2 into the irradiated mice after bone marrow transplantation decreased the numbers of day-8 and day-12 CFU-S in a dose-dependent manner. Day-8 spleen colony formation was completely suppressed by the injection of 100 micrograms ACK-2, but a small number of day-12 colonies were spared. Our data show that the c-kit molecule is expressed in primitive stem cells and plays an essential role in the early stages of hematopoiesis.  相似文献   

13.
Murine bone marrow cells with lineage phenotypes (Lin)-Sca-1+c-kit+ and Lin-Sca-1-c-kit+ cells represent primitive hematopoietic stem cells (HSCs) and committed hematopoietic progenitor cells, respectively. The number of Lin-Sca-1+c-kit+ HSCs in bone marrow was significantly increased in tumor necrosis factor (TNF) receptor p55-deficient (TNF- R55-1-) mice compared with the TNF-R55+/+ wild-type mice without a marked change in bone marrow cellularity. In both the methylcellulose culture and a single-cell proliferation assay, mouse TNF alpha (mTNF alpha) inhibited in vitro the proliferation of wild-type mouse-derived Lin-Sca-1+c-kit+ cells in response to a combination of multiple growth factors. The same is true for that of Lin-Sca-1+c-kit+ cells stimulated with granulocyte colony-stimulating factor (G-CSF) plus stem cell factor (SCF). Moreover, mTNF alpha significantly arrested the entry into S-phase from G0/G1 phase of Lin-Sca-1+c-kit+ cells stimulated with multiple growth factors and Lin-Sca-1-c-kit+ cells stimulated with G- CSF plus SCF. In contrast, mTNF alpha failed to affect the growth and cell cycle progression of Lin-Sca-1+c-kit+ cells and Lin-Sca-1-c-kit+ cells that were obtained from TNF-R55-deficient mice. These data suggest that TNF may be an important physiologic regulator of hematopoiesis and that TNF-R55 may be essentially involved in TNF- mediated inhibition of the growth of both primitive stem and more committed progenitor cells.  相似文献   

14.
The c-kit receptor ligand functions as a mast cell chemoattractant.   总被引:15,自引:4,他引:15  
Mast cells accumulate at sites of neovascularization, solid tumors, and many immune reactions. Such accumulation requires directed migration of mature mast cells or their precursors. The nature of the chemoattractants that regulate mast cell motility and the identity of the receptors that mediate the chemotactic response are poorly understood. We have tested the ability of stem cell factor (SCF), a mast cell growth factor, to stimulate mast cell migration. Our results show that SCF is a potent mast cell attractant that stimulates directional motility of both mucosal and connective tissue-type mast cells. The activity is potentiated by costimulation with interleukin-3 (IL-3), another mast cell chemoattractant. SCF, a known ligand for the c-kit tyrosine kinase receptor, was unable to stimulate motility in W42 mutant mast cells, which have a defective c-kit tyrosine kinase. However, W42 mast cells were still able to migrate in response to IL-3. These results show that SCF is a chemotactic factor as well as a growth factor and that the c-kit receptor can transduce signals leading to both cell proliferation and increased directional cell motility.  相似文献   

15.
K Tsuji  K M Zsebo  M Ogawa 《Blood》1991,78(5):1223-1229
Mice with W mutations characterized by hypopigmentation, sterility, anemia, and mast cell deficiency have abnormalities in c-kit, a receptor with tyrosine kinase activity. Recently, the ligand for c-kit was cloned by investigators in several laboratories. Zsebo et al identified and cloned a gene for a cytokine termed stem cell factor (SCF) in the medium conditioned by buffalo rat liver cells, and this cytokine proved to be c-kit ligand. We have examined the effects of recombinant rat SCF (rrSCF) on colony formation from primitive hematopoietic progenitors in culture. rrSCF and erythropoietin (Ep) supported formation of granulocyte/macrophage (GM) colonies as well as a small number of multilineage and blast cell colonies from marrow cells of normal mice. We then examined the effects of rrSCF using marrow and spleen cells of mice that had been treated with 150 mg/kg 5-fluorouracil (5-FU). Unlike single factors, combinations of factors such as rrSCF plus interleukin-3 (IL-3), rrSCF plus IL-6, and rrSCF plus granulocyte colony-stimulating factor (G-CSF) markedly stimulated the growth of multilineage colonies. In contrast to these factor combinations and a combination of IL-3 and IL-6, a combination of rrSCF and IL-4 did not support multilineage colony formation. Mapping studies of the development of multipotential blast cell colonies further indicated that rrSCF, like IL-6, G-CSF, and IL-11, shortens the dormant period in which the stem cells reside. When we tested the effects of rrSCF using pooled blast cells, which are highly enriched for progenitors and are devoid of stromal cells, rrSCF plus Ep supported formation of only a few multilineage colonies, indicating that rrSCF itself is ineffective in support of the proliferation of multipotential progenitors. However, rrSCF supported formation of a significant number of neutrophil and neutrophil/macrophage colonies from pooled blast cells, indicating that rrSCF is able to support directly the proliferation of progenitors in neutrophil/monocyte lineages. c-kit ligand may play important roles in adult hematopoiesis.  相似文献   

16.
OBJECTIVE: It has been reported that stem cell factor (SCF) promotes cell survival in primary cultured human erythroid colony-forming cells (ECFC). Given the heterogeneous nature of ECFC, which may affect interpretation of the data, we purified c-kit+ ECFC and investigated the specificity and mechanisms of the anti-apoptotic effects of SCF on these cells. MATERIALS AND METHODS: Glycophorin A+ (GPA+) c-kit+ cells were purified from primary cultured ECFC derived from purified human CD34+ cells. The GPA+c-kit- and nonerythroid cells were generated from the same CD34+ cells. Apoptosis of ECFC was investigated in the absence or presence of SCF and erythropoietin (EPO) in serum-free medium. DNA fragmentation was measured with enzyme linked immunosorbent assay for oligonucleosome-sized DNA, gel electrophoresis, and annexin V labeling. Characterization of expanded cells and enriched cells was performed using multiparameter flow cytometry. For Akt assay, cells were lysed and the cleared lysates subjected to SDS-PAGE followed by Western blotting. RESULTS: In GPA+c-kit+ cells, deprivation of cytokine caused rapid DNA fragmentation within 4 hours that reached a maximum at 6 hours. This was partially but clearly prevented by SCF or EPO. In contrast, no significant DNA fragmentation was seen in GPA+c-kit- and nonerythroid cells within 24 hours. PP2, a specific Src family kinase inhibitor, but not its inactive analogue PP3, reversed the anti-apoptotic effects of SCF. PP2 also inhibited SCF-induced phosphorylation of Akt. CONCLUSION: These data indicate that SCF protects purified human GPA+c-kit+ cells from apoptosis and suggest that kit-mediated Src kinase activation is involved in Akt activation and cell survival.  相似文献   

17.
R Tanaka  K Koike  T Imai  M Shiohara  T Kubo  Y Amano  A Komiyama  T Nakahata 《Blood》1992,80(7):1743-1749
The effects of recombinant rat stem cell factor (SCF/c-kit ligand) on murine megakaryocytopoiesis were studied using partially purified bone marrow cells derived from normal and 5-fluorouracil (5-FU)-treated mice in a serum-free culture system. SCF alone did not support the formation of megakaryocyte (M) and granulocyte-macrophage-megakaryocyte (GMM) colonies. However, the addition of SCF to cultures containing interleukin-3 (IL-3) resulted in a significant increase in the number of M and GMM colonies formed by bone marrow cells from normal mice, whereas IL-6 augmented only M colony growth. The stimulatory effect of SCF was approximately three to four times as high as that of IL-6 on the primitive progenitors capable of megakaryocytic-lineage expression derived from 5-FU-treated mice. In addition, SCF, but not IL-6, significantly increased the number of constituent cells in the individual M colonies supported by IL-3. On the other hand, SCF did not exert any effect on the size and DNA content of megakaryocytes in IL-3-dependent M and GMM colonies, whereas IL-6 enhanced the maturation of megakaryocytes. These results suggest that SCF stimulates the proliferative process in megakaryocytic progenitors and that the main activity of IL-6 is the promotion of megakaryocyte maturation.  相似文献   

18.
19.
Steel factor and c-kit regulate cell-matrix adhesion   总被引:12,自引:5,他引:12  
Kinashi  T; Springer  TA 《Blood》1994,83(4):1033-1038
Steel (SI) and white spotting (W) loci encode steel factor (c-kit ligand) and the c-kit tyrosine kinase receptor, respectively. Mutations at these loci affect migration and differentiation of primordial germ cells, neural crest-derived melanoblasts, and hematopoietic cells. In these processes, cell adhesion molecules are hypothesized to be crucial. We have examined the role of steel factor and c-kit in cell- extracellular matrix adhesion using bone marrow-derived mast cells as a model system. Steel factor stimulates mast cells to bind to fibronectin and, to a lesser extent, to vitronectin, whereas interleukin-3 and interleukin-4, which are also mast cell growth factors, do not. Activation of adhesiveness is transient, occurs at concentrations of steel factor 100-fold lower than required for growth stimulation, and requires the integrin VLA-5. Mast cells from c-kit mutant mice adhere to fibronectin on stimulation with phorbol 12-myristate 13-acetate (PMA), but not on stimulation with steel factor, indicating that stimulation of integrin adhesiveness requires activation of the c-kit protein tyrosine kinase. By contrast, c-kit mutant and wild-type mast cells adhere equally well to COS cells expressing membrane-anchored steel factor, showing that the kinase activity of c-kit is not required for adhesion directly mediated by c-kit. Our findings suggest that regulation of adhesion is an important biologic function of steel factor.  相似文献   

20.
OBJECTIVE: The transmembrane isoform of stem cell factor (tm-SCF) has been implicated in the adhesion of hemopoietic stem cells to the extracellular matrix within the bone marrow microenvironment in vitro. In addition, in vivo SCF has been shown to play a role in cell mobilization and migration. The aim of this study was to determine if SCF is an integral component of the hemopoietic "niche" of the bone marrow in situ. MATERIALS AND METHODS: To analyze the role of tm-SCF in cell lodgment, purified populations of primitive progenitors and hemopoietic stem cells (HSC) were transplanted into a hemopoietic microenvironment devoid of tm-SCF, and the spatial distribution of engrafted cells was analyzed. In addition, populations of HSC were isolated using non-neutralizing and neutralizing antibodies to the SCF receptor c-kit, and their spatial distribution was analyzed post-transplant. RESULTS: The data demonstrated a significant impairment in the lodgment of transplanted cells within the endosteal marrow region in mice lacking tm-SCF, with a reduction of almost 30% by 15 hours post-transplant. The role of tm-SCF was confirmed by analyzing the spatial distribution of HSC isolated using a neutralizing antibody to c-kit. CONCLUSION: The data demonstrate that although tm-SCF does not appear to play a role in the homing of transplanted cells to the bone marrow, it is critical in the lodgment and detainment of HSC within their hemopoietic "niche."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号