首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The connections of the lateral terminal nucleus (LTN) of the accessory optic system (AOS) of the marmoset monkey were studied with anterograde 3H-amino acid light autoradiography and horseradish peroxidase retrograde labeling techniques. Results show a first and largest LTN projection to the pretectal and AOS nuclei including the ipsilateral nucleus of the optic tract, dorsal terminal nucleus, and interstitial nucleus of the superior fasciculus (posterior fibers); smaller contralateral projections are to the olivary pretectal nucleus, dorsal terminal nucleus, and LTN. A second, mejor bundle produces moderate-to-heavy labeling in all ipsilateral, accessory oculornotor nuclei (nucleus of posterior commissure, interstitial nucleus of Cajal, nucleus of Darkschewitsch) and nucleus of Bechterew; some of the fibers are distributed above the caudal oculomotor complex within the supraoculornotor periaqueductal gray. A third projection is ipsilateral to the pontine and mesencephalic reticular formations, nucleus reticularis tegmenti pontis and basilar pontine complex (dorsolateral nucleus only), dorsal parts of the medial terminal accessory optic nucleus, ventral tegmental area of Tsai, and rostral interstitial nucleus of the medial longitudinal fasciculus. Lastly, there are two long descending bundles: (1) one travels within the medial longitudinal fasciculus to terminate in the dorsal cap (ipsilateral > > contralateral) and medial accessory olive (ipsilateral only) of the inferior olivary complex. (2) The second soon splits, sending axons within the ipsilateral and contralateral brachium conjunctivum and is distributed to the superior and medial vestibular nuclei. The present findings are in general agreement with the documented connections of LTN with brainstem oculomotor centers in other species. In addition, there are unique connections in marmoset monkey that may have developed to serve the more complex oculomotor behavior of nonhuman primates. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The accessory optic system (AOS) has been extensively studied among vertebrates, including primates. It has never clearly been identified in man, and it has not been considered functionally important by clinicians. Because of a lack of a suitable neuroanatomical tract-tracing technique, anatomical demonstration of a retinofugal pathway to the human AOS had previously not been feasible. A modified osmium impregnation method has been shown to permit the tracing of degenerated fibers in man even after long survival periods. This technique employs p-phenylene diamine (PPD) as a marker of myelin and products of axonal degeneration. We applied the PPD method in the examination of one monkey brain (Cynomolgus) and two human autopsy brains with previous visual system lesions. The lateral, dorsal, and medial terminal accessory optic nuclei and the interstitial nucleus of the superior fasciculus, posterior fibers (LTN, DTN, MTN, and inSEp) in the monkey and the LTN, the DTN, and the inSEp in the human all showed degenerated axons and preterminal axonal profiles indicative of direct retinal input. The ventral midbrain tegmentum including the MTN area was not available for study in either of the human brains. The accessory optic projections in both the monkey and human brains proved to be bilateral but primarily crossed. The human visual system thus shares similarities with the simian, in the location and number of the AOS fiber bundles and terminal nuclei and in the organization of the retinofugal projections to these nuclei.  相似文献   

4.
The projections of the dorsal and lateral terminal accessory optic nuclei (DTN and LTN) and of the dorsal and ventral components of the interstitial nucleus of the superior fasciculus (posterior fibers; inSFp have been studied in the rabbit and rat by the method of retrograde axonal transport following injections of horseradish peroxidase into oculomotor-related brainstem nuclei. The projections of the ventral division of the inSFp have been further investigated in rabbits with the anterograde axonal transport of 3H-leucine. The data show that the projections of the DTN, LTN, and inSFp are remarkably similar in rabbit and rat. The DTN projects heavily to the ipsilateral medial terminal accessory optic nucleus (MTN), nucleus of the optic tract, and dorsal cap of the inferior olive. The DTN projects sparsely to the ipsilateral visual tegmental relay zone and to the contralateral superior and lateral vestibular nuclei. The LTN and dorsal component of the inSFp are found to share the same basic connections; both project heavily to the ipsilateral nucleus of the optic tract and visual tegmental relay zone and send a moderately sized projection to the ipsilateral MTN. However, while the dorsal component of the inSFp sends significant ipsilateral projections to both rostral and caudal portions of the dorsal cap, only a few LTN neurons appear to follow this example and only by projecting to the rostral part of the dorsal cap. In addition, both the LTN and dorsal component of the inSFp send sparse contralateral projections to the MTN, nucleus of the optic tract, and visual tegmental relay zone; and the dorsal component of the inSFp also provides a sparse contralateral projection to both rostral and caudal portions of the dorsal cap. The ventral component of the inSFp projects heavily to the ipsilateral visual tegmental relay zone and moderately to the ipsilateral MTN and nucleus of the optic tract. The ventral inSFp projects sparsely to the contralateral MTN, the nucleus of the optic tract, and the visual tegmental relay zone. A few of its neurons target the ipsilateral dorsal cap of the inferior olive. Unlike the DTN (present study) and the MTN (Giolli et al.: J. Comp. Neurol. 227:228-251, '84; J. Comp. Neurol. 232:99-116, '85a), the LTN and the inSFp of the rabbit and rat lack projections to the superior and lateral vestibular nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (VLG) are ventral thalamic derivatives within the lateral geniculate complex. In this study, IGL and VLG efferent projections were compared by using anterograde transport of Phaseolus vulgaris-leucoagglutinin and retrograde transport of FluoroGold. Projections from the IGL and VLG leave the geniculate in four pathways. A dorsal pathway innervates the thalamic lateral dorsal nucleus (VLG), the reuniens and rhomboid nuclei (VLG and IGL), and the paraventricular nucleus (IGL). A ventral pathway runs through the geniculohypothalamic tract to the suprachiasmatic nucleus and the anterior hypothalamus (IGL). A medial pathway innervates the zona incerta and dorsal hypothalamus (VLG and IGL); the lateral hypothalamus and perifornical area (VLG); and the retrochiasmatic area (RCA), dorsomedial hypothalamic nucleus, and subparaventricular zone (IGL). A caudal pathway projects medially to the posterior hypothalamic area and periaqueductal gray and caudally along the brachium of the superior colliculus to the medial pretectal area and the nucleus of the optic tract (IGL and VLG). Caudal IGL axons also terminate in the olivary pretectal nucleus, the superficial gray of the superior colliculus, and the lateral and dorsal terminal nuclei of the accessory optic system. Caudal VLG projections innervate the lateral posterior nucleus, the anterior pretectal nucleus, the intermediate and deep gray of the superior colliculus, the dorsal terminal nucleus, the midbrain lateral tegmental field, the interpeduncular nucleus, the ventral pontine reticular formation, the medial and lateral pontine gray, the parabrachial region, and the accessory inferior olive. This pattern of IGL and VLG projections is consistent with our understanding of the distinct functions of each of these ventral thalamic derivatives.  相似文献   

6.
The accessory optic system (AOS) was studied in the prosimian primate, Microcebus murinus, by using intraocular injections of the anterograde tracers 3H-proline and horseradish peroxidase (HRP). Retinal fibers were found to terminate bilaterally in all three mesencephalic AOS nuclei as defined by Hayhow ('66, J. Comp. Neurol. 126:653-672). In contrast to previous reports in primates, we find that both the ventral and dorsal divisions of the medial terminal nucleus (MTN) receive projections from the retina. The ventral MTN is composed of a compact triangular group of cells, situated at the medial base of the cerebral peduncle, rostral to the rootlets of the third cranial nerve. The dorsal MTN extends dorsomedial to the substantia nigra and is composed of characteristic fusiform cells embedded in a fibrous neuropil. Although the cells of the dorsal MTN intermingle somewhat with the nigral cells, the nucleus is clearly distinguished by cyto- and myeloarchitectural features. The large lateral terminal nucleus (LTN) receives a dense projection from the retina and forms a prominent bulge on the lateral surface of the cerebral peduncle. The dorsal terminal nucleus (DTN) is located between the brachia of the superior and inferior colliculi, near the origin of the superior fasciculus of the accessory optic tract (AOT). This fasciculus is composed of anterior, middle, and posterior branches. In addition, a ventral group of fibers, corresponding to the inferior fasciculus of the AOT previously described in nonprimates, was identified in all planes of section. The results confirm the existence of a common plan of AOS organization in mammals.  相似文献   

7.
Visual projections to the pontine nuclei in the rabbit were examined by means of both orthograde and retrograde tracing of WGA-HRP. The tecto-pontine projection was examined following microinjections of WGA-HRP in the right superior colliculus. The projection to the pontine nuclei is strictly ipsilateral and terminates at middle and caudal levels of the pons. The projection is absent in rostral pontine nuclei. The strongest projection is to the dorsal border of the dorsolateral pontine nuclei and is the only projection seen when the primary injection site is confined to superficial laminae. When the primary injection site also includes intermediate and deep laminae, patches of labelled terminals are also seen within dorsolateral, lateral, peduncular, paramedian, and ventral pontine nuclei as well as in the contralateral nucleus reticularis tegmenti pontis. The striate corticopontine projection was also examined with orthograde tracing of WGA-HRP. The striate corticopontine projection is ipsilateral. Most labelled terminals were seen in dorsolateral and lateral pontine nuclei throughout the rostral half of pons with some additional terminal labelling in paramedian and peduncular nuclei. Labelled terminals were also seen in ventral pontine nuclei throughout the middle and caudal levels of the pons. In a retrograde tracing study, visual projections to the pontine nuclei were examined following microinjections of WGA-HRP into the pontine nuclei. Labelled cells were seen ipsilaterally in superficial and deep laminae of the superior colliculus and in layer V of striate and surrounding occipital cortex. The pontine nuclei also receive ipsilateral projections from the ventral lateral geniculate, the nucleus of the optic tract, anterior and posterior pretectal nuclei, and the dorsal and medial terminal nuclei of the accessory optic system. These pathways are potential sources of visual input to the cerebellum.  相似文献   

8.
The accessory optic system (AOS) was studied in an anthropoid primate by using anterograde transport of tritiated amino acids and autoradiographic techniques. The course of the accessory optic tract (AOT) and the retinal projection to the terminal nuclei are described in the gibbon and compared to that of other mammals. The AOT consists of a superior fasciculus, which includes both an anterior and a posterior fiber branch. An inferior fasciculus of the AOT is absent. In contrast to previous reports in haplorhine primates, which describe the AOS as consisting of only the dorsal (DTN) and the lateral (LTN) terminal nuclei, we find that in the gibbon, three cellular groups receive a bilateral projection, predominantly from the contralateral retina. According to cytoarchitecture and topographic location, two of these nuclei correspond to the DTN and the LTN. The third cellular group, situated dorsomedial to the substantia nigra, receives a distinct retinal projection and extends rostrocaudally for 2.0 mm in the mesencephalon. This nucleus is homologous to the dorsal division of the medial terminal nucleus (MTN) in other mammals. There was no evidence for a ventral division of the MTN, which in nonprimates is typically situated at the ventromedial base of the cerebral peduncle. Examination of brain morphology in primates suggests that the ventral division of the MTN has been displaced from its phylogenetically stable location in the medial part of the ventral midbrain to a more dorsal position. This shift appears to be a consequence of the overall morphological influences resulting from the relative enlargement of the pons in this region. The demonstration of a direct retinal projection to the MTN in the gibbon, as well as recent reports in other primates, indicates that a complete AOS consisting of three terminal nuclei is a feature common to all mammals.  相似文献   

9.
The efferent ascending connections of the cerebellar nuclei and afferent optic projections to the ventral lateral geniculate nucleus and the terminal nuclei of the accessory optic tract were traced in the 26 rabbits using the technique of experimental anterograde degeneration. Following eyeball enucleation, within the ventral lateral geniculate nucleus terminal degeneration was found mostly contralaterally and was restricted to both the sublayers (external and internal) of the lateral division, while ipsilaterally only scanty and confined to the dorsal region of the external sublayer of the lateral (sector alpha) division. After cerebellar lesions degeneration was found within the ventral region of the medial division (sector gamma) of the contralateral LGv and within contralateral LTN. From the localization of the lesions in the cerebellar nuclei, as well as from the distribution of degenerations in the area of the LGv, it was postulated that the parent neurons for the cerebello-LGV fibers are located in the contralateral posterior interposed nucleus, although the anteroventral lateral cerebellar nucleus, the Y group and the infracerebellar nucleus have been not excluded. Within the all terminal nuclei of the accessory optic tract the retinal fibers were found to terminate bilaterally with contralateral preponderance, mostly in the MTN, while ipsilateral fibers terminate most extensively in the lateral terminal nucleus of the accessory optic tract (LTN). In this means the retinal afferents of both sides seem to subserve the contralateral lateral cerebellar nucleus control. Taken together, the findings indicate that the extrageniculate visual inputs might be subjected to direct reciprocal cerebello-nuclear control. The visual extrageniculate cerebellopetal pathways and their correlations with the vestibulo-ocular and optokinetic reflex loops are discussed.  相似文献   

10.
The projections of the medial terminal nucleus (MTN) of the accessory optic system have been studied in the rabbit and rat following injection of 3H-leucine or 3H-leucine/3H-proline into the MTN and the charting of the course and terminal distribution of the MTN efferents. The projections of the MTN, as demonstrated autoradiographically, have been confirmed in retrograde transport studies in which horseradish peroxidase (HRP) has been injected into nuclei shown in the autoradiographic series to contain fields of terminal axons. The following projections of the MTN have been identified in the rabbit and rat. The largest projection is to the ipsilateral nucleus of the optic tract and dorsal terminal nucleus (DTN) of the accessory optic system. Labeled axons course through the midbrain reticular formation and the superior fasiculus, posterior fibers of the accessory optic system, to reach the nucleus of the optic tract and the DTN in both rabbit and rat. Axons also run forward to traverse the lateral thalamus and to distribute to rostral portions of the nucleus of the optic tract in rat only. A second, large projection is to the contralateral dorsolateral portion of the nucleus parabrachialis pigmentosus of the ventral tegmental area together with an adjacent segment of the midbrain reticular formation. The patchy terminal field observed has been named the visual tegmental relay zone (VTRZ). This fiber projection courses within the posterior commissure and along its path to the VTRZ, provides terminals to the interstitial nucleus of Cajal and the nucleus of Darkschewitsch, both bilaterally. A third, large MTN projection distributes ipsilaterally to the deep mesencephalic nucleus, pars medialis, and the oral pontine reticular formation. Further, this projection also supplies input to the medial nucleus of the periaqueductal gray matter, bilaterally in the rabbit and rat, and in the rabbit also to the ipsilateral superior and lateral vestibular nuclei. A fourth projection crosses the midline and courses caudally to reach, contralaterally, the dorsolateral division of the basilar pontine complex and the above nuclei of the vestibular complex. A fifth projection of the MTN utilizes the medial longitudinal fasciiculus to reach the rostral medulla, in which its axons distribute ispilaterally to the dorsal cap, its ventrolateral outgrowth, and the beta nucleus of the inferior olivary complex. There is also a contralateral contingent of this projection that leaves the medial longitudinal fasciculus to innervate a small rostral segment of the contralateral dorsal cap.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Intraocular kainic acid injection in Long-Evans rats induces loss of retinal afferents to subcortical visual centers as assessed by the axoplasmic transport of [14C]valine. The optical terminal fields of the pretectal nucleus of the optic tract (NOT), superior colliculus and accessory optic system (AOS) nuclei appear particularly affected. Since NOT and the AOS dorsal terminal nucleus (DTN) represent the first relay station of the visuomotor pathway mediating horizontal optokinetic nystagmus (HOKR), we have studied the characteristics of HOKR after various degrees of retinal deafferentation of these nuclei induced by intraocular KA injection. Taking advantage of the arrangement of the primary optic projections to NOT-DTN, that in rats are almost entirely crossed, in each animal, monocular HOKR induced by stimulation of the injected eye was compared to monocular HOKR elicited by stimulation of the intact, ipsilateral eye. Following NOT-DTN optic denervation, HOKR gain always worsened, and in a way, that the greater the deficits of retinal afferents, the greater the HOKR inability to compensate for visual motion. Furthermore, for any given retinal denervation the higher the stimulus velocity, the greater the HOKR deficit. While the correlation between HOKR gain and the amount of retinal afferents to NOT-DTN would seem to indicate a functional homogeneity of the retinal ganglion cells sending axons to these nuclei, the finding that the extent of HOKR impairment also varied with velocity might not support the above view.  相似文献   

12.
The afferent and efferent connections of the dorsal tegmental nucleus (DTN) were studied in the rat using axoplasmic transport techniques. Horseradish peroxidase (HRP) and Fast Blue were injected stereotaxically into either pars centralis or pars ventromedialis of the DTN, two subdivisions of the nucleus with distinctive connected with the ipsilateral lateral mammillary and interpeduncular neclei; these projections constitute the major afferent and efferent systems of the DTN. Commissural fibers from the corresponding pars centralis and intrinsic fibers systems are massive and form a complex fiber meshwork within the subnucleus. The prepositus hypoglossi nuclei (bilateral) also project to the pars centralis. Smaller numbers of afferent fibers arise from the lateral habenular nucleus, the posterior hypothalamus and the brainstem reticular formation.The pars ventromedialis of the DTN receives diverse inputs which include the septal nuclei, diagonal band of Broca, preoptic area, anterior and lateral hypothalamus, lateral and medial habenular nuclei, medial mammillary nucleus and many nuclei of the brainstem reticular formation. Based on the differences of connections and cytoarchitecture between the pars and the pars ventromedialis, the pars ventromedialis may be an entity separate from the dorsal tegmental nucleus.  相似文献   

13.
The present investigation was carried out to clarify the topographical details of both the origin and terminal site of the thalamic projections and the commissural connections of the ventral lateral geniculate nucleus (LGNv) in the cat by using bidirectional transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Thalamic projections: Unilateral injections of WGA-HRP into the LGNv produced orthograde labeling in the intralaminar nuclei bilaterally and in the lateralis posterior (LP) and the pulvinar (Pul) nucleus ipsilaterally. In the intralaminar nuclei the rostral part of the nucleus centralis lateralis (CL) was most densely labeled by orthogradely transported material, particularly in its dorsal and lateral large-celled portion. Other intralaminar nuclei--such as the nucleus paracentralis, centralis medialis, and centralis dorsalis--also were labeled bilaterally with ipsilateral predominance, but no labeling was detected in the caudal portion of the CL and the centromedian and parafascicular nuclei. In the Pul, labeling of terminal ramifications was found to be concentrated in a region just medial to the so-called retinorecipient zone of the Pul as a slim band of labeling inclining dorsoventrally. In the LP, fine labeled fibers were located in the lateral portion of the LP. Commissural connections: Commissural fibers crossed in the dorsal part of the posterior commissure and reached the most caudal part of the contralateral LGNv. Labeling in the contralateral LGNv was concentrated in the dorsomedial part of the medial zone that extends medially to the middle portion of the cerebral peduncle. Origins of the commissural connections arose mostly from the medial zone that roughly corresponds to the commissural terminal zone and partly from aberrant cells dispersed among optic tract fibers. From these results, together with the previous studies, it is concluded that although the cat's LGNv has connections with diverse structures in the central nervous system, the origin and terminal site of the connections are partially segregated within the nucleus, which suggests that the LGNv may contain functional subsystems.  相似文献   

14.
This study examines the non-gamma-amino butyric acid (GABA)ergic (group I neurons) and GABAergic neurons (group II neurons) of the accessory optic system projecting to the nucleus of the optic tract (NOT)/dorsal terminal nucleus (DTN) of the accessory optic system in rat. These nuclei include the dorsal (MTNd) and ventral (MTNv) divisions of the medial terminal nucleus, the lateral terminal nucleus, the interstitial nucleus of the superior fasciculus, the posterior fibers, and the visual tegmental relay zone. GABAergic neurons of these nuclei that do not target the NOT/DTN (group III neurons) have also been observed. The fluorescent retrograde tracer fluoro-gold was injected into the pretectum, targeting the NOT/DTN and the tissue prepared immunocytochemically to reveal neurons containing the neurotransmitter GABA. Three groups of neurons (groups I, II, and III neurons) were examined in terms of their distribution, density, and percentage present. Group I neurons are single-labeled with fluoro-gold and represent non-GABAergic neurons projecting to the NOT/DTN. These neurons are of the highest density in the lateral terminal nucleus (204 neurons/mm2). Their densities are also substantial in the MTNv (120 neurons/mm2), interstitial nucleus of the superior fasciculus, posterior fibers (96 neurons/mm2), and visual tegmental relay zone (93 neurons/mm2). Group II neurons are double-labeled with fluoro-gold and GABA. They form a system of GABAergic neurons projecting to the NOT/DTN, which are exceedingly dense in the MTNd (78 neurons/mm2) but are also dense in both the visual tegmental relay zone (49 neurons/mm2) and MTNv (33 neurons/mm2). Group III neurons are GABAergic neurons that do not target the NOT/DTN but must project to other brain nuclei and/or be interneurons. These are of extremely high concentration in the visual tegmental relay zone (316 neurons/mm2) and are also of substantial densities in the MTNd (77 neurons/mm2), lateral terminal nucleus (72 neurons/mm2), and MTNv (44 neurons/mm2). The MTNd has the highest percentage of GABAergic neurons projecting to the NOT/DTN (72%). GABAergic neurons also form significant percentages of the projections to the NOT/DTN from the visual tegmental relay zone (34%) and MTNv (21%). The percentage of the total GABAergic neurons that project to the NOT/DTN is the highest in the MTNd (50%) and MTNv (42%). The described GABAergic afferents to the NOT/DTN may function to process information concerned with the compensation for retinal slip.  相似文献   

15.
The intergeniculate leaflet (IGL) has widespread projections to the basal forebrain and visual midbrain, including the suprachiasmatic nucleus (SCN). Here we describe IGL-afferent connections with cells in the ventral midbrain and hindbrain. Cholera toxin B subunit (CTB) injected into the IGL retrogradely labels neurons in a set of brain nuclei most of which are known to influence visuomotor function. These include the retinorecipient medial, lateral and dorsal terminal nuclei, the nucleus of Darkschewitsch, the oculomotor central gray, the cuneiform, and the lateral dorsal, pedunculopontine, and subpeduncular pontine tegmental nuclei. Intraocular CTB labeled a retinal terminal field in the medial terminal nucleus that extends dorsally into the pararubral nucleus, a location also containing cells projecting to the IGL. Distinct clusters of IGL-afferent neurons are also located in the medial vestibular nucleus. Vestibular projections to the IGL were confirmed by using anterograde tracer injection into the medial vestibular nucleus. Other IGL-afferent neurons are evident in Barrington's nucleus, the dorsal raphe, locus coeruleus, and retrorubral nucleus. Injection of a retrograde, trans-synaptic, viral tracer into the SCN demonstrated transport to cells as far caudal as the vestibular system and, when combined with IGL injection of CTB, confirmed that some in the medial vestibular nucleus polysynaptically project to the SCN and monosynaptically to the IGL, as do cells in other brain regions. The results suggest that the IGL may be part of the circuitry governing visuomotor activity and further indicate that circadian rhythmicity might be influenced by head motion or visual stimuli that affect the vestibular system.  相似文献   

16.
The organization of the accessory optic system (AOS) has been studied in the macaque monkey following intravitreal injections of tritiated amino acids in one eye. Retinal projections to the dorsal (DTN) and the lateral (LTN) terminal nuclei are identical to those previously described in other primate species. We observed an additional group of retinorecipient cells of the AOS, located between the cerebral peduncle and the substantia nigra, which we define as the interstitial nucleus of the superior fasiculus, medial fibers. In this report, we focus our attention on the medial terminal nucleus (MTN). Although a ventral division of this nucleus (MTNv) was not observed in the macaque, the retina projects to a group of cells in the midbrain reticular formation (MRF), which we argue to be homologous to the dorsal division of the MTN (MTNd). To provide evidence in support of this homology, the retinal projection to the MTNv and MTNd was also examined in 21 additional species from 11 orders of mammals including carnivores, marsupials, lagomorphs, rodents, bats, insectivores, tree shrews, hyraxes, pholidotes, edentates, and five additional species of primates. Whereas the retina projects to both ventral and dorsal divisions in all species studied, in haplorhine primates only the projection to the MTNd is conserved. The relative topological position of the MTNd in the MRF, dorsomedial to the substantia nigra and ventrolateral to the red nucleus, remains constant throughout the mammals. The trajectory of fiber paths innervating the MTNd is also similar in all species. In addition, the MTNd has comparable afferent and efferent connections with retina, pretectum, and vestibular nuclei in all species thus far studied. These results support the unequivocal conclusion that the MTNd is an unvarying feature of the mammalian AOS.  相似文献   

17.
Retinal projections to the pretectal nuclei, accessory optic system and superior colliculus in pigmented and albino ferrets were studied using anterograde tracing techniques. Both Nissl- and myelin-stained material was used to identify the pretectal nuclei, nuclei of the accessory optic system and the layers of the superior colliculus. Following monocular injection of either horseradish peroxidase or rhodamine-B-isothiocyanate, four pretectal nuclei, including the nucleus of the optic tract, posterior pretectal nucleus, anterior pretectal nucleus and the olivary pretectal nucleus, could be identified to receive direct retinal input in both pigmented and albino strains. In the accessory optic system, retinal terminals were observed in the dorsal, lateral and medial terminal nuclei as well as in the interstitial nucleus of the superior fasciculus, posterior fibres. The retinal projection to the superior colliculus was found to innervate the three superficial layers. The retinal projections to the pretectal nuclei and nuclei of the accessory optic system in the pigmented animals were bilateral, although the label was most dense contralateral to the injected eye. Ipsilateral retinal projections to the pretectal nuclei and nuclei of the accessory optic system appeared to be absent in albino ferrets, i.e. they were invisible with our methods. In both pigmented and albino ferrets retinal terminals in the contralateral superior colliculus densely innervated the three superficial layers. In both strains the ipsilateral projection appeared as clusters which were absent in rostral and caudal poles. In pigmented animals the ipsilateral projection was much denser and more extensive than in albinos. Following injection of retrograde tracers into the brainstem at the level of the dorsal cap of the inferior olive, retrogradely labelled neurons in the pretectum were found in the ipsilateral nucleus of the optic tract. Their somata overlapped mainly with scattered retinal terminals close to the pretectal surface and rarely or not all with the deeper prominent terminal clusters. In the accessory optic system, inferior olive projecting neurons were observed in all four ipsilateral nuclei and fully coincided with the retino-recipient zones. In the superior colliculus, retrogradely labelled neurons were found contralateral to the injection site in the deep layers.  相似文献   

18.
Retinal projections in the australian lungfish   总被引:1,自引:0,他引:1  
Autoradiographic analysis of the primary retinofugal projections in the Australian lungfish reveals contralateral retinal projections to a ventral portion of the periventricular preoptic nucleus, throughout its rostrocaudal extent, and to 4 distinct terminal fields in the thalamus. Only one of these thalamic fields (t4) likely receives dendrites soley from dorsal thalamic neurons. Thalamic terminal field 1 probably receives dendrites from both dorsal and ventral thalamic neurons, and fields 2 and 3 from only ventral thalamic neurons. Contralateral retinofugal fibers terminate in the pretectum and in the superficial and central tectal zones. The central tectal terminal field is restricted to the medial one-third of the tectum. At pretectal levels a contralateral basal optic tract arises from the marginal optic tract and terminates along the lateral edge of the tegmentum, as a series of glomerular puffs, and in the rostral pole of a superficial isthmal nucleus. The Australian lungfish, unlike the African and South American lungfish, possesses ipsilateral retinal projections to all of the nuclei that receive contralateral retinal input.  相似文献   

19.
Retinal projections to the pretectal and terminal accessory optic nuclei were studied in normal wild-type mice and mutant mice with abnormal optokinetic nystagmus (OKN, Mangini, Vanable, Williams, and Pinto: J. Comp. Neurol. 241:191-209, '85). The mutants used were pearl, which exhibits an inverted OKN in response to stimulation of only the temporal retina, and beige and beige-J, which show inverted OKN in response to stimulation of only the temporal retina and, in addition, exhibit eye movements with a vertical component in response to horizontally moving, full-field stimuli. These projections were studied following intraocular injections of 3H-proline or horseradish peroxidase (HRP) with, respectively, light microscopic autoradiography or HRP histochemistry. In wild-type mice, strong contralateral retinal projections covered the entire nucleus of the optic tract, the anterior and posterior divisions of the olivary pretectal nucleus, and the posterior pretectal nucleus. Similar heavy contralateral projections were distributed over the dorsal and medial terminal nuclei of the accessory optic system. Also, terminals sparsely covered the entire neuropil of the contralateral lateral terminal nucleus in some but not all wild-type mice. The most prominent accessory optic input was to the medial terminal nucleus and was provided by the inferior fasciculus of the accessory optic tract. A typical mammalian superior fasciculus of the accessory optic system with anterior, middle, and posterior components was present. Ipsilateral label was found in anterior and posterior olivary pretectal nuclei in all of the wild-type animals, but was found inconsistently in the ipsilateral terminal accessory optic nuclei. The pattern of contralateral retinal projection to the nucleus of the optic tract and posterior pretectal nucleus in mutants was indistinguishable from that seen in the normal wild-type mice. However, retinal inputs to the ipsilateral anterior and posterior olivary pretectal nuclei were significantly reduced in pearl mutants and were exceedingly sparse in the beige and beige-J mutant mice, while the contralateral inputs to these nuclei were increased in a complementary fashion in the mutants. The labeling of the accessory optic input to the contralateral dorsal terminal nucleus appeared to be substantially reduced in all of the mutant mice. The size of the principal accessory optic fascicle, the inferior fasciculus, was significantly smaller in beige, beige-J, and pearl mice; this reduction was greater in the beige and beige-J than in the pearl mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The intergeniculate leaflet (IGL), homolog of the primate pregeniculate nucleus, modulates circadian rhythms. However, its extensive anatomical connections suggest that it may regulate other systems, particularly those for visuomotor function and sleep/arousal. Here, descending IGL-efferent pathways are identified with the anterograde tracer, Phaseolus vulgaris leucoagglutinin, with projections to over 50 brain stem nuclei. Projections of the ventral lateral geniculate are similar, but more limited. Many of the nuclei with IGL afferents contribute to circuitry governing visuomotor function. These include the oculomotor, trochlear, anterior pretectal, Edinger-Westphal, and the terminal nuclei; all layers of the superior colliculus, interstitial nucleus of the medial longitudinal fasciculus, supraoculomotor periaqueductal gray, nucleus of the optic tract, the inferior olive, and raphe interpositus. Other target nuclei are known to be involved in the regulation of sleep, including the lateral dorsal and pedunculopontine tegmentum. The dorsal raphe also receives projections from the IGL and may contribute to both sleep/arousal and visuomotor function. However, the locus coeruleus and medial vestibular nucleus, which contribute to sleep and eye movement regulation and which send projections to the IGL, do not receive reciprocal projections from it. The potential involvement of the IGL with the sleep/arousal system is further buttressed by existing evidence showing IGL-efferent projections to the ventrolateral preoptic area, dorsomedial, and medial tuberal hypothalamus. In addition, the great majority of all regions receiving IGL projections also receive input from the orexin/hypocretin system, suggesting that this system contributes not only to the regulation of sleep, but to eye movement control as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号