首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 32-channel 3T receive-only phased-array head coil was developed for human brain imaging. The helmet-shaped array was designed to closely fit the head with individual overlapping circular elements arranged in patterns of hexagonal and pentagonal symmetry similar to that of a soccer ball. The signal-to-noise ratio (SNR) and noise amplification (g-factor) in accelerated imaging applications were quantitatively evaluated in phantom and human images and compared with commercially available head coils. The 32-channel coil showed SNR gains of up to 3.5-fold in the cortex and 1.4-fold in the corpus callosum compared to a (larger) commercial eight-channel head coil. The experimentally measured g-factor performance of the helmet array showed significant improvement compared to the eight-channel array (peak g-factor 59% and 26% of the eight-channel values for four- and fivefold acceleration). The performance of the arrays is demonstrated in high-resolution and highly accelerated brain images.  相似文献   

2.
Cryogenically cooled conventional surface coils are shown to provide significant signal-to-noise ratio (SNR) gains for MR micro imaging of tissue structure in vivo. Measurements are described which employ a simple, all-polyvinyl chloride (PVC) vacuum dewar capable of maintaining a bath of liquid nitrogen around the coil, within 5 mm of the tissue to be imaged. Images acquired in vivo at 64 MHz with a 2-cm diameter copper coil cooled to 77 K demonstrated a gain in SNR of approximately 2.7 +/- 0.3 relative to those obtained with the same coil at room temperature under otherwise identical conditions. This increase is consistent with the reduction in coil resistance and the minor contribution to overall resistance from the imaging object. The performance of the coil is illustrated with images from the human finger and rabbit eye and potential applications are discussed.  相似文献   

3.
A small, high-temperature superconducting (HTS) surface coil was used to improve the signal-to-noise ratio (SNR) for in vivo human skin microscopy at 1.5 T. The internal noise of the conventional copper coil limits the SNR for this application. Inductive measurements of the HTS coil parameters indicated that at 77 K its internal noise contributed about 4% of the total noise, and the predicted SNR gain was about 3.2-fold over that of a room-temperature copper coil. In vivo images of the human skin produced with the HTS coil showed highly resolved details and a 3.7-fold improvement in SNR over that obtained with the room-temperature copper coil. Magn Reson Med 45:376-382, 2001.  相似文献   

4.
We have built and tested a thin-film high temperature superconducting (HTS) surface coil for MRI at 0.064T. When placed as close as possible to a conductive sample, the 6.7-cm outer diameter HTS coil had a measured signal-to-noise ratio (SNR) 1.8; times higher than a room temperature copper coil of similar size and location. Our results predict that in some cases, SNR gains of about a factor of 2 can be attained in low-field MRI systems by substituting HTS surface coils for copper coils.  相似文献   

5.
PURPOSE: To develop and evaluate a hybrid phased array for internal auditory canal (IAC) imaging at 3.0 T. MATERIALS AND METHODS: A hybrid phased array was designed and built as two circular surface receive-only coils combined with a volume transmit-receive birdcage head coil for simultaneous image acquisition. Phantom and volunteer images were obtained to assess the coil performance. RESULTS: The phantom data show that significant signal-to-noise ratio (SNR) improvement was achieved in the region corresponding to the inner ear, i.e., by a factor of 2.5 compared to the standard head coil data. Volunteer IAC image quality was deemed superior as compared to images acquired at 3.0 T using a standard head coil. CONCLUSION: This hybrid array combined with three-dimensional fast spin-echo (FSE) acquisition resulted in improved high spatial resolution IAC imaging.  相似文献   

6.
PURPOSE: To evaluate the performance advantages of an 8-element phased array head coil (8 ch coil) over a conventional quadrature-type birdcage head coil (QD coil) with regard to the signal-to-noise ratio (SNR) and image uniformity in 3 Tesla magnetic resonance (MR) imaging. MATERIALS AND METHODS: We scanned a phantom filled with silicon oil using an 8 ch coil and a QD coil in a 3T MR imaging system and compared the SNR and image uniformity obtained from T(1)-weighted spin echo (SE) images and T(2)-weighted fast SE images between the 2 coils. We also visually evaluated images from 4 healthy volunteers. RESULTS: The SNR with the 8 ch coil was approximately twice that with the QD coil in the region of interest (ROI), which was set as 75% of the area in the center of the phantom images. With regard to the spatial variation of sensitivity, the SNR with the 8 ch coil was lower at the center of the images than at the periphery, whereas the SNR with the QD coil exhibited an inverse pattern. At the center of the images with the 8 ch coil, the SNR was somewhat lower, and that distribution was relatively flat compared to that in the periphery. Image uniformity varied less with the 8 ch coil than with the QD coil on both imaging sequences. CONCLUSION: The 8 ch phased array coil was useful for obtaining high quality 3T images because of its higher SNR and improved image uniformity than those obtained with conventional quadrature-type birdcage head coil.  相似文献   

7.
RATIONALE AND OBJECTIVES: The aim of this study was to compare the performance of a dedicated double breast coil for MR imaging and intervention with a standard diagnostic double breast coil. MATERIALS AND METHODS: Signal-to-noise ratios (SNRs) were determined for both coils by using a water phantom. Fourteen patients were examined, 11 underwent preoperative hookwire localization, two were biopsied, and one received diagnostic imaging. Breast images were acquired in three patients with both coils and were visually compared. Harvested specimen from the biopsies and surgeries following hookwire localization were histopathologically evaluated. RESULTS: SNR was superior with the interventional coil in the posterior (axillary) part of the imaging volume and inferior in the anterior part compared with the standard coil. Anatomic MR breast images were of similar diagnostic quality. For the two biopsy procedures the trocar was correctly placed in front of the suspicious lesion. Hookwires were correctly located inside the lesion in nine patients and in contact with the lesion in one patient. In one patient a 2 mm distance between the lesion and the wire was observed. CONCLUSIONS: Diagnostic imaging followed by subsequent MR-guided intervention is possible within a single session by using the dedicated interventional coil. The correct final position of the hookwires demonstrates the precision of the MR guided localization procedure.  相似文献   

8.
The benefits and challenges of highly parallel array coils for head imaging were investigated through the development of a 3T receive‐only phased‐array head coil with 96 receive elements constructed on a close‐fitting helmet‐shaped former. We evaluated several designs for the coil elements and matching circuitry, with particular attention to sources of signal‐to‐noise ratio (SNR) loss, including various sources of coil loading and coupling between the array elements. The SNR and noise amplification (g‐factor) in accelerated imaging were quantitatively evaluated in phantom and human imaging and compared to a 32‐channel array built on an identical helmet‐shaped former and to a larger commercial 12‐channel head coil. The 96‐channel coil provided substantial SNR gains in the distal cortex compared to the 12‐ and 32‐channel coils. The central SNR for the 96‐channel coil was similar to the 32‐channel coil for optimum SNR combination and 20% lower for root‐sum‐of‐squares combination. There was a significant reduction in the maximum g‐factor for 96 channels compared to 32; for example, the 96‐channel maximum g‐factor was 65% of the 32‐channel value for acceleration rate 4. The performance of the array is demonstrated in highly accelerated brain images. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Array coils can potentially offer increased signal-to-noise ratio (SNR) over standard coils adjacent to the array elements, while preserving the SNR at the center of the volume. The SNR advantage should theoretically increase with the number of array elements. Parallel acquisition techniques (PAT), on the other hand, can benefit acquisition times or spatial resolution at a cost to SNR as well as image quality. This study examines the question of whether SNR and image quality are still acceptable with two different array coils (four and eight channels) in conjunction with PAT when compared to standard imaging with a volume coil. All imaging was on a 1.5 T MR scanner. T2-weighted, FLAIR, diffusion-weighted, and time of flight (TOF) angiography images were performed with and without PAT in a phantom and in ten healthy volunteers. The phantom measurements demonstrated superior SNR for the eight-channel coil versus the four-channel and standard head coils. Using the eight-channel head coil for in vivo imaging, image quality with PAT (acceleration factor=2) was scored similar to images without PAT using the volume coil. The four-channel head coil suffered from inhomogeneity, lower SNR and poorer image quality when using PAT compared to standard imaging with the volume head coil. Both the in vivo and the phantom results indicate that the eight-channel head coil should be used for the highest quality brain images; this coil can be combined with PAT sequences for shorter acquisition time without a significant decrease in image quality relative to a volume coil without PAT.  相似文献   

10.
A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a "clam-shell" geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24-channel and 32-channel coils in routine use for cardiac imaging. The in vivo measurements with the 128-channel coil resulted in SNR gains compared to the 24-channel coil (up to 2.2-fold in the apex). The 128- and 32-channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G-factor values were up to seven times better for a seven-fold acceleration factor (R=7) compared to the 24-channel coil and up to two-fold improved compared to the 32-channel coil. The ability of the 128-channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven-fold (R=7) in a single spatial dimension.  相似文献   

11.
PURPOSE: To evaluate the ability of a custom-built coil design to provide improved signal-to-noise ratio (SNR) and less signal drop with increasing depth at the carotid artery. MATERIALS AND METHODS: Phased-array surface coils can provide a high SNR to image the carotid vessel wall. However, given the required field-of-view (FOV) and penetration depth, these coils show either a fast signal drop with increasing depth or a moderate SNR at increased coil size. A quadrature surface coil (a butterfly coil in conjunction with a linear single-loop coil) was compared with a phased-array coil in phantom and human studies. RESULTS: The phantom studies showed that the quadrature coil has better SNR over the required FOV than a standard phased-array coil (26% at 3 cm depth). CONCLUSION: The quadrature coil enables better image quality to be achieved.  相似文献   

12.
To overcome some of the limitations of an implantable coil, including its invasive nature and limited spatial coverage, a three‐element phased‐array coil is described for high‐resolution magnetic resonance imaging (MRI) of rat spinal cord. This coil allows imaging both thoracic and cervical segments of rat spinal cord. In the current design, coupling between the nearest neighbors was minimized by overlapping the coil elements. A simple capacitive network was used for decoupling the next neighbor elements. The dimensions of individual coils in the array were determined based on the signal‐to‐noise ratio (SNR) measurements performed on a phantom with three different surface coils. SNR measurements on a phantom demonstrated higher SNR for the phased array coil relative to two different volume coils. In vivo images acquired on rat spinal cord with our coil demonstrated excellent gray and white matter contrast. To evaluate the performance of the phased array coil under parallel imaging, g‐factor maps were obtained for acceleration factors of 2 and 3. These simulations indicate that parallel imaging with an acceleration factor of 2 would be possible without significant image reconstruction–related noise amplifications. Magn Reson Med 60:1498–1505, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
The use of a high-temperature superconducting probe for in vivo magnetic resonance microscopy at 2 T is described. To evaluate the performance of the probe, a series of SNR comparisons are carried out. The SNR increased by a factor of 3.7 compared with an equivalent copper coil. Quantitative measures of the SNR gain are in good agreement with theoretical predictions. A number of issues that are unique to the application of HTS coils are examined, including the difficulty in obtaining homogenous excitation without degrading the SNR of the probe. The use of the HTS probe in transmit-receive mode is simple to implement but results in nonuniform excitation. The effect of using the probe in this mode of operation on the T1 and T2 contrast is investigated. Methods for improving homogeneity are explored, such as employing a transmit volume coil. It is found that the cost of using an external transmit coil is an increased probe noise temperature and a reduced SNR by approximately 30%. Other important aspects of the probe are considered, including the effect of temperature on probe stability. Three-dimensional in vivo imaging sets are acquired to assess the stability of the probe for long scans. High-resolution images of the rat brain demonstrate the utility of the probe for microscopy applications.  相似文献   

14.
An intravenous (iv) radiofrequency (RF) coil is proposed as a means of obtaining high resolution images of artery wall. The anatomic positioning of peripheral artery/vein pairs was investigated and a phantom mimicking the iliac artery/vein pair was constructed. Imaging results, comparing iv coils with external coils, demonstrated a potential 15- to 20-fold increase in signal-to-noise ratio (SNR) with iv coils. The SNR benefit was measured over a cylindrical volume, adjacent to the coil, and typical of artery position. Prototype expandable iv coils were constructed of Cu-Be loops and introduced via an 8-Fr catheter. The effects of local and remote iv coil tuning were investigated and local tuning was found to provide significant SNR benefits. The in vivo performance of iv RF coils was demonstrated in a porcine animal model. The iv coils were found to be an excellent alternative to intraarterial coils.  相似文献   

15.
RATIONALE AND OBJECTIVES: The aim of this report is to investigate the magnetic field dependence of the signal-to-noise ratio (SNR) for carotid vessel wall magnetic resonance imaging using phased-array (PA) surface coils by comparing images obtained at 1.5 and 3 Tesla (T) and determine the extent to which the improved SNR at the higher field can be traded for improved spatial resolution. MATERIALS AND METHODS: Two pairs of dual-element PA coils were constructed for operation at the two field strengths. The individual elements of each PA were matched to 50 Omega impedance on the neck and tuned at the respective frequencies. The coils were evaluated on a cylindrical phantom positioned with its axis parallel to the main field and the coils placed on either side of the phantom parallel to the sagittal plane. In vivo magnetic resonance images of the carotid arteries were obtained in five subjects at both field strengths with a fast spin-echo double-inversion black-blood pulse sequence with fat saturation. SNR was measured at both field strengths by using standard techniques. RESULTS: At a depth corresponding to the average location of the carotid arteries in the study subjects, mean phantom SNR for the two coils was higher at 3 T by a factor of 2.5. The greater than linear increase is caused by only partial coil loading of these relatively small coils. The practically achievable average SNR gain in vivo was 2.1. The lower in vivo SNR gain is attributed to a reduction in T2 and prolongation of T1 at the higher field strength and, to a lesser extent, the requirement for a decreased refocusing pulse flip angle to operate within specific absorption rate limits. The superior SNR at 3 T appears to provide considerably improved vessel-wall delineation. CONCLUSIONS: Carotid artery vessel-wall magnetic resonance imaging using PA surface coils provides a considerable increase in SNR when field strength is increased from 1.5 to 3 T. This increase can be traded for enhanced in-plane resolution.  相似文献   

16.
Specific coil design for SENSE: a six-element cardiac array.   总被引:10,自引:0,他引:10  
In sensitivity encoding (SENSE), the effects of inhomogeneous spatial sensitivity of surface coils are utilized for signal localization in addition to common Fourier encoding using magnetic field gradients. Unlike standard Fourier MRI, SENSE images exhibit an inhomogeneous noise distribution, which crucially depends on the geometrical sensitivity relations of the coils used. Thus, for optimum signal-to-noise-ratio (SNR) and noise homogeneity, specialized coil configurations are called for. In this article we study the implications of SENSE imaging for coil layout by means of simulations and imaging experiments in a phantom and in vivo. New, specific design principles are identified. For SENSE imaging, the elements of a coil array should be smaller than for common phased-array imaging. Furthermore, adjacent coil elements should not overlap. Based on the findings of initial investigations, a configuration of six coils was designed and built specifically for cardiac applications. The in vivo evaluation of this array showed a considerable SNR increase in SENSE images, as compared with a conventional array. Magn Reson Med 45:495-504, 2001.  相似文献   

17.
Signal‐to‐noise ratio (SNR) is a major challenge to sodium magnetic resonance imaging. Phased array coils have been shown significantly improving SNR in proton imaging over volume coils. This study investigates SNR advantage of a 15‐channel array head coil (birdcage volume coil for transmit/receive and 15‐channel array insert for receive‐only) in sodium imaging at 7 T. Phantoms and healthy human brains were scanned on a whole‐body 7 T magnetic resonance imaging scanner using a customer‐developed pulse sequence with the twisted projection imaging trajectory. Noise‐only images were acquired with blanked radiofrequency excitations for noise measurement on a pixel basis. SNR was calculated on the root of sum‐of‐squares images. When compared with the volume coil, the 15‐channel array produced SNR more than doubled at the periphery and slightly increased at the center of the phantoms and human brains. Decorrelation of noise across channels of the array coil extended the SNR‐doubled region into deep area of the brain. The spatial modulation of element sensitivities on the sum‐of‐squares combined image was removed by performing self‐calibrated sensitivity encoding parallel image reconstruction and uniform image intensity across entire field of view was attained. The 15‐channel array coil is an efficient tool to substantially improve SNR in sodium imaging on human brain. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
PURPOSE: To compare the performance of the phased-array coil (PAC) with that of the single-loop coil (SLC) in magnetic resonance (MR) imaging of the breast. MATERIALS AND METHODS: MR imaging was performed with a 1.5T MR imager. A phantom study was performed with the right element of the two coils to obtain their signal-to-noise ratio (SNR). MR images of the breasts of 12 patients with breast lesions were obtained with the PAC and SLC, and these images were reviewed by five readers in a blind evaluation employing a scoring system for assessing overall image quality. RESULTS: In the phantom study, the SLC exhibited a SNR 1.82 times higher than that of the PAC at the center of the coil; however, the SLC exhibited an inhomogeneous sensitivity profile and its SNR varied with the distance from the center of the coil in the horizontal and vertical directions. In most of the 12 patients, the MR images obtained with the PAC showed more noise than did those obtained with the SLC, and the PAC obtained lower scores than the SLC in the assessment of overall image quality; however, the difference was significant (p < 0.05) only in coronal imaging. On the other hand, the uniformity of fat saturation in the MR images obtained with the PAC was judged to be significantly superior to that obtained with the SLC (p < 0.05). CONCLUSION: Compared with the SLC, the PAC exhibited a lower SNR and was less advantageous at depicting the breast. However, the PAC provided more homogeneous fat saturation and might be useful for reducing artifacts.  相似文献   

19.
Cardiac imaging at 4 Tesla.   总被引:1,自引:0,他引:1  
Although higher magnetic field strength is a means to increase SNR in MRI, cardiac imaging has been difficult at high fields due to decreased RF penetration. Using a tailored cardiac coil constructed of two transmit surface coils with a four-element multicoil for signal reception, the authors demonstrate high-quality heart images acquired on a 4-T scanner. These images show an increase in SNR of approximately 2.5-fold over imaging at 1.5 T. This improvement in image quality can be used to increase in-plane resolution, reduce slice thickness, or reduce total scan time. Magn Reson Med 45:176-178, 2001.  相似文献   

20.
A study was performed to determine whether an implanted, inductively coupled nuclear magnetic resonance (NMR) imaging spine coil could provide a significant gain in signal-to-noise ratio (SNR) on images of the spinal cord relative to the SNR of optimized surface coils. Implanted coils were surgically affixed to the upper lumbar spine (first lumbar through third lumbar vertebrae) in a total of four adult cats. The implanted coil was inductively coupled to an external 12 × 12 cm square surface coil that was mounted on a 14-cm diameter Plexiglas® cradle (Townsend Industries, Des Moines, IA). Two similar cradles were prepared with transmit-only 12 × 12 cm surface coils and either a receive-only 6 × 6 cm square surface coil or a receive-only quadrature coil pair (two 4 × 6 cm coils overlapped slightly to minimize their mutual inductance) with 'the same surface area (6 × 6 cm). A total of five single-slice, T1-weighted spin-echo images (TR = 500 ms, TE = 30 ms, 4-mm slice thickness) were acquired from a 1-liter saline phantom and from the second lumbar spinal level in an adult cat with a normal, uninjured spinal cord. On the spinal cord images, the quadrature coil exhibited a factor of 1.65 increase in SNR relative to the single-turn surface coil, whereas the implanted coil achieved a factor of 2.19 increase in SNR. The improved SNR for the quadrature and implanted coils was observed as a dramatic improvement in the clarity of the images. The high SNR available with the implanted coils allows the acquisition of higher resolution NMR images and opens up the possibility of measuring localized spectroscopy in vivo within the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号