首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells utilize various sets of Toll-like receptors (TLR) or cytosolic sensors to detect pathogens and evoke immune responses. In patients with hepatitis C virus (HCV) infection, a higher prevalence of various infectious diseases is reported; suggesting that innate immunity against pathogens is impaired. The aim of this study was to clarify whether the TLR and retinoic acid inducible gene-I (RIG-I) system in myeloid dendritic cells is preserved or not in chronic HCV infection. The expression of TLRs, RIG-I and its relatives were compared in myeloid dendritic cells between 39 patients and 52 healthy volunteers. The induction of type-I interferon (IFN) and inflammatory cytokines was examined in response to agonists for TLR2 (palmitoyl-3-cysteine-serine-lysine-4), TLR3/RIG-I (polyinosine-polycytidylic acid) or TLR4 (lipopolysaccharide). The relative expressions of TLR2, TLR4, RIG-I, and LGP2 from the patients were significantly higher than those from the volunteers, whereas TLR3 and MDA-5 expressions did not differ. In search for factors regulating TLR/RIG-I expression, it was shown that IFN-alpha, polyinosine-polycytidylic acid and lipopolysaccharide induced TLR3, TLR4 and RIG-I, but TNF-alpha, HCV core or HCV non-structural proteins did not. For the functional analyses, myeloid dendritic cells from the patients induced significantly less amounts of IFN-beta, TNF-alpha and IL-12p70 in response to polyinosine-polycytidylic acid or lipopolysaccharide. It is noteworthy that the expression of TRIF and TRAF6, which are essential adaptor molecules transmitting TLR3 or TLR4-dependent signals, is reduced in the patients. Thus, innate cytokine responses in myeloid dendritic cells are impaired regardless of enhanced expressions of TLR2, TLR4, and RIG-I in HCV infection.  相似文献   

2.
Despite the availability of measles vaccines, infants continue to die from measles. Measles vaccine responses vary between individuals, and poor immunogenicity is likely to preclude protection against measles. CD46 is a ubiquitously expressed specific receptor for vaccine strains of measles virus. CD46 polymorphisms have not been functionally investigated but may affect CD46 protein expression, which in turn may mediate primary measles antibody responses in infants. In a cohort of children aged 12 to 14 months from Perth, Australia (n = 137), after their first dose of measles-mumps-rubella (MMR) vaccine, CD46 polymorphisms were genotyped, and postvaccination measles IgG and CD46 protein expression before and after measles lysate stimulation of cells were measured. Three CD46 variants (rs7144, rs11118580, and rs2724384) were significantly associated with measles virus-specific IgG levels (P = 0.008, P = 0.026, and P = 0.018, respectively). There were significant differences between CD46 rs7144 genotypes and CD46 protein expression on T cells, as well as the downregulation of CD46 and T-cell frequency after measles lysate stimulation. We show that CD46 polymorphisms were associated with primary measles antibody responses in naive infants. We also report the first association of a measles virus receptor polymorphism with functional effects on the receptor, suggesting a possible mechanism through which antibody responses are altered. Elucidating all of the interconnecting genetic factors that alter primary measles vaccine responses may be important for identifying children at risk of poor immunogenicity or vaccine failure and for the future design of vaccine strategies to help these children.  相似文献   

3.
BACKGROUND: Toll-like receptor (TLR) agonists are widely used as adjuvants in specific immune therapy protocols for patients with atopic disposition. Monocyte-derived dendritic cells (mDCs) are thought to be important target cells for these compounds. OBJECTIVES: To compare surface markers, TLR expression, TLR functionality after ligand stimulation, and genetic polymorphisms in the TLR 2-, 3-, and 4-genes in mDCs from atopic vs. non-atopic patients. METHODS: mDCs from highly atopic individuals (total serum IgE >1000 IU/mL) and healthy control persons (total serum IgE <75 IU/mL) were screened for TLR 1-10 expression by real-time PCR. Receptor function was analysed by IL-12 and TNF-alpha production after incubation with the respective ligands peptidoglycan (PGN) (TLR 2), polyriboinosinic-polyribocytidylic acid (poly IC) (TLR 3), lipopolysaccharide (LPS) (TLR 4), flagellin (TLR 5), and CpG-DNA/non-CpG-DNA (TLR 9). Haplotype-tagging single-nucleotide polymorphisms of the TLR 2-, 3-, and 4- genes were analysed for genetic associations. RESULTS: mDC from atopic patients showed a very similar pattern of TLR expression as controls with strong expression of TLR 2, 4, 5, 6, and 8, moderate expression of TLR 1 and 3, and no or very low expression of TLR 7, 9, and 10. After stimulation with TLR ligands, mDCs from atopic patients acquired a mature phenotype with a tendency towards a higher up-regulation of the co-stimulatory molecules CD80, CD83, and CD86 than control mDCs. IL-12 and TNF-alpha were produced at a similar level in both groups of DCs. Among the different TLR agonists, poly IC showed the strongest activation of DCs, followed by LPS, PGN, and flagellin. This was paralleled by a strong functional expression of protein kinase R and retinoid-inducible gene-I (RIG-I), two additional poly IC-sensing receptors in both groups. Genetic analysis of single-nucleotide polymorphisms in the TLR 2-, 3-, and 4-genes in both groups revealed no major allele or genotype differences. CONCLUSIONS: mDC from atopic patients are not restricted in their response to TLR-ligands. TLR agonists seem to be suitable to induce pro-inflammatory immune responses and maturation in mDCs from highly atopic individuals and represent reasonable adjuvants for specific immunotherapy reagents.  相似文献   

4.
We have investigated whether poly(I:C) Toll-like receptor 3 (TLR3) and resiquimod Toll-like receptor 7 (TLR7) agonists can serve as vaccine adjuvants and promote the efficiency of therapeutic DNA vaccination against tumors expressing the human papilloma virus 16 (HPV-16) E7 protein. For this purpose, C57BL/6 mice were inoculated with 2 × 105 TC-1 cells, and they were then immunized with HPV-16 E7 DNA vaccine alone or with 50 μg of resiquimod or poly(I:C) individually. We found that poly(I:C) and resiquimod could induce more antigen-specific lymphocyte proliferation and cytolytic activity compared to vaccination with E7 DNA alone. While E7 DNA had no significant inhibitory effect on tumor growth, co-administration of poly(I:C) and resiquimod with E7 DNA induced significant tumor regression. Peripheral and local cytokine assays demonstrated that co-administration of poly(I:C) and resiquimod with E7 DNA induced circulating antigen-specific IFN-γ and nonspecific intratumoral IL-12. TLR3 and TLR7 agonists can be used to enhance the immune response to DNA vaccine immunogens. Taken together, these data indicate that combined vaccination with DNA encoding HPV-16 E7 plus TLR agonists provides a strategy for improving the efficacy of a vaccine as a possible immunotherapeutic strategy for cervical cancer.  相似文献   

5.
6.
Cytosolic RIG-I-like helicases (RLR) are PRRs involved in type I IFN production and antiviral immunity. This study focuses to the comparison of the expression, function, and signaling cascades associated to RLR in the previously identified CD14(-)DC-SIGN(+)PPARγ(low)CD1a(+) and CD14(low)DC-SIGN(+)PPARγ(high)CD1a(-) human moDC subsets. Our results revealed that the expression of RLR genes and proteins as well as the activity of the coupled signaling pathways are significantly higher in the CD1a(+) subset than in its phenotypically and functionally distinct counterpart. Specific activation of RLR in moDCs by poly(I:C) or influenza virus was shown to induce the secretion of IFN-β via IRF3, whereas induction of proinflammatory cytokine responses were predominantly controlled by TLR3. The requirement of RLR-mediated signaling in CD1a(+) moDCs for priming na?ve CD8(+) T lymphocytes and inducing influenza virus-specific cellular immune responses was confirmed by RIG-I/MDA5 silencing, which abrogated these functions. Our results demonstrate the subset-specific activation of RLR and the underlying mechanisms behind its cytokine secretion profile and identify CD1a(+) moDCs as an inflammatory subset with specialized functional activities. We also provide evidence that this migratory DC subset can be detected in human tonsil and reactive LNs.  相似文献   

7.
8.
Pathogen recognition receptors are essential for antiviral host immune responses. These specialized receptors detect conserved viral compounds and induce type I interferons (IFN) and pro-inflammatory cytokines. Here we evaluated the contribution of RIG-I, MDA-5 and TLR3 to the recognition of classical swine fever (CSFV), foot-and-mouth disease virus (FMDV), vesicular stomatitis virus (VSV) and influenza A virus (IAV) to IFN-β responses in the porcine epithelial cell line PK-15. To this end, we identified porcine gene specific small interfering RNA sequences and employed a lentivirus (LV)-based system to deliver the corresponding short hairpin RNA. With this, gene knockdown cell lines were created and tested with regard to the knockdown levels over time and following IFN-β stimulation. During several passages of the transduced cells, the expression of both the reporter gene eGFP and the reduced RNA levels of the targeted gene were stable, although the latter was relatively variable. IFN-β induced IFN-responsive genes such as RIG-I, but the levels of the silenced cell line remained reduced compared to the control cells. Based on virus-induced IFN-β mRNA responses, our results indicate that in PK-15 cells FMDV-detection is solely mediated by MDA-5, whereas VSV and IAV are mainly detected by RIG-I with a minor contribution of MDA-5, and CSFV is sensed by MDA-5, RIG-I and TLR3.  相似文献   

9.
10.
Retinoic acid-inducible gene I (RIG-I) is a cytosolic pattern-recognition receptor that recognizes viruses and triggers anti-viral immune responses. Activation of intracellular RIG-I signalling is mediated through interferon-β (IFN-β) promoter stimulator-1 (IPS-1), an adaptor of RIG-I, which induces IFN regulatory factor (IRF) 3 activation and type I IFN expression. The phosphatidylinositol-3-kinase (PI3K) and Akt pathway is activated in host immune cells upon viral infection. However, the mechanism as to how they work in RIG-I signalling has not been fully elucidated. Therefore, we investigated the role of PI3K and Akt in the regulation of RIG-I-mediated IRF3 activation and type I IFN expression in macrophages. Our results show that Sendai virus infection, which is recognized by RIG-I, led to IRF3 activation and IFN-β expression and these responses were attenuated by the PI3K inhibitor (LY294002) and an Akt dominant-negative mutant in the macrophage cell line(RAW264.7). IRF3 phosphorylation and dimerization as well as IFN-β expression induced by a synthetic RIG-I agonist, short poly(I:C), were suppressed by LY294002 or siRNA-Akt in bone marrow-derived macrophages. Suppression of PI3K and Akt using a dominant-negative mutant and siRNA knockdown resulted in attenuation of IRF3 activation and IFN-β expression induced by RIG-I itself or its adaptor, IPS-1. Association of Akt with IPS-1 increased with short poly(I:C) stimulation and required the pleckstrin homology domain of Akt and caspase-recruitment domain in IPS-1. Collectively, our results show that PI3K and Akt are required downstream of IPS-1 for RIG-I-mediated anti-viral immune responses. The results describe a novel, interactive relationship between RIG-I downstream signalling molecules resulting in efficient anti-viral immunity.  相似文献   

11.
Toll-like receptors (TLRs) are pattern recognition receptors of the innate immune system for various conserved pathogen-associated molecular motifs. Chicken TLR3 and TLR21 (avian equivalent to mammalian TLR9) recognize poly I:C (double-stranded RNA) and CpG-ODN (a CpG-motif containing oligodeoxydinucleotide), respectively. Interaction between TLR3 and TLR21 agonists poly I:C and CpG-ODN has been reported to synergize in expression of proinflammatory cytokines and chemokines and the production of nitric oxide in chicken monocytes. However, the interaction between poly I:C and CpG-ODN on the expression of interferons (IFNs) and Th1/Th2 cytokines remains unknown. The objective of the present study was to investigate the effect of the interaction between poly I:C and CpG-ODN on the mRNA expression levels of IFN-α and IFN-β, Th1 cytokines IFN-γ and IL-12, Th2 cytokine IL-4, and regulatory IL-10 in chicken monocytes. When stimulated with either agonist alone, CpG-ODN significantly up-regulated the expression of INF-γ, IL-10, and IL-12p40, but not IFN-α and IFN-β; whereas poly I:C induced the expression of INF-γ, IFN-α, IFN-β, and IL-10; but not IL-12p40. However, stimulation with a combinatory CpG-ODN and poly I:C further synergistically increased the expression of IFN-γ and IL-10 mRNA. Our results provide strong evidence supporting the critical role of TLR3 and TLR21 in avian innate immunity against both viral and bacterial infections; and the synergistic interaction between the TLR3 and TLR21 pathways produces a stronger Th1-biased immune response in chicken monocytes. Our result also suggest a potential use of poly I:C and CpG-ODN together as a more efficient adjuvant for poultry vaccine development.  相似文献   

12.
13.
14.
Mary J. Manuse 《Virology》2010,397(1):231-389
Here we address the role of RIG-I and TLR3 in differential cytokine responses against Simian Virus 5 (SV5) and two distinct cytokine inducing SV5 mutants. IFN-beta and IL-6 secretion was induced by infection with P/V-CPI-, an SV5 mutant with P/V substitutions, and were reduced by either siRNA-mediated knockdown of RIG-I expression or by expression of a dsRNA-binding protein. TLR3 overexpression did not alter cytokine secretion induced by P/V-CPI- or by Le-(U5C, A14G), an SV5 promoter mutant. TLR3 signaling by addition of exogenously added dsRNA was not blocked by WT SV5 or either SV5 mutant. Unexpectedly, TLR3 activation in infected cells led to enhanced IL-8 secretion, which correlated with increased RIG-I expression. Dominant negative RIG-I and TRIF supported a model whereby TLR3 activation upregulates RIG-I expression and in turn hypersensitizes cells to RIG-I-mediated cytokine secretion. Implications for crosstalk between different innate immunity pathways in mounting antiviral responses to paramyxoviruses are discussed.  相似文献   

15.
Lu X  Pan J  Tao J  Guo D 《Virus genes》2011,42(1):37-45
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a highly basic nucleocapsid (N) protein which can inhibit the synthesis of type I interferon (IFN), but the molecular mechanism of this antagonism remains to be identified. In this study, we demonstrated that the N protein of SARS-CoV could inhibit IFN-beta (IFN-β) induced by poly(I:C) or Sendai virus. However, we found that N protein could not inhibit IFN-β production induced by overexpression of downstream signaling molecules of two important IFN-β induction pathways, toll-like receptor 3 (TLR3)- and RIG-I-like receptors (RLR)-dependent pathways. These results indicate that SARS-CoV N protein targets the initial step, probably the cellular PRRs (pattern recognition receptors)-RNAs-recognition step in the innate immune pathways, to suppress IFN expression responses. In addition, co-immunoprecipitation assays revealed that N protein did not interact with RIG-I or MDA5. Further, an assay using truncated mutants revealed that the C-terminal domain of N protein was critical for its antagonism of IFN induction, and the N deletion mutant impaired for RNA-binding almost completely lost the IFN-β antagonist activity. These results contribute to our further understanding of the pathogenesis of SARS-CoV.  相似文献   

16.
17.
Our objective was to replicate previously reported associations between cytokine and cytokine receptor SNPs and humoral and CMI (cell-mediated immune) responses to measles vaccine. All subjects (n=758) received two doses of MMR (measles/mumps/rubella) vaccine. From these subjects, candidate cytokine and cytokine receptor SNPs were genotyped and analyzed in 29-30 subjects falling into one of four "extreme" humoral (Ab(high/low)) and CMI (CMI(high/low)) response quadrants. Associations between seven SNPs (out of 11 in the discovery study) and measles-specific neutralizing antibody levels and IFN-γ ELISPOT responses were evaluated using chi-square tests. We found one replicated association for SNP rs372889 in the IL12RB1 gene (P=0.03 for Ab(high)CMI(high) vs. Ab(low)CMI(low)). Our findings demonstrate the importance of replicating genotypic-phenotypic associations, which can be achieved using immunophenotypic extremes and smaller sample sizes. We speculate that IL12RB1 polymorphisms may affect IL-12 and IL-23 binding and downstream effects, which are critical cytokines in the CMI response to measles vaccine.  相似文献   

18.
BACKGROUND: Toll-like receptor (TLR) molecules play a critical role in directing the course of acquired immunity, including that associated with allergic disease, by recognizing specific microbial products that activate immune cells for effector functions. OBJECTIVE: We investigated whether human basophils express 2 such molecules (TLR2 and TLR4), and assessed whether putative ligands for these receptors activate nuclear factor kappaB (NFkappaB) and modulate mediator release and cytokine secretion either alone or in response to stimulation. METHODS: Toll-like receptor expression was assessed by using RT-PCR and flow cytometry. Immunoblotting detected nuclear NFkappaB. Automated fluorometry, RIA, and ELISA detected concurrent changes in histamine, leukotriene C 4 , and cytokine, respectively, after culture with specific ligands. RESULTS: mRNA and protein for TLR2 and TLR4 were detected in basophils. However, in assessing nuclear localization of NFkappaB as a measure of functional receptor responses, basophils selectively reacted only to peptidoglycan, a TLR2 ligand, and not to LPS, a TLR4 ligand. Likewise, basophils secreted both IL-4 and IL-13 in direct response to peptidoglycan but not to LPS. Although neither ligand induced histamine or leukotriene C 4 release, several TLR2-specific ligands augmented the secretion of these mediators (and cytokine) in response to IgE-dependent activation and of IL-13 in response to IgE-independent stimulation. Finally, a selective inhibitor of NFkappaB did not prevent these enhancing effects mediated by TLR2 ligands. CONCLUSION: These data suggest that innate immune responses mediated through TLR2 play a role in augmenting allergic reactions, in part by modulating basophil cytokine secretion and mediator release independently of NFkappaB activation.  相似文献   

19.
Toll-like receptors (TLR) are critical mediators of the immune response to pathogens and human polymorphisms in this gene family regulate inflammatory pathways and are associated with susceptibility to infection. Lipopeptides are present in a wide variety of microbes and stimulate immune responses through TLR1/2 or TLR2/6 heterodimers. It is not currently known whether polymorphisms in TLR1 regulate the innate immune response. We stimulated human whole blood with triacylated lipopeptide, a ligand for TLR1/2 heterodimers, and found substantial inter-individual variation in the immune response. We sequenced the coding region of TLR1 and found a non-synonymous polymorphism, I602S (base pair T1805G), that regulated signalling. In comparison to TLR1_602S, the 602I variant mediated substantially greater basal and lipopeptide-induced NF-kappaB signalling in transfected HEK293 cells. These signalling differences among TLR1 variants were also found with stimulation by extracts of Mycobacterium tuberculosis. Furthermore, individuals with the 602II genotype produced substantially more IL-6 than those with the 602SS variant in a lipopeptide-stimulated whole-blood cytokine assay. Together, these observations demonstrate that variation in the inflammatory response to bacterial lipopeptides is regulated by a common TLR1 transmembrane domain polymorphism that could potentially impact the innate immune response and clinical susceptibility to a wide spectrum of pathogens.  相似文献   

20.
Hepatitis C virus (HCV) infection is frequently complicated by glomerulonephritis with immune complexes containing viral RNA. We examined the potential influence of Toll-like receptors (TLRs), specifically TLR3 recognition of viral dsRNA exemplified by polyriboinosinic:polyribocytidylic acid [poly(I:C) RNA]. Normal human kidney stained positive for TLR3 on mesangial cells (MCs), vascular smooth muscle cells, and collecting duct epithelium. Cultured MCs have low TLR3 mRNA levels with predominant intracellular protein localization, which was increased by tumor necrosis factor-alpha, interleukin (IL)-1beta, interferon (IFN)-gamma, and the TLR3 ligand poly(I:C) RNA. Poly(I:C) RNA stimulation of MCs increased mRNA and protein synthesis of IL-6, IL-1beta, M-CSF, IL-8/CXCL8, RANTES/CCL5, MCP-1/CCL2, and ICAM-I; it also increased anti-proliferative and proapoptotic effects, the latter of which was decreased by inhibiting caspase-8. In microdissected glomeruli of normal and non-HCV membranoproliferative glomerulonephritis biopsies, TLR3 mRNA expression was low. In contrast TLR3 mRNA expression was significantly increased in hepatitis C-positive glomerulonephritis and was associated with enhanced mRNA for RANTES/CCL5 and MCP-1/CCL2. We hypothesize that immune complexes containing viral RNA activate mesangial TLR3 during HCV infection, thereby contributing to chemokine/cytokine release and effecting proliferation and apoptosis. Thus, TLR3 expression on renal cells, and especially MCs, may establish a link between viral infections and glomerular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号