首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Isoliquiritigenin (ISL), as a natural flavonoid, has been proven to have therapeutic potential for corneal neovascularization (CNV) treatment; however, its therapeutic use is restricted due to its poor aqueous solubility and limited bioavailability. To overcome these limitations, a novel ISL-loaded nanoemulsion (ISL-NE) was designed for inhibiting CNV in this study. ISL-NE formulation was composed of propylene glycol dicaprylate (PGD), Cremophor® EL (EL35), polyethylene glycol 400 (PEG 400) and adding water with sodium hyaluronate, its particle size was 34.56 ± 0.80 nm with a low polydispersity index of less than 0.05, which suggested a narrow size distribution. The results demonstrated that ISL-NE released higher and permeated more drug than ISL suspension (ISL-Susp) in in vitro drug release and ex vivo corneal permeation study. ISL-NE showed no cytotoxicity in human corneal epithelial cells toxicity study, which was consistent with the result of ocular irritation study in rabbit eyes. ISL-NE had bioavailability 5.76-fold, 7.80-fold and 2.13-fold higher than ISL-Sups in tears, cornea and aqueous humor after a single dose of ISL-NE, respectively. Furthermore, the efficacy of ISL-NE treatment (0.2% ISL) was comparable to that of dexamethasone treatment (0.025%) in the inhibition of CNV in mice model. Enzyme-linked immunosorbent assay (ELISA) showed that the expressions of corneal vascular endothelial growth factor (VEGF-A) and matrix metalloproteinase (MMP-2) were decreased. In conclusion, the ISL-NE demonstrated excellent physicochemical properties, good tolerance, and enhanced ocular bioavailability. It could be a promising, safe, and effective treatment for CNV.  相似文献   

2.
3.
Crotamiton (CRT) is a commonly approved drug prescribed for the scabies treatment in many countries across the globe. However, poor aqueous solubility and low bioavailability, and side effects restrict its use. To avoid such issues, an appropriate carrier system is necessary which can address the aforementioned challenges for attaining enhanced biopharmaceutical attributes. The current study intends to provide a detailed account on the development and evaluation of CRT-loaded microemulsion (ME) hydrogel formulation containing tea tree oil (TTO) for improved drug delivery for scabies treatment in a safe and effective manner. Pseudo-ternary phase diagrams were constructed with TTO as the oily phase, and Cremophor®EL was used as the surfactant in a mass ratio 2:1 with co-surfactants (mixture of phospholipid 90G and Transcutol®P), and aqueous solution as the external phase. The optimized drug-loaded ME formulation was evaluated for skin penetration, retention, compliance, and dermatokinetics. The nonirritant behavior of the formulation was revealed by skin histopathology, which showed no changes in normal skin histology. In comparison to the conventional product, dermatokinetic experiments revealed that CRT has greater penetration and distribution in the epidermis of the mice skin. The findings imply that the proposed lipid-based ME hydrogel can aid in the resolution of CRT issues by providing a better and safer delivery option to epidermis and deeper epidermis in substantial quantities.  相似文献   

4.
The development of local anesthetic (LA) system is the application of commercial drug for the pain management that indorses the reversible obstructive mechanism of neural transmission through preventing the innervation process in human peripheral nerves. Ropivacaine (RV) is one of the greatest frequently used LA s with the actions of long-lasting and low-toxicity for the post-operative pain management. In this work, we have approached novel design and development of glycosylated chitosan (GCS) encapsulated mesoporous silica nanoparticles (GCS-MONPs)-based nano-scaffold for sustainable distributions and controlled/supported arrival of stacked RV for targeting sites, which can be activated by either outer ultrasound activating to discharge the payload, foundation on-request and dependable analgesia. The structural and morphology analyses result established that prepared nano-formulations have successful molecular interactions and RV loaded spherical morphological structures. The drug release profile of developed nanostructure with ultrasound-activation has been achieved 50% of drug release in 2 h and 90% of drug release was achieved in 12 h, which displays more controlled release when compared to free RV solution. The in vitro cell compatibility analysis exhibited GCS-MONPs with RV has improved neuron cell survival rates when compared to other samples due to its porous surface and suitable biopolymer proportions. The analysis of ex vitro and in vivo pain relief analysis demonstrated treated animal models have high compatibility with GCS-MONPs@RV, which was confirmed by histomorphology. This developed MONPs based formulations with ultrasound-irradiation gives a prospective technique to clinical agony the board through on-request and dependable help with discomfort.  相似文献   

5.
Sorafenib (SRB), a multikinase inhibitor, is effective in reducing experimental corneal neovascularization (CNV) after oral administration; however, its therapeutic use in ocular surface disorders is restricted due to poor solubility and limited bioavailability. This study aimed to develop and optimize SRB-loaded nanostructured lipid carriers (SRB-NLCs) for topical ocular delivery by a central composite design response surface methodology (CCD-RSM). It was spherical and uniform in morphology with an average particle size of 111.87 ± 0.93 nm and a narrow size distribution. The in vitro drug release from the released SRB-NLC formulation was well fitted to Korsmeyer Peppas release kinetics. The cell counting kit-8 (CCK-8) cell viability assay demonstrated that SRB-NLC was not obviously cytotoxic to human corneal epithelial cells (HCECs). An in vivo ocular irritation test showed that SRB-NLC was well tolerated by rabbit eyes. Ocular pharmacokinetics revealed 6.79-fold and 1.24-fold increase in the area under concentration-time curves (AUC0-12h) over 12 h in rabbit cornea and conjunctiva, respectively, treated with one dose of SRB-NLC compared with those treated with SRB suspension. Moreover, SRB-NLC (0.05% SRB) and dexamethasone (0.025%) similarly suppressed corneal neovascularization in mice. In conclusion, the optimized SRB-NLC formulation demonstrated excellent physicochemical properties and good tolerance, sustained release, and enhanced ocular bioavailability. It is safe and potentially effective for the treatment of corneal neovascularization.  相似文献   

6.
Despite high efficiency of domperidone (DOM) in prophylaxis of emesis accompanied with radiotherapy and chemotherapy, it still can bother cancer patients by its powerful side effects and difficulty of its oral administration. The study was designed to develop and optimize DOM loaded ethosomal gel for rectal transmucosal delivery. Ethosomal formulations were prepared using a 21, 51 full-factorial design where the impact of lecithin concentration and additives were investigated. The optimum ethosomal vesicles were subsequently incorporated in Carbopol gel base where rheological behavior, spreadability, mucoadhesion, and in vivo pharmacokinetic parameters were studied. Based on Design Expert® software (Stat Ease, Inc., Minneapolis, MN), the optimum formulation illustrated entrapment efficiency of 70.02%±5.52%, and vesicular size of 112 ± 3.3 nm, polydispersity index of 0.32 ± 0.01, zeta potential of −59 ± 0.28 mV, and % drug released after 6 h of 76.30%±2.45%. Moreover, ex vivo permeation through rabbit intestinal mucosa increased four times compared to free DOM suspension. The gel loaded with ethosomes showed excellent mucoadhesion to rectal mucosa. DOM ethosomal gel showed a raise in Cmax and AUC0–48 of DOM by twofolds compared to free DOM gel. The study suggested that ethosomes incorporated in gels could be an efficient candidate for rectal transmucosal delivery of DOM.  相似文献   

7.
The aim of this investigation was to develop an etomidate intravenous lipid emulsion (ETM-ILE) and evaluate its properties in vitro and in vivo. Etomidate (ETM) is a hydrophobic drug, and organic solvents must be added to an etomidate injectable solution (ETM-SOL) to aid dissolution, that causes various adverse reactions on injection. Lipid emulsions are a novel drug formulation that can improve drug loading and reduce adverse reactions. ETM-ILE was prepared using high-pressure homogenization. Univariate experiments were performed to select key conditions and variables. The proportion of oil, egg lecithin, and poloxamer 188 (F68) served as variables for the optimization of the ETM-ILE formulation by central composite design response surface methodology. The optimized formulation had the following characteristics: particle size, 168.0 ± 0.3 nm; polydispersity index, 0.108 ± 0.028; zeta potential, −36.4 ± 0.2 mV; drug loading, 2.00 ± 0.01 mg/mL; encapsulation efficiency, 97.65% ± 0.16%; osmotic pressure, 292 ± 2 mOsmol/kg and pH value, 7.63 ± 0.07. Transmission electron microscopy images showed that the particles were spherical or spheroidal, with a diameter of approximately 200 nm. The stability study suggested that ETM-ILE could store at 4 ± 2 °C or 25 ± 2 °C for 12 months. Safety tests showed that ETM-ILE did not cause hemolysis or serious vascular irritation. The results of the pharmacokinetic study found that ETM-ILE was bioequivalent to ETM-SOL. However, a higher concentration of ETM was attained in the liver, spleen, and lungs after administration of ETM-ILE than after administration of ETM-SOL. This study found that ETM-ILE had great potential for clinical applications.  相似文献   

8.
Context: The nanogel combining cationic nanostructured lipid carriers (CNLC) and thermosensitive gelling agent could enhance preocular retention and ocular permeation capacity of curcumin (CUR).

Objective: The purpose of the study was to develop and characterize a thermosensitive ophthalmic in situ nanogel of CUR-CNLC (CUR-CNLC-GEL) and evaluate in vitro and in vivo properties of the formulations.

Materials and methods: The physicochemical properties, in vitro release and corneal permeation, were evaluated. Ocular irritation and preocular retention capacity were also conducted. Finally, pharmacokinetic study in the aqueous humor was investigated by microdialysis technique.

Results: The solution–gel transition temperature of the optimized formulation diluted by simulated tear fluid was 34?±?1.0?°C. The CUR-CNLC-GEL displayed zero-order release kinetics. The apparent permeability coefficient (Papp) and the area under the curve (AUC0→∞) of CUR-CNLC-GEL were 1.56-fold and 9.24-fold, respectively, than those of curcumin solution (CUR-SOL, p?<?0.01). The maximal concentration (Cmax) was significantly improved (p?<?0.01). The prolonged mean residence time (p?<?0.01) indicated that CUR-CNLC-GEL is a controlled release formulation.

Discussion and conclusion: Those results demonstrated that CUR-CNLC-GEL could become a potential formulation for increasing the bioavailability of CUR in the aqueous humor by enhancing corneal permeation and retention capacity.  相似文献   

9.
To increase the amount of pirfenidone (PFD) loaded in polyvinyl alcohol (PVA) film embedded soft contact lens (SCL), and evaluate its function of sustaining delivery of drug in vitro and in vivo. Drug loading efficiency within PVA film and SCLs, drug release from SCLs in vitro, and the effects of parameters of SCLs and external environment on drug release in vitro were evaluated by ultraviolet–visible spectrophotometer at 312 nm. Safety of SCLs was evaluated in vitro by transformed human corneal epithelial cell. Safety in vivo was determined by optical coherence tomography and histology of anterior segment of rabbits. Drug release study in tear fluid and aqueous humor were measured by ultra-performance liquid chromatography. SCLs had smooth surface and were fit for experimental rabbits. Amount of PFD in PVA film and SCLs were 153.515 μg ± 12.508 and 127.438 μg ± 19.674, respectively, PFD in PVA film was significantly higher than SCLs (p=.006) and closed to 150 μg (targeting amount of PFD to be loaded). Thickness of SCLs, molecular weight of PVA, and amount of PVA used in SCLs affected drug release in vitro significantly. Thickness of PVA film and amount of drug in SCLs had no effect on drug release rate in vitro. SCLs were safe in vitro and in vivo, PFD released from SCLs could be detected around 12 hours in tears and aqueous humor, and the concentration of drug was higher than eye drop at all detected time points while amount of PFD in SCLs was lower than eye drop. Drug loaded PVA film embedded SCLs may be a promising ocular drug delivery system.  相似文献   

10.
Corneal neovascularization is a serious corneal pathological change caused by various factors. The drug delivery system is of great significance for the effective treatment of corneal neovascularization. Herein, we developed and characterized a monolith/hydrogel composite as the triamcinolone acetonide (TA) carrier for curing corneal neovascularization. The composite was prepared by photo-initiated free radical polymerization of multi-methacrylate substituted dodecamine organic molecular cage and post-modified by the sequential photo-initiated free radical polymerization of acrylated gelatin. The globular morphology and structural property of as-prepared composites were evaluated by scanning electron microscopy, Fourier-transform infrared spectroscopy and solid-state cross polarization magic angle spinning carbon-13 nuclear magnetic resonance. Then swelling ratio and the TA loading capacity were investigated then. Compared with gelatin hydrogel, the composites exhibited a decreased swelling ratio and an improved loading capacity. With good biocompatibility, the composite can sustainedly release TA for up to 28 days, and effectively inhibit corneal neovascularization with an alkali burn-induced corneal neovascularization model. Additionally, tandem mass tags-labeled quantitative proteomics were performed to identify differentially expressed proteins between vascularized and devascularized corneas. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the inhibition process could be primarily linked to the fibrinolytic system. These results demonstrated the potential of monolith/hydrogel composites as delivery systems in the therapy for biomedical diseases.  相似文献   

11.
12.
The principal goal of the present investigation was to enterprise new and effective drug delivery vesicle for the sustained delivery of local anesthetic lidocaine hydrochloride (LDC), using a novel combination of copolymeric hydrogel with tetrahydroxyborate (COP–THB) to improve bioactivity and therapeutic potential. To support this contention, the physical and mechanical properties, rheological characteristics, and component release of candidate formulations were investigated. An optimized formulation of COP–THB containing LDC to an upper maximum concentration of 1.5% w/w was assessed for drug crystallization. The biocompatibility of the prepared COP–THB hydrogel was exhibited strong cell survival (96%) and growth compatibility on L929 fibroblast cell lines, which was confirmed by using methods of MTT assay and microscopic observations. The COP–THB hydrogel release pattern is distinct from that of COP–THB/LDC hydrogels by the slow-release rate and the low percentage of cumulative release. In vivo evaluations were demonstrated the anesthetic effects and toxicity value of treated samples by using mice models. In addition, COP–THB/LDC hydrogels significantly inhibit in vivo tumor growth in mice model and effectively reduced it is in vivo toxicity. The pharmacological evaluation showed that encapsulation of LDC in COP–THB hydrogels prolonged its anesthetic action with favorable in vitro and in vivo compatibility. This novel design may theoretically be used in promising studies involving the controlled release of local anesthetics.

Highlights

  • Development a modified sustained release system for the local anesthetic lidocaine.
  • PVP-THB hydrogel to improve the pharmacological properties of the drug and their anesthetic activities.
  • Profiles of PVP-THB/LDC showed that the effective release of associated lidocaine.
  • This new formulation could potentially be used in future local anesthetics.
  相似文献   

13.
In this article, formulation studies for terbinafine hydrochloride nanoemulsions, prepared by high-energy ultrasonication technique, are described. Pseudo-ternary phase diagram was constructed in order to find out the optimal ratios of oil and surfactant/co-solvent mixture for nanoemulsion production. Clove and olive oils were selected as oil phase. Based on the droplet size evaluation, maximum nanoemulsion region were determined for formulation development. Further characterization included polydispersity index (PDI), zeta potential, Fourier transform infrared (FT-IR) spectroscopy, morphology, pH, viscosity, refractive index, ex vivo skin permeation, skin irritation, and histopathological examination. Droplet sizes of optimized formulations were in colloidal range. PDI values below 0.35 indicated considerably homogeneous nanoemulsions. Zeta potential values were from 13.2 to 18.1 mV indicating good stability, which was also confirmed by dispersion stability studies. Ex vivo permeation studies revealed almost total skin permeation of terbinafine hydrochloride from the nanoemulsions (96–98%) in 6 hours whereas commercial product reached only 57% permeation at the same time. Maximum drug amounts were seen in epidermis and dermis layers. Skin irritation and histopathological examination demonstrated dermatologically safe formulations. In conclusion, olive oil and clove oil-based nanoemulsion systems have potential to serve as promising carriers for topical terbinafine hydrochloride delivery.  相似文献   

14.
ContextDacomitinib and poziotinib, irreversible ErbB family blockers, are often used for treatment of non-small cell lung cancer (NSCLC) in the clinic.ObjectiveThis study investigates the effect of dacomitinib on the pharmacokinetics of poziotinib in rats.Materials and methodsTwelve Sprague–Dawley rats were randomly divided into two groups: the test group (20 mg/kg dacomitinib for 14 consecutive days) and the control group (equal amounts of vehicle). Each group was given an oral dose of 10 mg/kg poziotinib 30 min after administration of dacomitinib or vehicle at the end of the 14 day administration. The concentration of poziotinib in plasma was quantified by UPLC-MS/MS. Both in vitro effects of dacomitinib on poziotinib and the mechanism of the observed inhibition were studied in rat liver microsomes and human liver microsomes.ResultsWhen orally administered, dacomitinib increased the AUC, Tmax and decreased CL of poziotinib (p < 0.05). The IC50 values of M1 in RLM, HLM and CYP3A4 were 11.36, 30.49 and 19.57 µM, respectively. The IC50 values of M2 in RLM, HLM and CYP2D6 were 43.69, 0.34 and 0.11 µM, respectively, and dacomitinib inhibited poziotinib by a mixed way in CYP3A4 and CYP2D6. The results of the in vivo experiments were consistent with those of the in vitro experiments.ConclusionsThis research demonstrates that a drug–drug interaction between poziotinib and dacomitinib possibly exists when readministered with poziotinib; thus, clinicians should pay attention to the resulting changes in pharmacokinetic parameters and accordingly, adjust the dose of poziotinib in clinical settings.  相似文献   

15.

Aim:

To develop a novel vehicle based on cubosomes as an ophthalmic drug delivery system for flurbiprofen (FB) to reduce ocular irritancy and improve bioavailability.

Methods:

FB-loaded cubosomes were prepared using hot and high-pressure homogenization. Cubosomes were then characterized by particle size, zeta potential, encapsulation efficiency, particle morphology, inner cubic structure and in vitro release. Corneal permeation was evaluated using modified Franz-type cells. Ocular irritation was then evaluated using both the Draize method and histological examination. The ocular pharmacokinetics of FB was determined using microdialysis.

Results:

The particle size of each cubosome formulation was about 150 nm. A bicontinuous cubic phase of cubic P-type was determined using cryo-transmission electron microscopy (cryo-TEM) observation and small angle X-ray scattering (SAXS) analysis. In vitro corneal permeation study revealed that FB formulated in cubosomes exhibited 2.5-fold (F1) and 2.0-fold (F2) increase in Papp compared with FB PBS. In the ocular irritation test, irritation scores for each group were less than 2, indicating that all formulations exhibited excellent ocular tolerance. Histological examination revealed that neither the structure nor the integrity of the cornea was visibly affected after incubation with FB cubosomes. The AUC of FB administered as FB cubosome F2 was 486.36±38.93 ng·mL−1·min·μg−1, which was significantly higher than that of FB Na eye drops (P<0.01). Compared with FB Na eye drops, the Tmax of FB cubosome F2 was about 1.6-fold higher and the MRT was also significantly longer (P<0.001).

Conclusion:

This novel low-irritant vehicle based on cubosomes might be a promising system for effective ocular drug delivery.  相似文献   

16.
Glaucoma is one of the leading causes of blindness. Therapies available suffer from several drawbacks including low bioavailability, repeated administration and poor patient compliance with adverse effects thereafter. In this study, bovine serum albumin nanoparticles (BSA-NPs) coated with chitosan(CS) were developed for the topical delivery of tetrandrine (TET) for glaucoma management. Optimized nanoparticles were prepared by desolvation. pH, BSA, CS and cross-linking agent concentrations effects on BSA-NPs colloidal properties were investigated. CS-BSA-NPs with particle size 237.9 nm and zeta potential 24 mV was selected for further evaluation. EE% exceeded 95% with sustained release profile. In vitro mucoadhesion was evaluated based on changes in viscosity and zeta potential upon incubation with mucin. Ex vivo transcorneal permeation was significantly enhanced for CS coated formulation. In vitro cell culture studies on corneal stromal fibroblasts revealed NPs biocompatibility with enhanced cellular uptake and improved antioxidant and anti-proliferative properties for the CS-coated formulation. Moreover, BSA-NPs were nonirritant as shown by HET-CAM test. Also, bioavailability in rabbit aqueous humor showed 2-fold increase for CS-TET-BSA-NPs compared to TET with a sustained reduction in intraocular pressure in a rabbit glaucoma model. Overall, results suggest CS-BSA-NPs as a promising platform for topical ocular TET delivery in the management of glaucoma.  相似文献   

17.
Cancers continue to be the second leading cause of death worldwide. Despite the development and improvement of surgery, chemotherapy, and radiotherapy in cancer management, effective tumor ablation strategies are still in need due to high cancer patient mortality. Hence, we have established a new approach to achieve treatment-actuated modifications in a tumor microenvironment by using synergistic activity between two potential anticancer drugs. Dual drug delivery of gemcitabine (GEM) and cisplatin (PT) exhibits a great anticancer potential, as GEM enhances the effect of PT treatment of human cells by providing stability of the microenvironment. However, encapsulation of GEM and PT fanatical by methoxypoly(ethylene glycol)-block-poly(D, L-lactic acid) (PEG-PLA in termed as NPs) is incompetent owing to unsuitability between the binary Free GEM and PT core and the macromolecular system. Now, we display that PT can be prepared by hydrophobic coating of the dual drug centers with dioleoylphosphatidic acid (DOPA). The DOPA-covered PT can be co-encapsulated in PLGA NPs alongside GEM to stimulate excellent anticancer property. The occurrence of the PT suggestively enhanced the encapsulations of GEM into PLGA NPs (GEM-PT NPs). Further, the morphology of GEM NPs, PT NPs, and GEM-PT NPs and nanoparticle size was examined by transmission microscopy (TEM), respectively. Furthermore GEM-PT NPs induced significant apoptosis in human nasopharyngeal carcinoma CNE2 and SUNE1 cancer cells by in vitro. The morphological observation and apoptosis were confirmed by the various biochemical assays (AO-EB, nuclear staining, and annexin V-FITC). In a xenograft model of nasopharyngeal cancer, this nanotherapy shows a durable inhibition of tumor progression upon the administration of a tolerable dose. Our results suggest that a macromolecular hydrophobic and highly toxic drug can be rationally converted into a pharmacologically efficient and self-deliverable of nanotherapy.  相似文献   

18.
In relieving local pains, lidocaine, one of ester-type local anesthetics, has been used. To develop the lidocaine membranes of enhanced local anesthetic effects, we have designed to establish the composition of wound dressings based on lidocaine chloride (LCH) (anesthetic drug)-loaded chitosan (CS)/polymyxin B sulfate (PMB). The LCH membranes (LCH-CS/PMB) was fabricated by the LCH oxide solutions within the CS/PMB matrix. The influences of different experimental limitations on CS/PMB membrane formations were examined. The double membrane particle sizes were evaluated by scanning electron microscopy (HR-SEM). Additionally, antibacterial efficacy was developed for gram-positive and negative microorganisms. Moreover, we examined in vivo healing of skin wounds formed in mouse models over 16 days. In contrast to the untreated wounds, rapid healing was perceived in the LCH-CS/PMB-treated wound with less damaging. These findings indicate that LCH-CS/PMB-based bandaging materials could be a potential innovative biomaterial for tissue repair and regeneration for wound healing applications in an animal model.  相似文献   

19.
Urticaria affects all age groups of a population. It is triggered by allergens in foods, insect bites, medications, and environmental conditions. Urticaria is characterized by itching, a burning sensation, wheals and flares, erythema, and localized edema. The aim of this study was to develop a polymeric dosage form of ebastine using Carbopol 940 and mixture of span and tween. The emulsion was prepared, the gelling agent was added and the desired emulgel loaded with active drug was formulated. The formulations were subjected to physical stability, pH, viscosity, spreadability, drug content analysis, thermal analysis, in vitro drug release, and in vivo anti-allergic activity in animal model. The formulated emulgel exhibited good physical stability. The pH of the formulation was in the range of 5.2 ± 0.17 to 5.5 ± 0.20 which is suitable for topical application. Insignificant changes (p > .05) were observed in viscosity and spreadability of stored emulgels. The drug content was in the official limit of Pharmacopeia (i.e. 100 ± 10%). DSC measurements predicted that there is no interaction between the active moiety and excipients in emulgel formulation. The optimized formulation (ES3) released 74.25 ± 1.8% of ebastine after 12 h. The ebastine emulgel showed significant (p < .05; ANOVA) in vivo anti-allergic activity as compared to commercial product Benadryl® in histamine-induced allergy in rabbits. This study concluded that a topical drug delivery of ebastine-loaded emulgel could be well tolerated and safe for the treatment of urticaria/hives.  相似文献   

20.
ContextDehydroandrographolide succinate (DAS) is mainly used in the clinical treatment of various infectious diseases. Its potential effects on platelet aggregation and blood coagulation systems have not been reported systematically.ObjectiveTo explore whether DAS exerts an antithrombotic effect and its internal mechanism.Materials and methodsHuman blood samples and Sprague-Dawley (SD) rats divided into control, aspirin (30 mg/kg), and DAS groups (200, 400 and 600 mg/kg) were used to measure the platelet aggregation rate, coagulation function, coagulation factor activity, and contents of thromboxane B2 (TXB2) and 6-keto-prostaglandin F (6-keto-PGF). The histopathology of the SD rat gastric mucosa was also observed. All rats were administered intragastric or intraperitoneal injections once a day for 3 consecutive days.ResultsCompared to control group, DAS significantly inhibited the platelet aggregation rate (ED50 = 386.9 mg/kg) by decreasing TXB2 levels (1531.95 ± 649.90 pg/mL to 511.08 ± 411.82 pg/mL) and activating antithrombin III (AT-III) (103.22 ± 16.22% to 146.46 ± 8.96%) (p < 0.05). In addition, DAS significantly enhanced the coagulation factors FV (304.12 ± 79.65% to 443.44 ± 75.04%), FVII (324.19 ± 48.03% to 790.66 ± 225.56%), FVIII (524.79 ± 115.47% to 679.92 ± 143.34%), FX (34.90 ± 7.40% to 102.76 ± 29.41%) and FXI (38.12 ± 10.33% to 65.47 ± 34.08%), increased the content of Fg (2.18 ± 0.39 to 3.61 ± 0.37 g/L), shorten the PT (10.42 ± 0.44 to 9.22 ± 0.21 s), APTT (16.43 ± 1.4 to 14.07 ± 0.75 s) and TT time (37.04 ± 2.13 to 32.68 ± 1.29 s) (p < 0.05), while the aspirin group showed no such effect on these items but showed reduced activity of FII (89.21 ± 21.72% to 61.83 ± 8.95%) and FVIII (524.79 ± 115.47% to 306.60 ± 29.96%) (p < 0.05). Histopathological changes showed aspirin-induced gastric mucosa haemorrhage and the protective effect of DAS in the gastric mucosa.ConclusionsDAS is more suitable than aspirin in thromboprophylaxis treatment, which provides a reliable theoretical and experimental basis for its clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号