首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Oxidative stress is widely recognized to contribute to neuronal death during various pathological conditions and ageing. In the enteric nervous system (ENS), reactive oxygen species have been implicated in the mechanism of age-associated neuronal loss. The neurotrophic factors, neurotrophin 3 (NT-3) and glial cell line-derived neurotrophic factor (GDNF), are important in the development of enteric neurons and continue to be expressed in the gut throughout life. It has therefore been suggested that they may have a neuroprotective role in the ENS. We investigated the potential of NT-3 and GDNF to prevent the death of enteric ganglion cells in dissociated cell culture after exposure to hydrogen peroxide (H(2)O(2)). H(2)O(2) treatment resulted in a dose-dependent death of enteric neurons and glial cells, as demonstrated by MTS assay, bis-benzimide and propidium iodide staining and immunolabelling. Cultures treated with NT-3 prior to exposure showed reduced cell death compared to untreated control or GDNF-treated cultures. GDNF treatment did not affect neuronal survival in H(2)O(2)-treated cultures. These results suggest that NT-3 is able to enhance the survival of enteric ganglion cells exposed to oxidative stress.  相似文献   

2.
Hirschsprung's disease (HSCR), a congenital disease, is characterized by the absence of ganglion cells in the ganglion plexuses of the caudal most gut. In the aganglionic colon, the plexus remnants are replaced by aggregates of glial cells and hypertrophied nerve fibers. Signaling of glial cell line-derived neurotrophic factor (GDNF)-GFRAs-receptor tyrosine kinase (RET) is crucial for the development and maintenance of ganglion cells. Mutations of genes such as GDNF and RET lead to the perturbation of this signaling pathway, which causes HSCR. To understand the role of GFRAs in ganglion cells and the pathogenesis of HSCR, we intended to determine the specific cell lineages in the enteric nervous system that normally express GFRAs but are affected in HSCR. We studied colon biopsy specimens from 13 patients with HSCR (aged 1 day to 38 months) and 6 age-matched patients without HSCR as normal controls. RT-PCR, in situ hybridization, and immunohistochemistry were performed to examine the expression and cellular distributions of GFRAs in resected bowel segments of normal infants and those with HSCR. In normal infants and normoganglionic colon of patients with HSCR, the expression of GFRA1 was restricted to the glial cells and neurones of the ganglion plexuses. GFRAs expression was found to be markedly reduced in the aganglionic colons of 3 infants with HSCR but was unaffected in the aganglionic colons of 10 other infants with HSCR. Residual GFRA expression was restricted to enteric glial cells in the plexus remnants of the aganglionic colons. Hypertrophied nerve fibers were not found to express GFRA1. We provide the first evidence that abnormal expression of GFRAs in the enteric nervous system may be involved in the pathogenesis of HSCR in a subpopulation of patients.  相似文献   

3.
《Annals of anatomy》2014,196(5):296-302
Glial cell-line derived neurotrophic factor (GDNF) and the GFRα co-receptors play a role in the developing enteric nervous system. The co-receptors elicit their action by binding receptor tyrosine kinase RET.This immunohistochemical study reports the presence of GDNF and its specific co-receptor GFRα1 in the cat gastrointestinal apparatus during development, from stage 9 to 22. At stage 9 and 11, immunoreactivity (IR) to GDNF was observed in the cells of mesenchyme of the anterior gut. From stage 14 to 22, GDNF IR was detected in nervous plexuses; moreover, GDNF and GFRα1 IR appeared localized in gastrointestinal endocrine cells. The presence of GDNF in the enteric nervous system and in the endocrine cells suggests an involvement of this neurotrophic factor in the gastrointestinal development. Moreover, the presence of the co-receptor GFRα1 in endocrine cells and its absence in the enteric nervous system seems to indicate a different mode of transduction of GDNF signal. GFRα2 and GFRα3 co-receptors were not detected.  相似文献   

4.
Glial cell line-derived neurotrophic factor (GDNF) has many functions including regulation of kidney morphogenesis and of neuron growth and survival in the enteric, sensory and central nervous systems. Reports of GDNF being used against Parkinson's disease in human patients have sparked intense clinical interest in GDNF signalling. We recently showed that GDNF signalling requires cell surface heparan sulphate glycosaminoglycans (Barnett et al., 2002, J. Cell Sci. 115, 4495-4503). Here we use exogenous modified heparins to determine those structural features required to inhibit GDNF signalling in ex vivo assays. 2-O-sulphate groups were found to impart high activity but were not absolute requirements for the inhibition of GDNF signalling. These findings may explain the similarities between the phenotypes of transgenic mice lacking GDNF and those lacking heparan sulphate 2-sulphotransferase, the enzyme responsible for achieving 2-O-sulphation of uronic acids in vivo.  相似文献   

5.
Activating mutations of the receptor tyrosine kinase, ret, are associated with multiple endocrine neoplasia type 2A (MEN 2A). However, the mechanisms leading to tumor development are unclear. Glial-derived neurotrophic factor (GDNF) activates wild-type ret via interaction with a second receptor, GFR a-l. We have utilized GDNF to stimulate normal and neoplastic chromaffin cells in order to ask whether ret activation is mitogenic. Cells from three normal adult adrenal medullas, one sporadic pheochromocytoma, and three MEN-2A pheochromocytomas were labeled with bromodeoxyuridine (BrdU) for 12 d in the presence or absence of GDNF or nerve growth factor (NGF), which is known to stimulate neurite outgrowth, but not proliferation in human chromaffin and pheochromocytoma cell cultures. Responses to GDNF and NGF were comparable, except for two MEN-2A pheochromocytomas that responded minimally to GDNF and robustly to NGF. These tumors responded to GDNF biochemically, as measured by phosphorylation of mitogen-activated protein kineses, despite their weak morphological responses. Our findings suggest that activation of ret may not be sufficient to produce chromaffin cell hyperplasia or neoplasia directly by stimulating cell proliferation. However the possibility that altered cell-cell or cell-substrate interactions might cause responses to become differ entiative rather than proliferative in vitro has not been ruled out. We also demonstrate, for the first time, that at least some human pheochromocytomas with an MEN-2A ret mutation respond to a normal ret ligand. This responsiveness could be mediated by a remaining normal ret allele or by other mechanisms.  相似文献   

6.
Glial cell line-derived neurotrophic factor (GDNF) has many functions including regulation of kidney morphogenesis and of neuron growth and survival in the enteric, sensory and central nervous systems. Reports of GDNF being used against Parkinson's disease in human patients have sparked intense clinical interest in GDNF signalling. We recently showed that GDNF signalling requires cell surface heparan sulphate glycosaminoglycans (Barnett et al., 2002, J. Cell Sci. 115, 4495–4503). Here we use exogenous modified heparins to determine those structural features required to inhibit GDNF signalling in ex vivo assays. 2-O-sulphate groups were found to impart high activity but were not absolute requirements for the inhibition of GDNF signalling. These findings may explain the similarities between the phenotypes of transgenic mice lacking GDNF and those lacking heparan sulphate 2-sulphotransferase, the enzyme responsible for achieving 2-O-sulphation of uronic acids in vivo.  相似文献   

7.
The enteric nervous system arises predominantly from vagal level neural crest cells that migrate into the foregut and then colonize the entire length of the gastrointestinal tract. Previous studies have demonstrated that glial cell line-derived neurotrophic factor (GDNF) promotes the migration of enteric neural crest-derived cells (ENCs) in vitro, but a role for GDNF in the migration of ENCs in vivo has yet to be demonstrated. In this study, the effects of Gdnf haploinsufficiency on ENC rate of migration and number during mid embryonic development were examined. Although the entire gut of embryonic Gdnf(+/-) mice was colonized, a significant delay in the migration of ENCs along the embryonic hindgut was found. However, significant effects of Gdnf haploinsufficiency on ENC number were detected before the stage at which migration defects were first evident. As previous studies have shown a relationship between ENC number and migration, the effects of Gdnf haploinsufficiency on migration may be due to an indirect effect on cell number and/or a direct effect of GDNF on ENC migration. Gdnf haploinsufficiency did not cause any detectable change in the rate of neuronal differentiation of ENCs.  相似文献   

8.
Activating mutations of the receptor tyrosine kinase,ret, are associated with multiple endocrine neoplasia type 2A (MEN-2A). However, the mechanisms leading to tumor development are unclear. Glial-derived neurotrophic factor (GDNF) activates wild-typeret via interaction with a second receptor, GFR α-1. We have utilized GDNF to stimulate normal and neoplastic chromaffin cells in order to ask whetherret activation is mitogenic. Cells from three normal adult adrenal medullas, one sporadic pheochromocytoma, and three MEN-2A pheochromocytomas were labeled with bromodeoxyuridine (BrdU) for 12 d in the presence or absence of GDNF or nerve growth factor (NGF), which is known to stimulate neurite outgrowth, but not proliferation in human chromaffin and pheochromocytoma cell cultures. Responses to GDNF and NGF were comparable, except for two MEN-2A pheochromocytomas that responded minimally to GDNF and robustly to NGF. These tumors responded to GDNF biochemically, as measured by phosphorylation of mitogen-activated protein kineses, despite their weak morphological responses. Our findings suggest that activation ofret may not be sufficient to produce chromaffin cell hyperplasia or neoplasia directly by stimulating cell proliferation. However, the possibility that altered cell-cell or cell-substrate interactions might cause responses to become differentiative rather than proliferative in vitro has not been ruled out. We also demonstrate, for the first time, that at least some human pheochromocytomas with an MEN-2Aret mutation respond to a normalret ligand. This responsiveness could be mediated by a remaining normalret allele or by other mechanisms.  相似文献   

9.
The undisturbed development of the enteric nervous system depends on the supply of various neurotrophic factors during ontogenesis. Besides glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) take part in its development. CNTF and LIF belong to the interleukin-6 (IL-6) family of cytokines. The combination of IL-6 and the soluble IL-6 receptor accelerates peripheral nerve regeneration. In this study, we examined the effect of the fusion protein Hyper-IL-6, which consists of IL-6 and the soluble receptor sIL-6R, on neurite outgrowth and neuronal survival in vitro. Myenteric plexus of newborn rats was dissected and dissociated. Cells were grown in either serum-free chemically defined medium alone or medium supplemented with sIL-6R, IL-6, sIL-6+IL-6, Hyper-IL-6, CNTF, LIF, or GDNF. Average neurite outgrowth per neuron was highest in GDNF-treated and Hyper-IL-6-treated cultures. The number of neurite-bearing neurons was reduced in GDNF cultures compared with Hyper-IL-6-treated cells, so that the total neurite outgrowth was maximal after Hyper-IL-6 stimulation. Hyper-IL-6 furthermore stimulated neuronal survival and morphologic differentiation of the enteric glia.  相似文献   

10.
The glial cell line-derived (GDNF) family of trophic factors, GDNF, neurturin, persephin and artemin, are known to support the survival and regulate differentiation of many neuronal populations, including peripheral autonomic, enteric and sensory neurons. Members of this family of related ligands bind to specific GDNF family receptor (GFR) proteins, which complex and signal through the Ret receptor tyrosine kinase. We showed previously that GDNF protein was detectable in olfactory sensory neurons (OSNs) in the olfactory neuroepithelium (ON). In this immunohistochemical study, we localized GDNF, neurturin, GFRα1, GFRα2 and Ret in the adult rat ON and olfactory bulb. We found that GDNF and Ret were widely expressed by immature and mature OSNs, while neurturin was selectively expressed in a subpopulation of OSNs zonally restricted in the ON. The GFRs had differential expression, with mature OSNs and their axons preferentially expressing GFRα1, whereas progenitors and immature neurons more avidly expressed GFRα2. In the bulb, GDNF was highly expressed by the mitral and tufted cells, and by periglomerular cells, and its distribution generally resembled that of Ret, with the exception that Ret was far more predominant on fibers than cell bodies. Neurturin, in contrast, was present at lower levels and was more restricted in its expression to the axonal compartment. GFRα2 appeared to be the dominant accessory protein in the bulb. These data are supportive of two members of this neurotrophic family, GDNF and neurturin, playing different physiological roles in the olfactory neuronal system.  相似文献   

11.
Members of the Sprouty family encode novel proteins that are thought to function primarily as intracellular antagonists of the Ras-signaling pathway. Increased Ras signaling is a critical characteristic of human lung adenocarcinoma, the most common type of non-small cell lung cancer. Sprouty 2 is expressed in the lung epithelium, the tissue layer from which lung cancers arise. We hypothesized that overexpression of Sprouty 2 in the distal lung epithelium would inhibit lung tumorigenesis. To test the hypothesis, the consequences of overexpressing Sprouty 2 in the distal lung epithelium on urethane-induced mouse lung tumorigenesis were determined. Urethane is a chemical carcinogen found in tobacco smoke that causes activating mutations in Kras and induces lung tumors in mice. Sprouty 2-overexpressor mice developed significantly fewer lung tumors compared with their littermate controls (13.2 +/- 1.1 versus 18.1 +/- 1.3, P = 0.006). Tumor diameter was also significantly smaller in Sprouty 2 overexpressors (0.85 mm +/- 0.03 versus 0.95 mm +/- 0.02, P = 0.005). Sprouty 2 overexpression did not alter Kras mutational frequencies in urethane-induced tumors, suggesting that the tumor-suppressing effect of Sprouty 2 overexpression acts at a stage after Kras mutation, perhaps by interfering with receptor tyrosine kinase-induced signaling. These results demonstrate that Sprouty 2 overexpression inhibited both tumor initiation and subsequent tumor growth.  相似文献   

12.
目的 探讨移植胶质细胞源性神经营养因子(glial cell line derived neurotrophic factor,GDNF)基因修饰的神经干细胞(neural stem cells,NSCs)对暂时性缺血性脑卒中大鼠的神经保护。 方法 用GDNF重组腺病毒载体转染新生大鼠NSCs(GDNF/NSCs),分化培养7 d后,行免疫细胞化学染色检测微管相关蛋白2(MAP2)。采用改良的插线法制作暂时性脑缺血再灌注模型,3 d后经脑室分别移植生理盐水、NSCs和GDNF/NSCs。于再灌注后1、2、3、5、7周末处死大鼠,行免疫组织化学染色观察移植细胞在脑内的神经元分化及星形胶质细胞在缺血区形成胶质界膜情况,行Luxol fast blue(LFB)染色显示神经纤维损伤情况。 结果 GDNF/NSCs体外分化为MAP2+细胞的比例显著高于NSCs的分化。移植细胞在脑内分化为MAP2+细胞,于再灌注第5周分化达高峰,GDNF/NSCs组于再灌注第3~7周,其MAP2+细胞显著高于NSCs组。各组缺血区由星形胶质细胞形成的血管胶质界膜存在不同程度的破坏,其连续性中断。对照组在各个时间点,血管胶质界膜损伤严重,完整性差,两细胞移植组,其胶质界膜随时间延长逐渐完整,GDNF/NSCs组早于NSCs组完善对胶质界膜的修复。此外,GDNF/NSCs组的神经纤维损伤修复优于NSCs组。 结论 GDNF/NSCs比NSCs对暂时性缺血性脑卒中大鼠模型有更好的神经保护作用,可能是与GDNF提高了NSCs在脑内的神经元分化,增强了NSCs对胶质界膜及神经纤维修复有关。  相似文献   

13.
The terminal Schwann cells (TSCs) which play crucial roles in regeneration of the periodontal Ruffini endings (RE) exhibit immunoreaction for glial cell line‐derived neurotrophic factor (GDNF). However, no information is available regarding the role of GDNF in the periodontal RE during nerve regeneration. This study was undertaken to examine the changes in GDNF expression in the rat periodontal RE following transection of the inferior alveolar nerve (IAN) using immunohistochemistry for GDNF and S‐100 protein, a marker for the TSCs. We additionally investigated the changes in expression of GDNF in the trigeminal ganglion (TG) at protein and mRNA levels. A transection to IAN induced a disappearance of the TSCs from the alveolus‐related part (ARP), followed by a migration of spindle‐shaped cells with S‐100 but without GDNF immunoreactions into the tooth‐related part (TRP) by postoperative (PO) week 2. At PO week 2, GDNF immunoreacted cellular elements increased in number in the ARP although the spindle‐shaped cells without GDNF reaction remained in the TRP. After PO week 4, many GDNF‐positive TSCs appeared in the ARP though the spindle‐shaped cells vanished from the TRP. A real time RT‐PCR analysis demonstrated the highest elevation of GDNF mRNA in the TG at PO week 2. These findings suggested the involvement of this molecule in the maturation and maintenance of the periodontal RE during regeneration. Taken together with our previous and current studies, it appears that the regeneration of the periodontal RE is controlled by multiple neurotrophins in a stage‐specific manner. Anat Rec, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The neurotrophin, glial‐derived neurotrophic factor (GDNF), is essential for the development of the enteric nervous system (ENS) in both the embryo and neonate and may be important for maintenance and plasticity of ENS. The tapeworm, Hymenolepis diminuta, altered the number of cells containing GNDF in the host’s jejunum and ileum. Numbers and locations of GDNF‐containing cells were determined by applying monoclonal anti‐GDNF antibody to intestinal segments collected from infected and uninfected age‐matched rats during the initial 34 days post‐infection (dpi). Most cells staining positive for GDNF were present in the lamina propria of the jejunum and ileum from both infected and uninfected rats. The co‐localization of staining by the antibodies, anti‐GDNF and anti‐ED2 (a nuclear specific antibody for resident macrophages) indicated that at least 74% of the cells staining for GDNF were macrophages. Mast cells did not stain with the anti‐GDNF antibody. The increased number of GDNF+ cells in the infected rat intestine suggests that this neurotrophin may play a role in the neural and mucosal responses to lumenal tapeworm infection.  相似文献   

15.
 Glial cell-line-derived neurotrophic factor (GDNF), a member of the transforming growth-factor- (TGF-) β-family, is an essential factor for the development of the enteric nervous system (ENS) during embryogenesis. In the present study, the effects of GDNF on postnatal ENS development were investigated using cultures of myenteric plexus from the small intestine of newborn albino rats of different developmental phases (P1, P7, P14). Myenteric plexus was dissociated and cultivated as mixed cultures of enteric neurons and glial cells. After seeding, the cultures were kept for 24 h or 7 days in serum-free medium containing various doses (1, 10, 100 ng/ml) of GDNF. The effect of the neurotrophic factor was evaluated using parameters such as cell size, neuronal survival, or neurite elongation. While neither glial-cell nor neuronal size was influenced by GDNF, there was an observable effect upon neuronal survival and neurite elongation. The cultures treated with GDNF displayed increased neurite outgrowth. The promoting effect was dose- and age-dependent, decreasing clearly during the early postnatal period. Already after 24 h, neuronal survival was increased in P1 and P7, but not in P14 cultures. In long-term cultures, a marked tendency to form cell aggregates and dense fiber networks was observed when treated with GDNF. These observations suggest that GDNF plays an important role not only in pre-, but also in postnatal development of the enteric nervous system. Received: 29 May 1998 / Accepted: 10 December 1998  相似文献   

16.
17.
目的 利用Sprouty2基因阻断成纤维细胞生长因子(FGF)信号,探讨FGF在早期鸡胚胎发育过程中对神经嵴细胞迁移的影响及其机制。方法 通过体内培养的方法孵育鸡胚至HH9期,通过显微注射的方法将Sprouty2-绿色荧光蛋白(GFP)质粒注射入神经管腔内。实验侧使用电穿孔转染的方法转染胚胎半侧神经管,另一侧正常神经管设为对照侧。采用神经嵴细胞特异标记物HNK1免疫荧光的方法检测Sprouty2基因阻断FGF信号后是否影响胚胎头部和躯干部神经嵴细胞的迁移过程。随后,进一步通过检测神经细胞钙黏分子N-Cadherin的表达来观察细胞之间黏附作用的改变。结果 HNK1免疫荧光检测结果显示,Sprouty2转染侧即阻断FGF信号通路后,HNK1在早期鸡胚胎的头部和躯干部的表达量均比对照侧的表达量增多;而神经细胞钙黏分子N-Cadherin检测结果表明,Sprouty2转染侧和正常对照侧N Cadherin在头部和躯干部神经管上表达量的差异均无显著性。结论 Sprouty2基因阻断FGF信号后,促进了早期鸡胚胎神经嵴细胞的迁移,但是FGF信号对此过程的影响可能不是由神经钙黏分子N-Cadherin介导的。  相似文献   

18.
Glial-cell-line-derived neurotrophic factor (GDNF) is a distant member of the transforming growth factor superfamily. It binds to and activates a receptor complex consisting of GFR-alpha1 and Ret receptor tyrosine kinase. In testis, GDNF is expressed by Sertoli cells. We have shown by transgenic loss- and gain-of-function mouse models that GDNF regulates the cell fate decision of undifferentiated spermatogonia. In the GDNF +/- mice, the spermatogonia differentiate in excess leading to the depletion of germ cells. In the mice overexpressing GDNF in testes, undifferentiated spermatogonia accumulate in the tubules, no sperm is produced, and the mice are infertile. After a year, the GDNF overexpressing mice frequently (89%) develop testicular tumours, and most of them are bilateral (56%). All these tumours show the same histological pattern. They are composed of round spermatogonial/gonocytic cells with only a scant cytoplasm. The tumours are locally invasive but do not metastasise. They express germ line markers, are positive for alkaline phosphatase, and aneuploid with a triploid peak. Thus, by several histological, molecular, and histochemical characteristics, the GDNF-induced tumours mimic classical seminomas in men, but the precursor lesions are apparently different in mouse and man.  相似文献   

19.
COMMENTS     
Glial-cell-line-derived neurotrophic factor (GDNF) is a distant member of the transforming growth factor superfamily. It binds to and activates a receptor complex consisting of GFR-α1 and Ret receptor tyrosine kinase. In testis, GDNF is expressed by Sertoli cells. We have shown by transgenic loss- and gain-of-function mouse models that GDNF regulates the cell fate decision of undifferentiated spermatogonia. In the GDNF +/− mice, the spermatogonia differentiate in excess leading to the depletion of germ cells. In the mice overexpressing GDNF in testes, undifferentiated spermatogonia accumulate in the tubules, no sperm is produced, and the mice are infertile. After a year, the GDNF overexpressing mice frequently (89%) develop testicular tumours, and most of them are bilateral (56%). All these tumours show the same histological pattern. They are composed of round spermatogonial/gonocytic cells with only a scant cytoplasm. The tumours are locally invasive but do not metastasise. They express germ line markers, are positive for alkaline phosphatase, and aneuploid with a triploid peak. Thus, by several histological, molecular, and histochemical characteristics, the GDNF-induced tumours mimic classical seminomas in men, but the precursor lesions are apparently different in mouse and man.  相似文献   

20.
Mesenchymal stem cells (MSCs) represent a promising therapeutic approach in nerve tissue engineering. To date, the local implantation of MSC in injured nerves has been the only route of administration used. In case of multiple sites of injury, the systemic administration of cells capable of reaching damaged nerves would be advisable. In this regard, we found that an intravenous administration of adipose-derived MSC (ASC) 1 week after sciatic nerve crush injury, a murine model of acute axonal damage, significantly accelerated the functional recovery. Sciatic nerves from ASC-treated mice showed the presence of a restricted number of undifferentiated ASC together with a significant improvement in fiber sprouting and the reduction of inflammatory infiltrates for up to 3 weeks. Besides the immune modulatory effect, our results show that ASC may contribute to peripheral nerve regeneration because of their ability to produce in culture neuroprotective factors such as insulin-like growth factor I, brain-derived neurotrophic factor, or basic fibroblast growth factor. In addition to this production in vitro, we interestingly found that the concentration of glial-derived neurotrophic factor (GDNF) was significantly increased in the sciatic nerves in mice treated with ASC. Since no detectable levels of GDNF were observed in ASC cultures, we hypothesize that ASC induced the local production of GDNF by Schwann cells. In conclusion, we show that systemically injected ASC have a clear therapeutic potential in an acute model of axonal damage. Among the possible mechanisms promoting nerve regeneration, our results rule out a process of trans-differentiation and rather suggest the relevance of a bystander effect, including the production of in situ molecules, which, directly or indirectly through a cross-talk with local glial cells, may modulate the local environment with the down-regulation of inflammation and the promotion of axonal regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号