首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Background: Von Willebrand factor (vWF) has been proposed as a major contributor to the development of coagulopathy in pulmonary xenotransplantation. Pretreatment of donor swine with 1‐deamino‐8‐d ‐arginine vasopressin (DDAVP), an analog of vasopressin, can reduce the content of vWF in pulmonary xenografts. Here, we investigate the effects of DDAVP pre‐treatment in an ex‐vivo perfusion model of pulmonary xenotransplantation. Methods: We set up and performed the ex‐vivo perfusion using porcine pulmonary accessory lobes and fresh human whole blood (n = 12). Half of the donor swine were given 3 μg/kg DDAVP intravenously for 3 days before ex‐vivo perfusion (DDAVP group) and half of them were left untreated (control group). The porcine lung was perfused with fresh blood for 1 h and changes in the following parameters were monitored: pulmonary arterial pressure, pulmonary vascular resistance, blood cell counts, fibrinogen, antithrombin, platelet factor 4, D‐dimer, C3a, C4d, and xenoreactive IgM. The release of Galα1‐3Gal xenoantigen (αGal) from porcine lung which had been perfused and retained for 30 min with human blood was assessed by enzyme‐linked immunosorbent assay using αGal‐binding lectin. Results: Both DDAVP and control groups showed typical findings of immediate pulmonary dysfunction: an increase of pulmonary vascular resistance and sequestration of leukocytes and platelets after ex‐vivo perfusion. However, in the DDAVP group, the increase of platelet factor 4, C3a, and C4d after perfusion was attenuated compared to that in the control group. The release of αGal after blood retention was significantly lower in the DDAVP group than that of the control group. Conclusion: Pre‐infusion of DDAVP to the donor swine was beneficial in attenuating platelet activation as well as complement/coagulation activation. These effects of DDAVP are likely to relate to the reduction of porcine vWF content in the xenograft. Therefore, the modulation of vWF secretion in donor lungs could be an additional therapeutic way to reduce systemic coagulopathy in pulmonary xenotransplantation.  相似文献   

2.
The success and widespread acceptance of clinical allotransplantation has led to a shortage of cadaveric organs and a resurgence of interest in xenotransplantation. Although swine are generally regarded as the preferred source of xenogeneic organs, the severe immunologic response to swine organs has so far precluded their clinical use. However, the past 10 years have seen many advances in the field, especially the use of genetically modified swine. These include animals transgenic for human complement regulatory proteins, and most recently, animals not expressing the alpha 1,3-galactosyltransferase gene (GalT-KO swine), produced by nuclear transfer. The initial results using GalT-KO swine as donors to nonhuman primates demonstrated survival of a life-supporting renal graft for up to 83 days without rejection when combined with a regimen designed to induce tolerance by vascularized donor thymic grafts. Although the initial results are encouraging, further improvements will be needed to warrant a clinical trial of xenotransplantation. In this review, we discuss immunologic barriers to xenotransplantation and recent attempts to overcome them, strategies to induce tolerance across a xenogenic barrier, and issues that will need to be considered before a clinical trial is attempted.  相似文献   

3.
Nguyen B‐NH, Azimzadeh AM, Schroeder C, Buddensick T, Zhang T, Laaris A, Cochrane M, Schuurman H‐J, Sachs DH, Allan JS, Pierson RN. Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection. Xenotransplantation 2011; 18: 94–107. © 2011 John Wiley & Sons A/S. Abstract: Background: Galactosyl transferase gene knock‐out (GalTKO) swine offer a unique tool to evaluate the role of the Gal antigen in xenogenic lung hyperacute rejection. Methods: We perfused GalTKO miniature swine lungs with human blood. Results were compared with those from previous studies using wild‐type and human decay‐accelerating factor‐transgenic (hDAF+/+) pig lungs. Results: GalTKO lungs survived 132 ± 52 min compared to 10 ± 9 min for wild‐type lungs (P = 0.001) and 45 ± 60 min for hDAF+/+ lungs (P = 0.18). GalTKO lungs displayed stable physiologic flow and pulmonary vascular resistance (PVR) until shortly before graft demise, similar to autologous perfusion, and unlike wild‐type or hDAF+/+ lungs. Early (15 and 60 min) complement (C3a) and platelet activation and intrapulmonary platelet deposition were significantly diminished in GalTKO lungs relative to wild‐type or hDAF+/+ lungs. However, GalTKO lungs adsorbed cytotoxic anti‐non‐Gal antibody and elaborated high levels of thrombin; their demise was associated with increased PVR, capillary congestion, intravascular thrombi and strong CD41 deposition not seen at earlier time points. Conclusions: In summary, GalTKO lungs are substantially protected from injury but, in addition to anti‐non‐Gal antibody and complement, platelet adhesion and non‐physiologic intravascular coagulation contribute to Gal‐independent lung injury mechanisms.  相似文献   

4.
BACKGROUND: The recent availability of alpha1,3-galactosyltransferase knockout (GalT-KO) miniature swine has eliminated anti-Gal antibodies as the major barrier to xenotransplantation, potentially bringing this modality closer to clinical application. Highly-allosensitized patients, who have poor prospects of receiving a suitable cross-match negative human organ, might be the first patients to benefit from xenotransplantation of porcine organs. However, concerns exist regarding cross-reactivity of alloreactive anti-human leukocyte antigen (HLA) antibodies against xenogeneic swine leukocyte antigen (SLA) antigens. We have investigated this question using sera from such patients on GalT-KO target cells. METHODS: Using flow cytometry and complement-dependent cytotoxicity (CDC) assays, we have tested a panel of 88 human serum samples from patients awaiting cadaveric renal allotransplantation for reactivity against: 1) human; 2) standard miniature swine; and 3) GalT-KO peripheral blood lymphocytes (PBL) and cultured endothelial cells. RESULTS: Anti-swine IgM and IgG antibody binding, as well as CDC, were significantly attenuated on GalT-KO versus standard swine. No correlation was found between the degree of anti-human panel reactive antibodies (PRA) and xenoreactivity against either standard or GalT-KO miniature swine. Treatment of sera with dithiothreitol (DTT) showed that the majority of remaining lymphocytotoxicity against GalT-KO swine was mediated by preformed IgM antibodies. Patients with high alloreactivity but low anti-GalT-KO xenoreactivity were readily identified. CONCLUSIONS: Highly allosensitized patients awaiting renal transplants appear to be at no increased risk of xenosensitization over their non-sensitized cohorts, and could therefore be candidates for xenotransplantation using GalT-KO swine donors.  相似文献   

5.
Kim HK  Kim JE  Wi HC  Lee SW  Kim JY  Kang HJ  Kim YT 《Xenotransplantation》2008,15(4):246-256
Abstract: Background: In the xenotransplantation of vascularized organs, such as the lung, a large area of endothelial cell layer is a big hurdle to be overcome. We investigated the potential protective effect of aurintricarboxylic acid (ATA), a known inhibitor of platelet adhesion, on endothelial damage induced by xenogeneic serum. We also assessed its role in hyperacute xenograft rejection using a porcine ex vivo lung perfusion model. Methods: Porcine endothelial cells were incubated with human serum and other inflammatory stimuli. For the evaluation of von Willebrand factor (vWF) secretion and tissue factor (TF) expression, we used human endothelial cells. E‐selectin expression, complement activation, TF expression and platelet activation were investigated by flow cytometry. In an ex vivo porcine lung perfusion model, the porcine lungs were perfused with fresh human whole blood: unmodified blood (n = 5), ATA‐treated blood (n = 5), and ATA and lepirudin‐treated blood (n = 5). Results: Aurintricarboxylic acid significantly inhibited TNF‐α‐ or lipopolysaccharide‐induced endothelial E‐selectin expression in a dose‐dependent manner. ATA also prevented human serum induced‐E‐selectin expression and human monocytic cell adhesion to porcine endothelial cells. Moreover, ATA abolished thrombin‐induced vWF secretion as well as complement activation. However, ATA induced endothelial TF expression and platelet activation in vitro. In ex‐vivo experiments, ATA treatment improved pulmonary function and attenuated sequestration of leukocytes. Although ATA did not influence thrombin generation, we were able to minimize its activity by adding lepirudin to the blood with ATA. Conclusions: Our study demonstrated in vitro protective effect of ATA on the inhibition of endothelial activation and vWF secretion and confirmed detrimental effect of ATA on induction of endothelial TF and platelet activation. The combination of ATA and lepirudin may act beneficially by preventing coagulation perturbation while maintaining improved xenograft survival.  相似文献   

6.
Dextran sulfate of 5000 molecular weight (DXS 5000) is known to block complement activation as well as the intrinsic coagulation cascade by potentiation of C inhibitor. The effect of DXS 5000 on hyperacute rejection (HAR) was tested in pig-to-human xenotransplantation models. For in vitro testing, a cytotoxicity assay was used with the pig kidney cell line PK15 as target cells and fresh, undiluted human serum as antibody and complement source. Ex vivo pig lung perfusion was chosen to assess DXS 5000 in a physiologic model. Pig lungs were perfused with fresh, citrate-anticoagulated whole human blood to which 1 or 2 mg/ml DXS 5000 were added; the lungs were ventilated and the blood de-oxygenated. Pulmonary vascular resistance (PVR) and blood oxygenation (deltapO2) were monitored throughout the experiment. Autologous pig blood and human blood without DXS 5000 served as controls. In the PK 15 assay DXS 5000 led to a complete, dose-dependent inhibition of human serum cytotoxicity with an average IC50 of 43 +/- 18 microg/ml (n=8). Pig lungs perfused with untreated human blood (n=2) underwent HAR within 105 +/- 64 min, characterized by increased PVR, decrease of deltapO2, and generalized edema. Microscopically, capillary bleeding as well as deposition of human antibodies, complement and fibrin could be observed. Addition of DXS 5000 (n=4) prolonged lung survival to 170 +/- 14 min for 1 mg/ml and 250 +/- 42 min for 2 mg/ml. and PVR values as well as edema formation were comparable to control lungs that were perfused with autologous pig blood (n=2). Activation of complement (activation products in serum, deposition on lung tissue) and the coagulation system (fibrin monomers) were significantly diminished as compared to human blood without DXS 5000. Binding of anti-Gal antibodies was not influenced, and in vitro experiments showed no evidence of complement depletion by DXS 5000. In conclusion, DXS 5000 is an efficient complement inhibitor in pig-to-human xenotransplantation models and therefore a candidate for complement-inhibitory/anti-inflammatory therapy either alone or in combination with other substances and warrants further investigation.  相似文献   

7.
Thrombin Inhibition in discordant xenograft rejection   总被引:1,自引:0,他引:1  
Abstract: Microvascular thrombosis and the associated platelet and endothelial cell activation are prominent observations in xenograft rejection. This pathological picture could be related to the excessive generation of thrombin in the context of either inflammation or putative inter-species molecular incompatibilities between activated coagulation factors and their natural anticoagulants. Relatively selective thrombin Inhibition with the serine protease inhibitor SDZ MTH 958 (MTH-958) are independent of heparinoids and anti-thrombin III. MTH-958 has been shown to significantly prolong porcine cardiac function during perfusion with human blood in an ex vivo model. The aim of this study was to validate the role of thrombin generation in a rodent model of discordant xenograft rejection in vivo. The effect of thrombin inhibition with MTH-958 was tested in both hyperacute rejection (HAR) and delayed xenograft rejection (DXR) after decomplementation with cobra venom factor (CVF) in normal Lewis (Lew) rats and Intrinsic C6 deficiency In PVG (C6-/PVG) recipient rats. Recipient rats received heterotopic guinea pig cardiac xenografts and were treated with titrated doses of MTH-958 until the time of graft rejection. Plasma samples at selected time points were examined to confirm effective thrombin inhibition, and rejected grafts were analyzed by immunohistology. MTH-958 significantly improved graft survival in HAR albeit the extent of prolongation was not marked, but the agent failed to prolong survival In CVF-treated Lew rats. In C6-/PVG rats receiving MTH-958, a significantly reduced graft survival time was observed when compared with C6-/PVG controls. The grafts from MTH-958-treated animals showed dense deposits of C3, IgM, and IgG with fibrin levels similar to controls. The thrombin antagonist tested could prolong xenograft survival during HAR but had no benefit in DXR. The relative non-specificity of the serine protease inhibitor MTH-958 with the potential activation of alternative pathway of complement via the inhibition of factor I could account for the failure to prolong xenograft survival in DXR. The pathogenetic significance of thrombin generation in this situation remains to be determined by the use of more selective and pharmacologically acceptable I anti-thrombin agents.  相似文献   

8.
The shortage of human organ donors remains a major limitation to the field of transplantation [1], and can potentially be solved using xenografts. During the past decade, many advances have been made to address the major initial immunological obstacle to “discordant” pig‐to‐human solid organ transplantation: hyperacute rejection (HAR). As organs from unmodified pigs were evaluated in animal models, HAR was found to be primarily a consequence of the recipient's preformed anti‐pig antibodies binding on porcine vascular endothelial cells leading to subsequent complement activation, thrombosis and graft failure [2]. This process occurs within minutes to hours of human blood perfusion in porcine organs. Since the carbohydrate structure Galactose‐α(1,3‐Galactose (Gal) is recognized by over 80% of anti‐pig antibodies found in man, genetically modified galactosyl transferase knock‐out (GalTKO) pig organs have been developed [3,4]. Endothelium and parenchymal cells from GalTKO animals lack the Galα1,3Gal epitope. As predicted, heart and kidney transplant studies in baboons showed that the GalTKO phenotype is associated with decreased antibody binding, reduced activation of the complement cascade and prolonged graft survival [5–8]. However, delayed xenograft rejection, consumptive coagulopathy and microangiopathy limit long‐term outcomes. Xenogenic lungs are even more sensitive to xenogenic injury [9, 10], even with additional expression of complement regulatory protein human CD46 [Burdorf et al]. Immunohistology and biochemical evidence and work by others implicated inflammation and coagulation cascade activation as residual xenogenic injury pathways. To determine the role of these pathways in lung xenogenic injury, our group is evaluating new transgenic pigs [11] and various pharmacologic approaches. New transgenes include human thrombomodulin (hTM), endothelial protein C receptor (EPCR) and ectonucleoside triphosphate diphosphohydrolase‐1 (CD39). Pharmacologic interventions consist in targeting platelet receptors (GPIb, GPIIbIIIa), thrombin (hirulog) and adding exogenous activated protein C to perfused human blood and administering desmopressin to lung donor pigs. The differential effects of these interventions on lung physiological parameters, platelet and coagulation activation will be summarized. Future work will place emphasis on combined targeting of these pathways. Acknowledgments: Funded in part by NIH (IU19A1090959, 1U01AI066335) and by gifts from Revivicor and United Therapeutics. References 1. Cooper DKC. Xenografting: how great is the clinical need? Xeno 1993; 1: 25–26. 2. Pierson RNIII. Antibody‐mediated xenograft injury: mechanisms and protective strategies. Transpl Immunol 2009; 21: 65–69. 3. Phelps CJ, Koike C, Vaught TD et al.Production of alpha 1,3‐galactosyltransferase‐deficient pigs. Science 2003; 299: 411–414. 4. Kolber‐ Simonds D, Lail L, Watt SR et al. Production of alpha‐1,3‐galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc Natl Acad Sci U S A 2004; 101: 7335–7340. 5. Tseng YL, Kuwaki K, Dor FJ et al. alpha1,3‐Galactosyltransferase gene‐knockout pig heart transplantation in baboons with survival approaching 6 months. Transplantation 2005; 80: 1493–1500. 6. Kuwaki K, Tseng YL, Dor FJet al. Heart transplantation in baboons using alpha1,3‐galactosyltransferase gene‐knockout pigs as donors: initial experience. Nat Med 2005; 11: 29–31. 7. Yamada K, Yazawa K, Shimizu Aet al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3‐galactosyltransferase gene‐knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 2005; 11: 32–34. 8. Mohiuddin MM, Corcoran PC, Singh AK, et al. B‐cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in baboons for up to 8 months. Am J Transplant. 2012; 12:763–71. 9. Nguyen BN, Azimzadeh AM, Zhang T, et al. Life‐supporting function of genetically modified swine lungs in baboons. J Thorac Cardiovasc Surg 2007; 133: 1354–1363. 10. Nguyen BN, Azimzadeh AM, Schroeder C et al. Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection. Xenotransplantation. 2011; 18:94–107. 11. Cooper DK, Ekser B, Burlak C et al. Clinical lung xenotransplantation – what donor genetic modifications may be necessary? Xenotransplantation. 2012; 19:144–58.  相似文献   

9.
Abstract: Discordant cardiac xenografts are rapidly rejected in a process characterized by platelet activation with microvascular thrombosis, termed hyperacute rejection (HAR). The fibrinogen receptor GPIIbIIIa is crucial for the formation of platelet aggregates and potentiates platelet adhesion to subendothelial matrix. We have studied the effects of a specific GPIIbIIIa antagonist (GPI 562) in an ex vivo working heart model using discordant porcine hearts perfused with fresh, heparinized human blood. Stable plasma GPI 562 inhibitory levels were confirmed by inhibition of human platelet aggregation in vitro. Biopsies from the left ventricle of rejected hearts were analyzed by immunopathology. Control porcine hearts ( n =8) underwent HAR and ceased functioning at around 60 min. Hearts perfused with human blood containing GPI 562 at 0.5 μM ( n =5) appeared to show an initial increase in coronary blood flow relative to controls, but neither this difference nor survival times of the hearts reached significance. Mean cardiac output values were 7.3 ml/g (SEM 2.5) in the experimental group and 5 ml/g (SEM 0.6) in the control group following 5 min of working mode and were comparable at other timepoints. Platelet counts in the perfusate were maintained in the presence of GPI 562, unlike the reduction of over 50% in control samples. Immunohistochemistry suggested decreased platelet vascular plugging as determined by P-selectin staining in the GPI 562 group, with associated reduction in neutrophil adherence and fibrin deposition. The use of GPI 562 in this ex vivo model conferred no marked benefits with respect to cardiac function and explant survival despite some positive differences on histological comparison. Further studies of this agent, in association with modalities of complement inhibition, are warranted in other models of discordant xenograft rejection.  相似文献   

10.
In xenotransplantation the use of donors transgenic for recipient-type complement regulatory protein decay-accelerating factor (DAF/CD55) or membrane co-factor protein (MCP/CD46) protects grafts against hyperacute rejection (HAR), which is primarily mediated by xenoreactive natural antibodies and complement. In the Langendorff model, we previously demonstrated that rat hearts transgenic for human CD55 (hCD55), perfused with human serum, were protected against HAR. However, ex vivo, these hearts were found to be destroyed by a process occurring after the period of HAR. The question arose as to whether hearts transgenic for hCD55 are also protected against adhesion and infiltration by cells implicated in the early phases of xenograft rejection. The aim of the present study was to analyze this process in the ex vivo heart perfusion model. hCD55-transgenic rat hearts and their controls were perfused with either heat-inactivated or normal human blood solutions for 60 min. Although most of the hearts had stopped beating within the 60-min perfusion period, the perfusion was not stopped to enable adhesion of cells during a fixed period identical for all groups. Independent of the presence of complement, H&E-stained tissues of hCD55-transgenic hearts revealed fewer PMN leukocytes adhering to the endothelium than the controls (mean: 31% vs 60%). Standard histology and immunohistochemistry showed that hCD55-transgenic hearts exhibited less interstitial edema, hemorrhage, microthrombosis, fibrin deposition, and leukocyte infiltration than did the controls. All hearts showed mild to moderate levels of P-selectin and similar levels of ICAM-1, C3c, C9, IgA, IgG, and IgM deposition. hCD55 expressed on rat hearts not only inhibits complement activation, but also human leukocyte adhesion and apparently functions as an anti-adhesion molecule. hCD55 is an efficient factor in protecting grafts against HAR and protects the graft against adhesion of leukocytes as well.  相似文献   

11.
BACKGROUND: Pulmonary xenotransplantation is not possible because of hyperacute lung injury, the pathogenesis of which is unknown. This study evaluates complement-dependent pathways of pulmonary injury during heterologous perfusion of swine lungs. METHODS: Lungs from unmodified swine and swine expressing human decay-accelerating factor and human CD59 (hDAF/hCD59 swine) were perfused with either human plasma or baboon blood. Pulmonary vascular resistance and static pulmonary compliance were measured serially, and swine lung tissue were examined by light microscopy. Complement activation was assessed by serial measurements of baboon plasma C3a-desArg concentrations. RESULTS: Perfusion of unmodified swine lungs with human plasma and baboon blood resulted in hyperacute lung injury within minutes of perfusion. However, function was preserved in swine lungs expressing human decay-accelerating factor and human CD59. In both study groups, xenogeneic perfusion with baboon blood resulted in at least a sevenfold increase in plasma C3a-desArg levels suggesting transient activation of complement. CONCLUSIONS: Lungs from swine expressing human decay-accelerating factor and human CD59 were resistant to injury during perfusion with human plasma and baboon blood, indicating that complement mediated some of the features of xenogeneic acute lung injury.  相似文献   

12.
The critical shortage of human donor organs has generated growing interest for porcine to human xenotransplantation. The major immunological barrier to xenotransplantation is the hyperacute rejection (HAR) response that is mediated by preformed xenoreactive antibodies and complement. A promising strategy to control the complement activation, is the expression of human complement regulatory proteins in transgenic animals. We have used the human early cytomegalovirus (CMV) promoter to drive expression of the human complement regulatory protein CD59 (hCD59) in transgenic pigs. A total of eight live transgenic founder animals was born from which five transgenic lines could be established. mRNA analysis and Western blotting revealed high expression of hCD59 in heart, kidney, skeletal muscle, and skin in animals of lines 1 and 5, as well as in the pancreas of four lines. This pattern of expression was confirmed by immunhistological staining. A cell-specific expression in heart and kidney tissue of transgenic lines 1 and 5 was determined. Primary fibroblasts and endothelial cell cultures derived from the aorta of transgenic pigs showed a significantly diminished sensitivity against the challenge with xenoreactive human antibodies and complement whereas non-transgenic control cells were highly susceptible to complement mediated lysis. Ex vivo perfusion of kidneys with pooled human blood revealed a significant protective effect of hCD59 against HAR. The average survival of transgenic kidneys was significantly extended (P<0.05) over nontransgenic controls (207.5+/-54.6 vs. 57.5+/-64.5 min). These data support the concept that hCD59 protects nonprimate cells against human complement mediated lysis and suggest that donor pigs transgenic for hCD59 could play a crucial role in clinical xenotransplantation. Two of five hCD59 transgenic lines showed strong hCD59 expression in several organs relevant for xenotransplantation and a protective effect against HAR. This indicates that the use of the CMV-promoter can facilitate the selection process for optimized transgene expression.  相似文献   

13.
Organs transplanted between phylogenetically disparate species, such as from the pig into the primate, are subject to intragraft deposition of preformed recipient immunoglobulin M (IgM) antibodies with subsequent complement activation finally leading to complete and rapid destruction of the xenograft (hyperacute graft rejection, HAR). Current therapeutic strategies for abrogation of HAR include pretransplant antibody absorption by specific or nonspecific extracorporeal column perfusion, ex vivo donor organ perfusion, the administration of substances interfering with complement activation, or even the genetic alteration of the donor. Here, in the pig to cynomolgus monkey species combination, we are describing an experimental model for abrogation of HAR by using large, relative to the recipient weight, oversized donor kidneys as xenotransplants. Porcine kidney xenotransplantation (n = 15) was performed using large white pigs of different weights and ages as organ donors and cynomolgus monkeys as recipients. In grafts with an organ weight below 50 g (20 to 48 g, median 25 g), primary nonfunction (PNF) of the porcine kidney was observed in 11 out of 12 cases and complete HAR in 5 out of 12 experiments. In contrast, none of three grafts with a donor organ weight >70 g showed signs of HAR or PNF. In one animal, a second porcine kidney from the same donor (23 g) was successfully transplanted immediately after HAR and subsequent removal of a first porcine kidney (20 g). By using appropriate immunohistochemistry stainings of reperfusion biopsies, profound deposition of recipient natural antibodies in both small and large xenografts was shown, with only scarce deposition of C3 and C5b-9 in the latter, indicating only incomplete intragraft activation of the complement cascade in these organs. Intraoperative cardiac output (CO) measurements performed in 7 experiments demonstrated a 20 to 50% decrease in CO following reperfusion in 6 out of 7 grafts irrespective of the donor organ weight. The intraoperative decrease in CO was not associated with perioperative morbidity or mortality. The use of oversized doner kidneys can enable the study of a variety of immunologic and physiologic sequela beyond HAR associated with life-supporting discordant primate kidney transplantation.  相似文献   

14.
OBJECTIVE: Unlike cardiac or renal xenotransplants, the depletion of complement using cobra venom factor (CVF) does not improve pulmonary xenograft survival. Several cases suggest that the swine von Willebrand factor (vWF) may play a major role in presenting a different pathogenesis of pulmonary xenograft dysfunction from other organs. To evaluate the role of vWF and the complement system in mediating hyperacute vascular injury of pulmonary xenografts and elucidate pathogenesis of the injury, we performed swine-to-canine orthotropic single lung xenotransplantation after pre-treatment of 1-deamino-8-d-arginine vasopressin (DDAVP) and CVF. METHODS: We set up three groups for lung xenotransplantation: group I served as the control group; group II, recipients pre-treated with CVF; group III, donors pre-treated with DDAVP (9 mg/kg, 3 days)/recipients pre-treated with CVF (60 u/kg). Hemodynamic data, coagulation and complement system parameters, and grafted lung pathologies were examined serially for 3h after transplantation. RESULTS: DDAVP infusion reduced the vWF content in swine lung tissue in vivo (7.7+/-2.4 AU/mg vs 16.0+/-5.6 AU/mg, P < 0.0001). Infusion of CVF 24 h prior to transplantation effectively depleted the recipient's serum C3 and complement hemolytic activity below the detectable range. Regardless of the use of CVF, both groups I and II transplanted with unmodified grafts showed an immediate drop in leukocytes and platelet counts after transplantation. However, in group III, in recipients transplanted with DDAVP pre-treated swine lung, the platelet count did not decrease after transplantation (P = 0.0295). The decrease of plasma antithrombin and fibrinogen tended to be attenuated in group III. Light microscopic examination revealed extensive vascular thromboses in both capillary and larger vessels, as well as early pulmonary parenchymal damage in groups I and II, but were rarely observed in group III. CONCLUSIONS: Complement inhibition alone was not enough to alleviate intravascular thrombosis, the main pathology in pulmonary xenotransplantation. Pre-infusion of DDAVP to the donor animal was effective in preventing platelet sequestration and attenuated intravascular thrombosis. It is suggested that the strategies targeting vWF would be promising for successful pulmonary xenotransplantation.  相似文献   

15.
Organs transplanted between phylogenetically disparate species, such as from the pig into the primate, are subject to intragraft deposition of preformed recipient immunoglobulin M (IgM) antibodies with subsequent complement activation finally leading to complete and rapid destruction of the xenograft (hyperacute graft rejection, HAR). Current therapeutic strategies for abrogation of HAR include pretransplant antibody absorption by specific or nonspecific extracorporeal column perfusion, ex vivo donor organ perfusion, the administration of substances interfering with complement activation, or even the genetic alteration of the donor. Here, in the pig to cynomolgus monkey species combination, we are describing an experimental model for abrogation of HAR by using large, relative to the recipient weight, oversized donor kidneys as xenotransplants. Porcine kidney xenotransplantation (n = 15) was performed using large white pigs of different weights and ages as organ donors and cynomolgus monkeys as recipients. In grafts with an organ weight below 50 g (20 to 48 g, median 25 g), primary nonfunction (PNF) of the porcine kidney was observed in 11 out of 12 cases and complete HAR in 5 out of 12 experiments. In contrast, none of three grafts with a donor organ weight &gt;70 g showed signs of HAR or PNF. In one animal, a second porcine kidney from the same donor (23 g) was successfully transplanted immediately after HAR and subsequent removal of a first porcine kidney (20 g). By using appropriate immunohistochemistry stainings of reperfusion biopsies, profound deposition of recipient natural antibodies in both small and large xenografts was shown, with only scarce deposition of C3 and C5b-9 in the latter, indicating only incomplete intragraft activation of the complement cascade in these organs. Intraoperative cardiac output (CO) measurements performed in 7 experiments demonstrated a 20 to 50% decrease in CO following reperfusion in 6 out of 7 grafts irrespective of the donor organ weight. The intraoperative decrease in CO was not associated with perioperative morbidity or mortality. The use of oversized doner kidneys can enable the study of a variety of immunologic and physiologic sequela beyond HAR associated with life-supporting discordant primate kidney transplantation.  相似文献   

16.
Galvao FHF, Soler W, Pompeu E, Waisberg DR, Mello ES, Costa ACL, Teodoro W, Velosa AP, Capelozzi VL, Antonangelo L, Catanozi S, Martins A, Malbouisson LMS, Cruz RJ, Figueira ER, Filho JAR, Chaib E, D′Albuquerque LAC. Immunoglobulin G profile in hyperacute rejection after multivisceral xenotransplantation. Xenotransplantation 2012; 19: 298–304. © 2012 John Wiley & Sons A/S. Abstract: Introduction: Xenotransplantation is a potential solution for the high mortality of patients on the waiting list for multivisceral transplantation; nevertheless, hyperacute rejection (HAR) hampers this practice and motivates innovative research. In this report, we describe a model of multivisceral xenotransplantation in which we observed immunoglobulin G (IgG) involvement in HAR. Methods: We recovered en bloc multivisceral grafts (distal esophagus, stomach, small intestine, colon, liver, pancreas, and kidneys) from rabbits (n = 20) and implanted them in the swine (n = 15) or rabbits (n = 5, control). Three hours after graft reperfusion, we collected samples from all graft organs for histological study and to assess IgG fixation by immunofluorescence. Histopathologic findings were graded according to previously described methods. Results: No histopathological features of rejection were seen in the rabbit allografts. In the swine‐to‐rabbit grafts, features of HAR were moderate in the liver and severe in esophagus, stomach, intestines, spleen, pancreas, and kidney. Xenograft vessels were the central target of HAR. The main lesions included edema, hemorrhage, thrombosis, myosites, fibrinoid degeneration, and necrosis. IgG deposition was intense on cell membranes, mainly in the vascular endothelium. Conclusions: Rabbit‐to‐swine multivisceral xenotransplants undergo moderate HAR in the liver and severe HAR in the other organs. Moderate HAR in the liver suggests a degree of resistance to the humoral immune response in this organ. Strong IgG fixation in cell membranes, including vascular endothelium, confirms HAR characterized by a primary humoral immune response. This model allows appraisal of HAR in multiple organs and investigation of the liver’s relative resistance to this immune response.  相似文献   

17.
Inhibition of complement activation via human membrane-associated complement regulators is known to prevent hyperacute rejection in heart and kidney pig-to-primate transplantation. The protective effect of such strategies in pulmonary xenografts, however, seems to be insufficient. In an ex vivo perfusion, model lungs from donor pigs transgenic for human CD55 (n = 6) or human CD59 (n = 5) were perfused with fresh human blood and compared with nontransgenic organs (n = 6). In addition, a soluble complement component 1 esterase inhibitor (C1-Inh) was applied in h-CD55 transgenic lungs (n = 3). In the h-CD55 transgenic group, survival was prolonged (P < 0.05), quality and maximal time of oxygenation significantly improved and pulmonary vascular resistance reduced compared with the control group. There was a decreased sequestration of platelets, less parenchymal injury and reduced deposition of C(5b-9) in the h-CD55 transgenic group. Additional soluble complement inhibition (C1-Inh) did not prolong survival of h-CD55 transgenic lungs. Survival and pulmonary function in lungs expressing h-CD59 was not significantly different from parameters observed in nontransgenic lungs. In this ex vivo model of pig-to-primate lung transplantation, membrane-based complement inhibition resulted in significantly improved pulmonary function. However, minor histopathological injuries observed in these transgenic xenografts suggested only partial protection from pulmonary dysfunction by complement inhibition alone.  相似文献   

18.
Porcine von Willebrand factor (vWF) activates human and primate platelets. Having determined the importance of pulmonary intravascular macrophages (PIMs) in pulmonary xenotransplantation, we evaluated whether, in the absence of PIMs, vWF might play a role in pulmonary xenograft dysfunction. Utilizing a left single-lung transplant model, baboons depleted of anti-alphaGal antibodies received lungs from either vWF-deficient (n = 2); MCP-expressing (n = 5); MCP PIM-depleted (n = 5); or vWF-deficient PIM-depleted swine (n = 3). Two out of three of the PIM-depleted, pvWF deficient grafts survived longer than any previously reported pulmonary xenografts, including PIM-depleted xenografts expressing human complement regulatory proteins. Depletion of PIM's from vWF-deficient lungs, like depletion of PIM's from hMCP lungs, resulted in abrogation of the coagulopathy associated with pulmonary xenotransplantation. Thus, in terms of pulmonary graft survival, control of adverse reactions involving pvWF appears to be equally or even more important than is complement regulation using hMCP expression. However, based on the rapid failure of PIM-sufficient, pvWF-deficient pulmonary xenografts, pVWF-deficient pulmonary xenografts appear to be particularly sensitive to macrophage-mediated damage. These data provide initial evidence that vWF plays a role in the 'delayed' (24 h) dysfunction observed in pulmonary xenotransplantation using PIM depleted hMCP organs.  相似文献   

19.
OBJECTIVE: Pulmonary transplantation has become the preferred treatment for end-stage lung disease, but application of the procedure is limited because of a paucity of donors. One way to solve donor limitations is to use animal organs as a donor source or xenotransplantation. The current barrier to pulmonary xenotransplantation is the rapid failure of the pulmonary xenograft. Although antibodies are known to play a role in heart and kidney xenograft rejection, their involvement in lung dysfunction is less defined. This project was designed to define the role of antibodies in pulmonary graft rejection in a pig-to-baboon model. METHODS: Orthotopic transgenic swine left lung transplants were performed in baboons depleted of antibodies by one of three techniques before transplantation: (1) ex vivo swine kidney perfusion, (2) total immunoglobulin-depleting column perfusion, and (3) ex vivo swine lung perfusion. Results were compared with those of transgenic swine lung transplants in unmodified baboons. RESULTS: All three techniques of antibody removal resulted in depletion of xenoreactive antibodies. Only pretransplantation lung perfusion improved pulmonary xenograft function compared with lung transplantation in unmodified baboons. CONCLUSIONS: The pathogenesis of pulmonary injury in a swine-to-primate transplant model is different from that in renal and cardiac xenografts. Depletion of antibodies alone does not have a beneficial effect and may actually be detrimental.  相似文献   

20.
The introduction of h-DAF transgenic porcine organs into pre-clinical pig-to-primate discordant xenotransplantation has led to complete and reliable abrogation of hyperacute xenograft rejection (HAR). Despite additional heavy immunosuppression however, most xenografts are still lost due to acute vascular rejection (AVR), with current treatment protocols being of only limited value. In a life-supporting model of pig-to-primate kidney transplantation, unmodified (n=8) or h-DAF-transgenic (n=9) porcine kidneys were transplanted into cynomolgus monkeys under cyclophosphamide (CyP), cyclosporine and low-dose steroid immunosuppression. Longest recipient survival was 11 days in the control group and 68 days in the h-DAF transgenic group. Stable initial graft function with recipient survival >4 days was generated in eight animals (two controls and six transgenics). In these animals, plasma complement levels were analyzed during ongoing AVR. Compared with baseline levels, a two-fold increase in C3a levels and a four-fold increase in sC5b-9 levels were measured. In parallel to systemic complement activation, increased deposition of C3 and C5b-9 along with massive staining for recipient IgM immunoglobulins was detected in the xenografts on immunohistochemistry. We conclude that acute vascular xenograft rejection of porcine kidneys in cynomolgus monkeys is associated with classical pathway complement activation following binding of induced recipient anti-porcine antibodies. This complement activation can be observed despite membrane bound expression of human complement regulators in the porcine xenografts. Therefore, additional short-term fluid phase complement inhibition seems necessary for the future development of protocols designed for treatment of AVR in the pig-to-primate combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号