首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: To evaluate the impact of low-threshold compression and hearing aid style (in-the-ear [ITE] versus behind-the-ear [BTE]) on the directional benefit and performance of commercially available directional hearing aids. DESIGN: Forty-seven adult listeners with mild-to-moderate sensorineural hearing loss were fit bilaterally with one BTE and four different ITE hearing aids. Speech recognition performance was measured through the Connected Speech Test (CST) and Hearing in Noise Test (HINT) for a simulated noisy restaurant environment. RESULTS: For both the HINT and CST, speech recognition performance was significantly greater for subjects fit with directional in comparison with omnidirectional microphone hearing aids. Performance was significantly poorer for the BTE instrument in comparison with the ITE hearing aids when using omnidirectional microphones. No differences were found for directional benefit between compression and linear fitting schemes. CONCLUSIONS: No systematic relationship was found between the relative directional benefit and hearing aid style; however, the speech recognition performance of the subjects was somewhat predictable based on Directivity Index measures of the individual hearing aid models. The fact that compression did not interact significantly with microphone type agrees well with previously reported electroacoustic data.  相似文献   

2.
This study examined speech intelligibility and preferences for omnidirectional and directional microphone hearing aid processing across a range of signal-to-noise ratios (SNRs). A primary motivation for the study was to determine whether SNR might be used to represent distance between talker and listener in automatic directionality algorithms based on scene analysis. Participants were current hearing aid users who either had experience with omnidirectional microphone hearing aids only or with manually switchable omnidirectional/directional hearing aids. Using IEEE/Harvard sentences from a front loudspeaker and speech-shaped noise from three loudspeakers located behind and to the sides of the listener, the directional advantage (DA) was obtained at 11 SNRs ranging from -15 dB to +15 dB in 3 dB steps. Preferences for the two microphone modes at each of the 11 SNRs were also obtained using concatenated IEEE sentences presented in the speech-shaped noise. Results revealed that a DA was observed across a broad range of SNRs, although directional processing provided the greatest benefit within a narrower range of SNRs. Mean data suggested that microphone preferences were determined largely by the DA, such that the greater the benefit to speech intelligibility provided by the directional microphones, the more likely the listeners were to prefer that processing mode. However, inspection of the individual data revealed that highly predictive relationships did not exist for most individual participants. Few preferences for omnidirectional processing were observed. Overall, the results did not support the use of SNR to estimate the effects of distance between talker and listener in automatic directionality algorithms.  相似文献   

3.
Luts H  Maj JB  Soede W  Wouters J 《Ear and hearing》2004,25(5):411-420
OBJECTIVE: To evaluate the improvement in speech intelligibility in noise obtained with an assistive real-time fixed endfire array of bidirectional microphones in comparison with an omnidirectional hearing aid microphone in a realistic environment. DESIGN: The microphone array was evaluated physically in anechoic and reverberant conditions. Perceptual tests of speech intelligibility in noise were carried out in a reverberant room, with two types of noise and six different noise scenarios with single and multiple noise sources. Ten normal-hearing subjects and 10 hearing aid users participated. The speech reception threshold for sentences was measured in each test setting for the omnidirectional microphone of the hearing aid and for the hearing aid in combination with the array with one and three active microphones. In addition, the extra improvement of five active array microphones, relative to three, was determined in another group of 10 normal-hearing listeners. RESULTS: Improvements in speech intelligibility in noise obtained with the array relative to an omnidirectional microphone depend on noise scenario and subject group. Improvements up to 12 dB for normal-hearing and 9 dB for hearing-impaired listeners were obtained with three active array microphones relative to an omnidirectional microphone for one noise source at 90 degrees . For three uncorrelated noise sources at 90 degrees, 180 degrees, and 270 degrees, improvements of approximately 9 dB and 6 dB were obtained for normal-hearing and hearing-impaired listeners, respectively. Even with a single noise source at 45 degrees, benefits of 4 dB were achieved in both subject groups. Five active microphones in the array can provide an additional improvement at 45 degrees of approximately 1 dB, relative to the three-microphone configuration for normal-hearing listeners. CONCLUSIONS: These improvements in signal-to-noise ratio can be of great benefit for hearing aid users, who have difficulties with speech understanding in noisy environments.  相似文献   

4.
This investigation assessed the extent to which listeners’ preferences for hearing aid microphone polar patterns vary across listening environments, and whether normal-hearing and inexperienced and experienced hearing-impaired listeners differ in such preferences. Paired-comparison judgments of speech clarity (i.e. subjective speech intelligibility) were made monaurally for recordings of speech in noise processed by a commercially available hearing aid programmed with an omnidirectional and two directional polar patterns (cardioid and hypercardioid). Testing environments included a sound-treated room, a living room, and a classroom. Polar-pattern preferences were highly reliable and agreed closely across all three groups of listeners. All groups preferred listening in the sound-treated room over listening in the living room, and preferred listening in the living room over listening in the classroom. Each group preferred the directional patterns to the omnidirectional pattern in all room conditions. We observed no differences in preference judgments between the two directional patterns or between hearing-impaired listeners’ extent of amplification experience. Overall, findings indicate that listeners perceived qualitative benefits from microphones having directional polar patterns.  相似文献   

5.
This investigation assessed the extent to which listeners' preferences for hearing aid microphone polar patterns vary across listening environments, and whether normal-hearing and inexperienced and experienced hearing-impaired listeners differ in such preferences. Paired-comparison judgments of speech clarity (i.e. subjective speech intelligibility) were made monaurally for recordings of speech in noise processed by a commercially available hearing aid programmed with an omnidirectional and two directional polar patterns (cardioid and hypercardioid). Testing environments included a sound-treated room, a living room, and a classroom. Polar-pattern preferences were highly reliable and agreed closely across all three groups of listeners. All groups preferred listening in the sound-treated room over listening in the living room, and preferred listening in the living room over listening in the classroom. Each group preferred the directional patterns to the omnidirectional pattern in all room conditions. We observed no differences in preference judgments between the two directional patterns or between hearing-impaired listeners' extent of amplification experience. Overall, findings indicate that listeners perceived qualitative benefits from microphones having directional polar patterns.  相似文献   

6.
In this study speech intelligibility in background noise was evaluated with 10 binaural hearing-aid users for hearing aids with one omnidirectional microphone and a hearing aid with a two-microphone configuration (enabling an omnidirectional as well as a directional mode). Signal-to-noise ratio (SNR) measurements were carried out for three different types of background noise (speech-weighted noise, traffic noise and restaurant noise) and two kinds of speech material (bisyllabic word lists and sentences). The average SNR improvement of the directional microphone configuration relative to the omnidirectional one was 3.4 dB for noise presented from 90 degrees azimuth. This improvement was independent of the specific type of noise and speech material, indicating that one speech-in-noise condition may yield enough relevant information in the evaluation of directional microphones and speech understanding in noise.  相似文献   

7.
Ricketts T 《Ear and hearing》2000,21(4):318-328
OBJECTIVE: To evaluate the impact of head turn and monaural and binaural fittings on the sentence reception thresholds of hearing-impaired listeners wearing directional and omnidirectional hearing aids. DESIGN: Sentence reception thresholds were measured for 20 listeners fit monaurally and binaurally with behind-the-ear hearing aids set in both directional and omnidirectional modes. All listeners exhibited symmetrical, sloping, sensorineural hearing loss. The aided performance across these four fittings was evaluated for three different head and body angles. The three angles reflected body turns of 0 degrees, 15 degrees, and 30 degrees as measured relative to the primary sound source, with 0 degrees denoting the listener directly facing the sound source. Listeners were instructed to keep their heads in a fixed horizontal position and turn their heads and bodies to face visual targets at the three test angles. Sentences from the Hearing in Noise Test presented with a background of five, spatially separated, uncorrelated samples of cafeteria noise served as test material. All testing was performed in a moderately reverberant (Rt = 631 msec) "living room" environment. RESULTS: Participants generally performed significantly better when fit with directional versus omnidirectional hearing aids, and when fit binaurally versus monaurally across test conditions. The measured "binaural advantage" was reduced with increasing head angle. Participants performed significantly better with a 30 degree head angle than when directly facing the primary speaker. This "head turn advantage" was most prominent for monaural (versus binaural) conditions. Binaural and head turn advantages were not significantly different across directional and omnidirectional modes. CONCLUSIONS: These data provide additional support for the use of directional hearing aids and binaural amplification to improve speech intelligibility in noisy environments. The magnitude of these advantages was similar to that reported in previous investigations. The data also showed that hearing aid wearers achieved significantly better speech intelligibility in noise by turning their heads and bodies to a position in which they were not directly facing the sound source. This head turn advantage was in good agreement with the increase in Directivity Index with head turn and reflected the fact that hearing aids are generally most sensitive to sounds arriving from angles other than directly in front of the hearing aid wearer. Although these data suggest that many monaural hearing aid wearers may significantly improve speech intelligibility in noise through the use of head turn, the interaction between this advantage and the potential loss of visual cues with head turn is unknown.  相似文献   

8.
OBJECTIVE: The purpose of the current investigation was to systematically examine two of the assumptions central to the application of Articulation Index weighted Directivity Index (AI-DI) to the prediction of directional benefit across three groups of listeners differentiated by degree and configuration of hearing loss. Specifically, the assumption that (1) changes in speech recognition performance are predictable from frequency specific changes in calculated audibility after applying directivity index (DI) values and (2) applying appropriate frequency importance functions would increase the accuracy of AI-DI predictions of directional benefit were evaluated. DESIGN: The output of a single hearing aid for a speech in noise input was recorded to produce high and low directivity (directional and omnidirectional microphone modes) segments. These segments were then high-pass and low-pass filtered into low- and high-frequency regions and acoustically mixed to generate the eight frequency-specific directivity combinations. All recordings were made through an acoustic manikin placed in a single room, surrounded by five uncorrelated noise sources. The aided sentence recognition, in noise, for three groups of 12 adult participants with symmetrical sensorineural hearing impairment, was then measured across the eight listening conditions. The three groups were differentiated by degree and type of hearing loss including "sloping," "flat," and "severe" configurations.The frequency-specific DI values for each of the eight listening conditions were applied to the calculation of frequency specific noise levels. These corrected noise levels were then used to calculate an Articulation Index using the Speech Intelligibility Index (SII, ). These SII values were then compared with measured speech recognition under the same eight listening conditions.Directional benefit values were then calculated by subtracting the performance of individual participants on the Connected Speech Test (CST) in omnidirectional mode from performance in all other filter conditions. The changes in average DI and AI-DI (using three different frequency importance functions) that existed between omnidirectional and the other seven filter conditions were then calculated for comparison to directional benefit values. RESULTS: The speech recognition data revealed a complex interaction between filter condition and group. Despite this interaction, highly significant positive correlations were found between participants' speech recognition scores and the corresponding SII calculation for all three hearing loss groups.Individual subjects' measured directional benefit was highly correlated with changes in DI. Similar correlations were found for average DI and all three AI-DI weighting methods. CONCLUSIONS: As expected, performance and calculated SII values were in good agreement across conditions supporting the hypothesis that DI provides a reasonable frequency-specific estimate of signal-to-noise ratio changes in the test environment. The results further support the use of AI-DI or average DI for prediction of directional benefit. The choice of importance weighting across frequency (flat or frequency importance function based), however, did not improve the accuracy of these predictions; therefore, a simple average DI is advocated. Further, the prediction of absolute directional benefit across hearing loss groups from traditional AI-DI calculations may lead to error if the negative effects of hearing loss on speech understanding, and how these effects vary with degree of hearing loss, are not considered as a contributing factor.  相似文献   

9.
10.
Chung K  Nelson L  Teske M 《Hearing research》2012,291(1-2):41-51
The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI?+?NR), and adaptive directional microphone plus noise reduction algorithm (ADM?+?NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed.  相似文献   

11.
OBJECTIVE: The purpose of this experiment was to systematically examine hearing aid benefit as measured by speech recognition and self-assessment methods across omnidirectional and directional hearing aid modes. These data were used to compare directional benefit as measured by speech recognition in the laboratory to hearing aid wearer's perceptions of benefit in everyday environments across full-time directional, full-time omnidirectional, and user selectable directional fittings. Identification of possible listening situations that resulted in different self reported hearing aid benefit as a function of microphone type was a secondary objective of this experiment. DESIGN: Fifteen adults with symmetrical, sloping sensorineural hearing loss were fitted bilaterally with in-the-ear (ITE) directional hearing aids. Measures of hearing aid benefit included the Profile of Hearing Aid Benefit (PHAB), the Connected Sentence Test (CST), the Hearing in Noise Test (HINT), and a daily use log. Additionally, two new subscales were developed for administration with the PHAB. These subscales were developed to specifically address situations in which directional hearing aids may provide different degrees of benefit than omnidirectional hearing aids. Participants completed these measures in three conditions: omnidirectional only (O), directional only with low-frequency gain compensation (D), and user-selectable directional/omnidirectional (DO). RESULTS: Results from the speech intelligibility in noise testing indicated significantly more hearing aid benefit in directional modes than omnidirectional. PHAB results indicated more benefit on the background noise subscale (BN) in the DO condition than in the O condition; however, this directional advantage was not present for the D condition. Although the reliability of the newly proposed subscales is as yet unknown, the data were interpreted as revealing a directional advantage in situations where the signal of interest was in front of the participant and a directional disadvantage in situations where the signal of interest was behind the listener or localization was required. CONCLUSIONS: Laboratory directional benefit is reflected in self-assessment measures that focus on listening in noise when the sound source of interest is in front of the listener. The use of a directional hearing aid mode; however, may have either a positive, a neutral, or a negative impact on hearing aid benefit measured in noisy situations, depending on the specific listening situation.  相似文献   

12.
OBJECTIVE: The benefits of directional processing in hearing aids are well documented in laboratory settings. Likewise, substantial research has shown that speech understanding is optimized in many settings when listening binaurally. Although these findings suggest that speech understanding would be optimized by using bilateral directional technology (e.g., a symmetric directional fitting), recent research suggests similar performance with an asymmetrical fitting (directional in one ear and omnidirectional in the other). The purpose of this study was to explore the benefits of using bilateral directional processing, as opposed to an asymmetric fitting, in environments where the primary speech and noise sources come from different directions. DESIGN: Sixteen older adults with mild-to-severe sensorineural hearing loss (SNHL) were recruited for the study. Aided sentence recognition using the Hearing in Noise Test (HINT) was assessed in a moderately reverberant room, in three different speech and noise conditions in which the locations of the speech and noise sources were varied. In each speech and noise condition, speech understanding was assessed in four different microphone modes (bilateral omnidirectional mode; bilateral directional mode; directional mode left and omnidirectional mode right; omnidirectional mode left and directional mode right). The benefits and limitations of bilateral directional processing were assessed by comparing HINT thresholds across the various symmetric and asymmetric microphone processing conditions. RESULTS: Study results revealed directional benefit varied based on microphone mode symmetry (i.e., symmetric versus asymmetric directional processing) and the specific speech and noise configuration. In noise configurations in which the speech was located in the front of the listener and the noise was located to the side or surrounded the listener, maximum directional benefit (approximately 3.3 dB) was observed with the symmetric directional fitting. HINT thresholds obtained when using bilateral directional processing were approximately 1.4 dB better than when an asymmetric fitting (directional processing in only one ear) was used. When speech was located on the side of the listener, the use of directional processing on the ear near the speech significantly reduced speech understanding. CONCLUSIONS: Although directional benefit is present in asymmetric fittings, the use of bilateral directional processing optimizes speech understanding in noise conditions in which the speech comes from in front of the listener and the noise sources are located to the side of or surround the listener. In situations in which the speech is located to the side of the listener, the use of directional processing on the ear adjacent to the speaker is likely to reduce speech audibility and thus degrade speech understanding.  相似文献   

13.
Differences in performance between unaided and aided performance (omnidirectional and directional) were measured using an open-fit behind-the-ear (BTE) hearing aid. Twenty-six subjects without prior experience with amplification were fitted bilaterally using the manufacturer's recommended procedure. After wearing the hearing aids for one week, the fitting parameters were fine-tuned, based on subjective comments. Four weeks later, differences in performance between unaided and aided (omnidirectional and directional) were assessed by measuring reception thresholds for sentences (RTS in dB), using HINT sentences presented at 0 degrees with R-Space restaurant noise held constant at 65dBA and presented via eight loudspeakers set 45 degrees apart. In addition, the APHAB was administered to assess subjective impressions of the experimental aid. Results revealed that significant differences in RTS (in dB) were present between directional and omnidirectional performance, as well as directional and unaided performance. Aided omnidirectional performance, however, was not significantly different from unaided performance. These findings suggest for the hearing aids and experimental condition used in this study, a patient would require directional microphones in order to perform significantly better than unaided or aided with omnidirectional microphones, and that performance with an omnidirectional microphone would not be significantly better than unaided. Finally, the APHAB-aided scores were significantly better than unaided scores for the EC, BN, RV, and AV subscales indicating the subjects, on average, perceived the experimental aid to provide significantly better performance than unaided, and that aided performance was more aversive than unaided.  相似文献   

14.
Differences in performance between unaided and aided performance (omnidirectional and directional) were measured using an open-fit behind-the-ear (BTE) hearing aid. Twenty-six subjects without prior experience with amplification were fitted bilaterally using the manufacturer's recommended procedure. After wearing the hearing aids for one week, the fitting parameters were fine-tuned, based on subjective comments. Four weeks later, differences in performance between unaided and aided (omnidirectional and directional) were assessed by measuring reception thresholds for sentences (RTS in dB), using HINT sentences presented at 0° with R-SpaceTM restaurant noise held constant at 65dBA and presented via eight loudspeakers set 45° apart. In addition, the APHAB was administered to assess subjective impressions of the experimental aid.

Results revealed that significant differences in RTS (in dB) were present between directional and omnidirectional performance, as well as directional and unaided performance. Aided omnidirectional performance, however, was not significantly different from unaided performance. These findings suggest for the hearing aids and experimental condition used in this study, a patient would require directional microphones in order to perform significantly better than unaided or aided with omnidirectional microphones, and that performance with an omnidirectional microphone would not be significantly better than unaided. Finally, the APHAB-aided scores were significantly better than unaided scores for the EC, BN, RV, and AV subscales indicating the subjects, on average, perceived the experimental aid to provide significantly better performance than unaided, and that aided performance was more aversive than unaided.  相似文献   

15.
OBJECTIVE: The performance of an adaptive beam-former in a 2-microphone, behind-the-ear hearing aid for speech understanding in noisy environments was evaluated. Physical and perceptual evaluations were carried out. This was the first large-scale test of a wearable real-time implementation of this algorithm. The main perceptual research questions of this study were related to the influence on the noise reduction performance of (1) the spectro-temporal character of the jammer sound, (2) the jammer sound scene, (3) hearing impairment, and (4) the basic microphone configuration in the hearing aid. Four different speech materials were used for the perceptual evaluations. All tests were carried out in an acoustical environment comparable to living room reverberation. DESIGN: The adaptive beamformer was implemented in Audallion, a small, body-worn processor, linked to a Danasound 2-microphone behind-the-ear aid. The strategy was evaluated physically in different acoustical environments. Using speech reception threshold (SRT) measurements, the processing was evaluated perceptually and the different research questions addressed with three groups of subjects. Groups I, II, and III consisted of 10 normal-hearing, 5 hearing-impaired, and 7 normal-hearing persons, respectively. The tests were carried out in three spectro-temporally different jammer sounds (unmodulated and modulated speech weighted noise, multitalker babble) and in three different noise scenarios (single noise source at 90 degrees, noise sources at 90 degrees and 270 degrees relative to speaker position, diffuse noise scene). Two microphone configurations were compared: a device equipped with two omnidirectional microphones and a device equipped with one hardware directional and one omnidirectional microphone. In each of these conditions, the adaptive beamformer and the directional and omnidirectional microphone configurations were tested. RESULTS: The improvement in signal-to-noise ratio from the use of the adaptive beamformer did not depend on the spectro-temporal character of the jammer sounds and the speech materials used, although the absolute levels of the SRTs varied appreciably for different speech-noise combinations. The performance of the adaptive noise reduction depended on the jammer sound scene. CONCLUSIONS: No difference in signal-to-noise ratio improvement was observed between hearing-impaired and normal-hearing listeners, although individual SRT levels may differ. On average, an SRT improvement of 7.7 and 3.9 dB for a single noise source at 90 degrees and 5.9 and 3.4 dB for two noise sources at 90 degrees and 270 degrees was obtained for both normal-hearing and hearing-impaired listeners, using the adaptive beamformer and the directional microphone, respectively, relative to the omnidirectional microphone signal. In diffuse noise, only small improvements were obtained.  相似文献   

16.
OBJECTIVE: Understanding the potential benefits and limitations of directional hearing aids across a wide range of listening environments is important when counseling persons with hearing loss regarding realistic expectations for these devices. The purpose of this study was to examine the impact of speaker-to-listener distance on directional benefit in two reverberant environments, in which the dominate noise sources were placed close to the hearing aid wearer. In addition, speech transmission index (STI) measures made in the test environments were compared to measured sentence recognition to determine if performance was predictable across changes in distance, reverberation and microphone mode. DESIGN: The aided sentence recognition, in noise, for fourteen adult participants with symmetrical sensorineural hearing impairment was measured in six environmental conditions in both directional and omnidirectional modes. A single room, containing four uncorrelated noise sources served as the test environment. The room was modified to exhibit either low (RT60 = 0.3 sec) or moderate (RT60 = 0.9 sec) levels of reverberation. Sentence recognition was measured in both reverberant environments at three different speech loudspeaker-to-listener distances (1.2 m, 2.4 m, and 4.8 m). STI measures also were made in each of the 12 listening conditions (2 microphone modes x 3 distances x 2 reverberation environments). RESULTS: A decrease in directional benefit was measured with increasing distance in the moderate reverberation condition. Although reduced, directional benefit was still present in the moderately reverberant environment at the farthest speech speaker-to-listener distance tested in this experiment. A similar decrease with increasing speaker-to-listener distance was not measured in the low reverberation condition. The pattern of average sentence recognition results across varying distances and two different reverberation times agreed with the pattern of STI values measured under the same conditions. CONCLUSIONS: Although these data support increased directional benefit in noise for reduced speaker-to-listener distance, some benefit was still obtained by listeners when listening beyond "effective" critical distance under conditions of low (300 msec) to moderate (900 msec) reverberation. It is assumed that the directional benefit was due to the reduction of the direct sound energy from the noise sources near the listener. The use of aided STI values for the prediction of average word recognition across listening conditions that differ in reverberation, microphone directivity, and speaker-to-listener distance also was supported.  相似文献   

17.
The purpose of this study was to assess the relationship between the directivity of a directional microphone hearing aid and listener performance. Hearing aids were fit bilaterally to 19 subjects with sensorineural hearing loss, and five microphone conditions were assessed: omnidirectional, cardioid, hypercardioid, supercardioid, and "monofit," wherein the left hearing aid was set to omnidirectional and the right hearing aid to hypercardioid. Speech perception performance was assessed using the Hearing in Noise Test (HINT) and the Connected Speech Test (CST). Subjects also assessed eight domains of sound quality for three stimuli (speech in quiet, speech in noise, and music). A diffuse soundfield system composed of eight loudspeakers forming the corners of a cube was used to output the background noise for the speech perception tasks and the three stimuli used for sound quality judgments. Results indicated that there were no significant differences in the HINT or CST performance, or sound quality judgments, across the four directional microphone conditions when tested in a diffuse field. Of particular interest was the monofit condition: Performance on speech perception tests was the same whether one or two directional microphones were used.  相似文献   

18.

Objectives

The goal of the present study was to examine whether Acceptable Noise Levels (ANLs) would be lower (greater acceptance of noise) in binaural listening than in monaural listening condition and also whether meaningfulness of background speech noise would affect ANLs for directional microphone hearing aid users. In addition, any relationships between the individual binaural benefits on ANLs and the individuals'' demographic information were investigated.

Methods

Fourteen hearing aid users (mean age, 64 years) participated for experimental testing. For the ANL calculation, listeners'' most comfortable listening levels and background noise level were measured. Using Korean ANL material, ANLs of all participants were evaluated under monaural and binaural amplification with a counterbalanced order. The ANLs were also compared across five types of competing speech noises, consisting of 1- through 8-talker background speech maskers. Seven young normal-hearing listeners (mean age, 27 years) participated for the same measurements as a pilot testing.

Results

The results demonstrated that directional hearing aid users accepted more noise (lower ANLs) with binaural amplification than with monaural amplification, regardless of the type of competing speech. When the background speech noise became more meaningful, hearing-impaired listeners accepted less amount of noise (higher ANLs), revealing that ANL is dependent on the intelligibility of the competing speech. The individuals'' binaural advantages in ANLs were significantly greater for the listeners with longer experience of hearing aids, yet not related to their age or hearing thresholds.

Conclusion

Binaural directional microphone processing allowed hearing aid users to accept a greater amount of background noise, which may in turn improve listeners'' hearing aid success. Informational masking substantially influenced background noise acceptance. Given a significant association between ANLs and duration of hearing aid usage, ANL measurement can be useful for clinical counseling of binaural hearing aid candidates or unsuccessful users.  相似文献   

19.
The improvement in speech recognition in noise obtained with directional microphones compared to omnidirectional microphones is referred to as the directional advantage. Laboratory studies have revealed substantial differences in the magnitude of the directional advantage across hearing-impaired listeners. This investigation examined whether persons who were successful users of directional microphone hearing aids in everyday living tended to obtain a larger directional advantage in the test booth than persons who were unsuccessful users. Results revealed that the mean directional advantage did not differ significantly between patients who used the directional mode regularly and those who reported little or no benefit from directional microphones in daily living and, therefore, tended to leave their hearing aids set in the default omnidirectional mode. Success with directional microphone hearing aids in everyday living, therefore, cannot be reliably predicted by the magnitude of the directional advantage obtained in the clinic.  相似文献   

20.
OBJECTIVE: To evaluate the impact of venting, microphone port orientation, and compression on the electroacoustically measured directivity of directional and omnidirectional behind-the-ear hearing aids. In addition, the average directivity provided across three brands of directional and omnidirectional behind-the-ear hearing aids was compared with that provided by the open ear. DESIGN: Three groups of hearing aids (four instruments in each group) representing three commercial models (a total of 12) were selected for electroacoustic evaluation of directivity. Polar directivity patterns were measured and directivity index was calculated across four different venting configurations, and for five different microphone port angles. All measurements were made for instruments in directional and omnidirectional modes. Single source traditional, and two-source modified front-to-back ratios were also measured with the hearing aids in linear and compression modes. RESULTS: The directivity provided by the open (Knowles Electronics Manikin for Acoustic Research) ear was superior to that of the omnidirectional hearing aids in this study. Although the directivity measured for directional hearing aids was significantly better than that of omnidirectional models, significant variability was measured both within and across the tested models both on average and at specific test frequencies. Both venting and microphone port orientation affected the measured directivity. Although compression reduced the magnitude of traditionally measured front-to-back ratios, no difference from linear amplification was noted using a modified methodology. CONCLUSIONS: The variation in the measured directivity both within and across the directional microphone hearing aid brands suggests that manufacturer's specification of directivity may not provide an accurate index of the actual performance of all individual instruments. The significant impact of venting and microphone port orientation on directivity indicate that these variables must be addressed when fitting directional hearing aids on hearing-impaired listeners. Modified front-to-back ratio results suggest that compression does not affect the directivity of hearing aids, if it is assumed that the signal of interest from one azimuth, and the competing signal from a different azimuth, occur at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号