首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Carbon nanotubes may enter into the bloodstream and interact with blood components indirectly via translocation following unintended exposure or directly after an intended administration for biomedical purposes. Once introduced into systemic circulation, nanotubes will encounter various proteins, biomolecules or cells which have specific roles in the homeostasis of the circulatory system. It is therefore essential to determine whether those interactions will lead to adverse effects or not. Advances in the understanding of how carbon nanotubes interact with blood proteins, the complement system, red blood cells and the hemostatic system are reviewed in this article. While many studies on carbon nanotube health risk assessment and their biomedical applications have appeared in the last few years, reports on the hemocompatibility of these nanomaterials remain surprisingly limited. Yet, defining the hemotoxicological profile is a mandatory step toward the development of clinically-relevant medications or contrast agents based on carbon nanotubes.  相似文献   

2.
Carbon nanofibers and carbon nanotubes in regenerative medicine   总被引:2,自引:0,他引:2  
Carbon nanotubes and carbon nanofibers have long been investigated for applications in composite structural materials, semiconductor devices, and sensors. With the recent well-documented ability to chemically modify nanofibrous carbon materials to improve their solubility and biocompatibility properties: a whole new class of bioactive carbon nanostructures has been created for biological applications. This review focuses on the latest applications of carbon nanofibers and carbon nanotubes in regenerative medicine.  相似文献   

3.
Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have the ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs.  相似文献   

4.
Carbon nanotubes are considered as molecular wires exhibiting novel properties for diverse applications including medicinal and biotechnological purposes. Surface chemistry on carbon nanotubes results on their solubilization in organic solvents and/or aqueous/physiological media. Herein, we will present how interfacing such novel carbon-based nanomaterials with biological systems may lead to new applications in diagnostics, vaccine and drug delivery. Recent developments in this rapidly growing field will be presented thus suggesting exciting opportunities for the utilization of carbon nanotubes as useful tools for biotechnological applications. Emphasis will be placed in the integration of biomaterials with carbon nanotubes, which enables the use of such hybrid systems as biosensor devices, immunosensors and DNA-sensors.  相似文献   

5.
Importance of the field: The possibility of carbon nanotube integration into living systems for therapeutic and diagnostic purposes has opened the way to explore their applications in drug delivery and discovery. A wide variety of chemical approaches has been developed to functionalize carbon nanotubes with therapeutic molecules towards different biomedical uses. Areas covered in this review: This review covers the recent advances in the development of functionalized carbon nanotubes to offer improvements for different diseases, in particular for cancer therapy. What the reader will gain: Functionalized carbon nanotubes are able to transport therapeutic agents. Targeted methodologies using carbon nanotube-based conjugates have been investigated to improve the efficacy of some drugs. The capacity of such nanomaterials to seamlessly translocate into cells with alternative various mechanisms and their pharmacokinetic properties is also discussed. Take home message: Although at its infancy, functionalized carbon nanotubes are very promising as a new nanomedicine platform in the field of drug discovery and delivery. They have the capacity to cross biological barriers and can be eliminated via renal and/or fecal excretion. They can transport small drug molecules while maintaining - and in some cases improving - their therapeutic efficacy.  相似文献   

6.
Carbon nanotubes have the potential to address the challenges of combating infectious agents by both minimizing toxicity by dose reduction of standard therapeutics and allowing a multiple payload capacity to achieve both targeted activity and combating infectious strains, resistant strains in particular. One of their unique characteristics is the network of carbon atoms in the nanometer scale, allowing the creation of nano-channels via cellular membranes. This review focuses on the characterization, development, integration and application of carbon nanotubes as nanocarrier-based delivery systems and their appropriate design for achieving the desired drug delivery results in the different areas of infectious diseases. While a more extensive toxicological and pharmacological profile must be obtained, this review will focus on existing research and pre-clinical data concerning the potential use of carbon nanotubes.  相似文献   

7.
The application of nanomedicines in oral drug delivery effectively promotes the drug absorption and transportation through enterocytes. Nevertheless, the absence of mechanism studies on efficacy and safety limits their final translation in humans. Although the vesicular trafficking has been verified as the general character for transport of nanomedicines, the deeper mechanism in molecular mechanism is still unclear. Moreover, the cellular transport of nanomedicines is a dynamic process involved by different organelles and components. However, most of existing studies just pay attention to the static location of nanomedicines, but neglect the dynamic biological effects on cells caused by them. Here, we prepared gold nanoparticles (AuNPs) as the model and cultured epithelial cell monolayer to explore the nano-bio interactions at the molecular level. The traditional pharmacological inhibition strategy and subcellular imaging technology elucidated the macropinocytosis/endosome/MVB/lysosome pathway during the transportation of AuNPs. Proteomics strategy based on mass spectrometry (MS) was utilized to identify and quantify proteins involved in the cellular transport of nanomedicines. Multiple proteins related to subcellular structure, signal transduction, energy transformation and metabolism regulation were demonstrated to be regulated by nanoparticle transport. These alterations of protein expression clarified the effects of intracellular proteins and verified the conventional findings. More importantly, it revealed a feedback mechanism of cells to the nano-trafficking. We believed that these new regulatory mechanisms provided new insights into the efficient transport of nanomedicines through epithelial barriers.  相似文献   

8.
The extracellular environment which supports cell life is composed of a hierarchy of maintenance, force and regulatory systems which integrate from the nano- through to macroscale. For this reason, strategies to recreate cell supporting environments have been investigating the use of nanocomposite biomaterials. Here, we review the use of carbon nanotubes as part of a bottom-up approach for use in bone tissue engineering. We evaluate the properties of carbon nanotubes in the context of synthetic tissue substrates and contrast them with the nanoscale features of the extracellular environment. Key studies are evaluated with an emphasis on understanding the mechanisms through which carbon nanotubes interact with biological systems. This includes an examination of how the different properties of carbon nanotubes affect tissue growth, how these properties and variation to them might be leveraged in regenerative tissue therapies and how impurities or contaminates affect their toxicity and biological interaction.From the Clinical EditorIn this comprehensive review, the authors describe the status and potential applications of carbon nanotubes in bone tissue engineering.  相似文献   

9.
Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one‐ to two‐cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube‐filled, punctate masses, at the blastula to mid‐gastrula developmental stages, which we call “boluses.” Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127‐coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Multi-walled carbon nanotubes induce T lymphocyte apoptosis   总被引:15,自引:0,他引:15  
Carbon nanotubes are a man-made form of carbon that did not exist in our environment until very recently. Due to their unique chemical, physical, optical, and magnetic properties, carbon nanotubes have found many uses in industrial products and in the field of nanotechnology, including in nanomedicine. However, very little is yet known about the toxicity of carbon nanotubes. Here, we compare the toxicity of pristine and oxidized multi-walled carbon nanotubes on human T cells and find that the latter are more toxic and induce massive loss of cell viability through programmed cell death at doses of 400 microg/ml, which corresponds to approximately 10 million carbon nanotubes per cell. Pristine, hydrophobic, carbon nanotubes were less toxic and a 10-fold lower concentration of either carbon nanotube type were not nearly as toxic. Our results suggest that carbon nanotubes indeed can be very toxic at sufficiently high concentrations and that careful toxicity studies need to be undertaken particularly in conjunction with nanomedical applications of carbon nanotubes.  相似文献   

11.
Promising therapeutic and prophylactic effects have been achieved following advances in the gene therapy research arena, giving birth to the new generation of disease-modifying therapeutics. The greatest challenge that gene therapy vectors still face is the ability to deliver sufficient genetic payloads in order to enable efficient gene transfer into target cells. A wide variety of viral and non-viral gene therapy vectors have been developed and explored over the past 10 years, including carbon nanotubes. In this review we will address the application of carbon nanotubes as non-viral vectors in gene therapy with the aim to give a perspective on the past achievements, present challenges and future goals. A series of important topics concerning carbon nanotubes as gene therapy vectors will be addressed, including the benefits that carbon nanotubes offer over other non-viral delivery systems. Furthermore, a perspective is given on what the ideal genetic cargo to deliver using carbon nanotubes is and finally the geno-pharmacological impact of carbon nanotube-mediated gene therapy is discussed.  相似文献   

12.
Carbon nanotubes have gained tremendous interest in a wide range of applications due to their unique physical, chemical, and electronic properties. Needless to say, close attention to the potential toxicity of carbon nanotubes is of paramount importance. Numerous studies have linked exposure of carbon nanotubes to the induction of inflammation, a complex protective response to harmful stimuli including pathogens, damaged or dying cells, and other irritants. However, inflammation is a double-edged sword as chronic inflammation can lead to destruction of tissues thus compromising the homeostasis of the organism. Here, we provide an overview of the process of inflammation, the key cells and the soluble mediators involved, and discuss research on carbon nanotubes and inflammation, including recent studies on the activation of the so-called inflammasome complex in macrophages resulting in secretion of pro-inflammatory cytokines. Moreover, recent work has shown that inflammatory cells i.e. neutrophils and eosinophils are capable of enzymatic degradation of carbon nanotubes, with mitigation of the pro-inflammatory and pro-fibrotic effects of nanotubes thus underscoring that inflammation is both good and bad.  相似文献   

13.
The field of nanomedicine is a rapidly growing scientific domain. Nanomedicine encompasses a diverse number of active pharmaceutical ingredients. Submissions of Investigational New Drugs and New Drug Applications have risen dramatically over the last decade. There are over 50 nanomedicines approved for use by the US Food and Drug Administration (FDA). Because of the fundamental role pharmacists will play in therapeutic and administrative decisions regarding nanomedicines, it is imperative for future pharmacists to gain exposure early in their training to this rapidly evolving class of drugs. This commentary describes nanomedicines, discusses current regulatory challenges, and provides recommendations for judicious incorporation of nanomedicine topics into the Doctor of Pharmacy curriculum based on emerging pharmaceutical and clinical science applications.  相似文献   

14.
《药学学报(英文版)》2022,12(7):3028-3048
Compared with traditional drug therapy, nanomedicines exhibit intriguing biological features to increase therapeutic efficiency, reduce toxicity and achieve targeting delivery. This review provides a snapshot of nanomedicines that have been currently launched or in the clinical trials, which manifests a diversified trend in carrier types, applied indications and mechanisms of action. From the perspective of indications, this article presents an overview of the applications of nanomedicines involving the prevention, diagnosis and treatment of various diseases, which include cancer, infections, blood disorders, cardiovascular diseases, immuno-associated diseases and nervous system diseases, etc. Moreover, the review provides some considerations and perspectives in the research and development of nanomedicines to facilitate their translations in clinic.  相似文献   

15.
Importance of the field: The possibility of carbon nanotube integration into living systems for therapeutic and diagnostic purposes has opened the way to explore their applications in drug delivery and discovery. A wide variety of chemical approaches has been developed to functionalize carbon nanotubes with therapeutic molecules towards different biomedical uses.

Areas covered in this review: This review covers the recent advances in the development of functionalized carbon nanotubes to offer improvements for different diseases, in particular for cancer therapy.

What the reader will gain: Functionalized carbon nanotubes are able to transport therapeutic agents. Targeted methodologies using carbon nanotube-based conjugates have been investigated to improve the efficacy of some drugs. The capacity of such nanomaterials to seamlessly translocate into cells with alternative various mechanisms and their pharmacokinetic properties is also discussed.

Take home message: Although at its infancy, functionalized carbon nanotubes are very promising as a new nanomedicine platform in the field of drug discovery and delivery. They have the capacity to cross biological barriers and can be eliminated via renal and/or fecal excretion. They can transport small drug molecules while maintaining – and in some cases improving – their therapeutic efficacy.  相似文献   

16.
《Nanotoxicology》2013,7(4):396-408
Abstract

The development of novel engineered nano-sized materials is a rapidly emerging technology with many applications in medicine and industry. In vitro and in vivo studies have suggested many deleterious effects of carbon nanotube exposure including granulomatous inflammation, release of cytosolic enzymes, pulmonary fibrosis, reactive oxygen damage, cellular atypia, DNA fragmentation, mutation and errors in chromosome number as well as mitotic spindle disruption. The physical properties of the carbon nanotubes make respiratory exposure to workers likely during the production or use of commercial products. Many of the investigations of the genotoxicity of carbon nanotubes have focused on reactive oxygen mediated DNA damage; however, the long thin tubular-shaped carbon nanotubes have a striking similarity to cellular microtubules. The similarity of carbon nanotubes to microtubules suggests a potential to interact with cellular biomolecules, such as the mitotic spindle, as well as the motor proteins that separate the chromosomes during cell division. Disruption of centrosomes and mitotic spindles would result in monopolar, tripolar, and quadrapolar divisions of chromosomes. The resulting aneuploidy is a key mechanism in the potential carcinogenicity of carbon nanotubes.  相似文献   

17.
The increasing use of carbon nanotubes (CNTs) in biomedical applications has garnered a great concern on their potential negative effects to human health. CNTs have been reported to potentially disrupt normal neuronal function and they were speculated to accumulate and cause brain damage, although a lot of distinct and exceptional properties and potential wide applications have been associated with this material in neurobiology. Fe impurities strapped inside the CNTs may be partially responsible for neurotoxicity generation. In the present study, we selected rat pheochromocytoma (PC12) cells to investigate and compare the effects of two kinds of multiwall carbon nanotubes (MWCNTs) with different concentrations of Fe impurities which usually come from the massive production of CNTs by chemical vapor deposition. Exposure to Fe-high MWCNTs can reduce cell viability and increase cytoskeletal disruption of undifferentiated PC12 cells, diminish the ability to form mature neurites, and then adversely influence the neuronal dopaminergic phenotype in NGF-treated PC-12 cells. The present results highlight the critical role of iron residue in the adverse response to MWCNTs exposure in neural cells. These findings provide useful information for understanding the toxicity and safe application of carbon nanotubes.  相似文献   

18.
A vast variety of nanomaterials have been developed in the recent years, being carbon nanotubes (CNTs) the ones that have attracted more attention, due to its unique properties which make them suitable for numerous applications. Consequently, it is predicted that tons of CNTs will be produced worldwide every year, being its exposure of toxicological concern. Nanomaterials, once into the body, can translocate from the uptake sites to the blood circulation or the lymphatic system, resulting in distribution throughout the body. Thus, the vascular endothelium can be in contact with them and can suffer from their toxic effects. In this regard, the aim of this work was to investigate the cytotoxicity of single-walled carbon nanotubes (SWCNTs) on human endothelial cells evaluating the influence of acid carboxylic functionalization and also the exposure time (24 and 48 h). Biomarkers assessed were neutral red uptake, protein content, a tetrazolium salt metabolization and cell viability by means of the Trypan blue exclusion test. Cells were exposed to concentrations between 0 and 800 μg/mL SWCNTs for 24 and 48 h. Results have shown that both SWCNTs and carboxylic acid functionalized single-walled carbon nanotubes (COOH-SWCNTs) induce toxic effects in HUVEC cells in a concentration- and time-dependent way. Moreover, the carboxylic acid functionalization results in a higher toxicity compared to the SWCNTs.  相似文献   

19.
A diverse array of nanomaterials such as nanosilicas and carbon nanotubes are in widespread use due to the development of nanotechnology. Nanomaterials are already being applied in universal fields such as electronics, sunscreens, cosmetics, and medicine, because they have unique physicochemical properties such as high conductivity, strength, durability, and chemical reactivity. The advent of nanomaterials has also provided extraordinary opportunities for biomedical applications. However, the increasing use of nanomaterials has raised public concern about their potential risks to human health. In particular, recent reports have indicated that carbon nanotubes induced exaggerated inflammation and mesothelioma-like lesions in mice. However, few studies have examined the immunotoxicity of nanomaterials and it is essential to progress studies on the immunotoxicity of nanomaterials to ensure their safety. In this regard, we have attempted to elucidate the pharmacodynamics and immunotoxicity of nanomaterials, in order to develop novel safe nanomaterials and to establish scientifically based regulations. In this review, we would like to introduce our data on the immunotoxicity of nanosilicas, especially the relationship between physical properties (primary grain size, configuration and surface charge), pharmacodynamics of these materials, and their immunotoxicity. We consider that our study will improve the quality of human life by safely using nanomaterials, which can benefit society in general.  相似文献   

20.
纳米药物粒度分析方法   总被引:2,自引:0,他引:2  
纳米药物在研究和应用领域都在快速发展,根据具体纳米药物的特性,运用合理的分析方法来建立质量标准是一项需要深入研究的重要课题。本文综述了可用于纳米药物质量控制的粒度分析方法,考察了几种重要技术的原理、适用范围、优点和不足。结合不同剂型纳米药物的特性,讨论了各方法在纳米药物分析中的应用,为纳米药物的检测和监管提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号