首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypoglycemic coma increases extracellular excitatory amino acids, which mediate hypoglycemic neuronal degeneration. Cerebral oxygen consumption increases during hypoglycemic coma in piglets. We tested the hypothesis that the NMDA-receptor antagonist dizocilpine (MK801) attenuates the increase in cerebral oxygen consumption during hypoglycemia. We measured EEG, cerebral blood flow (CBF), cerebral oxygen consumption (CMRO(2)) and cortical microdialysate levels of glutamate, aspartate and glycine in pentobarbital-anesthetized piglets during 60 min of insulin-induced hypoglycemic coma. NMDA-receptor distribution was measured by autoradiography. MK801 (0.75 mg/kg i.v.) was given within 5 min after onset of isoelectric EEG. Saline- and MK801-treated normoglycemic control animals were also studied. Brain temperature was maintained at 38.5+/-0.5 degrees C. MK801 prevented the 5--10-fold increase in glutamate and aspartate occurring in saline-treated hypoglycemic animals, and attenuated the increase in CMRO(2). Increases in CBF of 200--400% during hypoglycemic coma were not affected by MK801. MK801 did not alter CBF, CMRO(2) or microdialysate amino acid levels in normoglycemic control animals. Parietal cortex corresponding to microdialysis sites was highly enriched in NMDA receptors, and the density and distribution overall of NMDA receptor binding sites were comparable to that reported in other species. We conclude that NMDA receptor activation plays a central role in hypoglycemia-induced glutamate release, and contributes to increased cerebral oxygen consumption. Neuroprotective effects of MK801 during hypoglycemia in piglets may involve inhibitory effects on glutamate release and oxidative metabolism.  相似文献   

2.
d-3-Hydroxybutyrate (3OHB) is an alternative energy substrate for the brain during hypoglycemia, especially in infancy. Knowledge of the capacity and limits of 3OHB to compensate for cerebral glucose depletion during hypoglycemia in developing brain is important for its potential clinical use, but is scarce. We studied the effect of 3OHB treatment during insulin-induced hypoglycemia in 13-day-old rat pups. 3OHB treatment resulted in increased 3OHB plasma levels in hypoglycemic animals (3–4 mM vs. 0.5–1 mM untreated), and delayed the onset of clinical coma by 70 min and of burst-suppression coma by 90 min. 3OHB treated animals did not survive after resuscitation with glucose, compared to 80% survival of untreated hypoglycemic pups. Cleaved-caspase-3 immunohistochemistry and double labeling studies demonstrated a 20-fold increase of apoptotic mature oligodendrocytes in white matter of 3OHB treated animals. 3OHB treatment delays the onset of clinical and burst-suppression coma during hypoglycemia, but the prolonged duration of hypoglycemia is associated with increased mortality after resuscitation and cellular white matter injury.  相似文献   

3.
The respiratory function of cerebral mitochondria harvested from genetically diabetic (BB/W) and streptozotocin-diabetic rats deprived of insulin for 3-4 weeks was found to be unchanged from control values. Furthermore, insulin-deprived BB/W rats subjected to 30 min of insulin-induced hypoglycemic coma demonstrated a normal mitochondrial respiration following a 60 min period of glucose restitution, a finding consistent with earlier results in non-diabetic rats. However, in rats exposed to 1 week of moderate hypoglycemia (plasma glucose = 3.0 mumol.ml-1), both state 3 respiration and the respiratory control ratio (RCR) were reduced from control. In fact, when the chronic hypoglycemia was imposed following a 3-4 week period of diabetic hyperglycemia, the state 3 rate and RCR were found to be reduced to a greater degree than in chronically hypoglycemic, non-diabetic, previously normoglycemic rats. Finally, when 1 week of moderate hypoglycemia preceded a 30 min period of insulin-induced hypoglycemic coma, a disturbed pattern of mitochondrial respiration (i.e. increased state 4, decreased RCR) was found at 60 min of recovery following coma. These results indicate that chronic increases in glucose (and insulin deprivation) have no effect on cerebral mitochondrial respiratory function, whereas prolonged, albeit moderate, reductions in cerebral glucose supply result in perturbations in mitochondrial respiration. These results demonstrate the importance of an adequate glucose supply for normal mitochondrial activity.  相似文献   

4.
Here we report an autopsy case of hypoglycemic encephalopathy with prolonged coma. Laboratory data obtained when the patient lapsed into a coma showed that she had a low level of serum glucose (27 mg/dL). Although the level of glucose returned to within the normal range rapidly after glucose infusion, the patient remained in a coma for 22 months. It was presumed that the state of hypoglycemia persisted for about 4 h. There was no evidence of hypotension or hypoxia. Magnetic resonance imaging was performed 3 h after glucose administration; diffusion‐weighted images revealed hyperintensity in the cerebral white matter and in the boundary zone between the middle and posterior cerebral arteries. Post‐mortem examination revealed superficial laminar necrosis throughout the cerebral cortex. Neuronal necrosis was also found in the hippocampus and dentate gyrus, although the CA3 region appeared normal. In addition to these lesions, which are consistent with hypoglycemia‐induced brain damage, the cerebral white matter exhibited severe loss of myelin and axons with reactive astrocytosis and macrophage infiltration. Old infarcts were also present in the bilateral occipital lobes. Since the cerebral blood flow is reported to be decreased during severe hypoglycemia, the present findings suggest that white matter lesions and boundary‐zone infarctions may develop primarily in uncomplicated hypoglycemia.  相似文献   

5.
We have shown that acute insulin-induced hypoglycemia leads to specific changes in the cerebral NMDA receptor-associated ion channel in the newborn piglet. The present study tests the hypothesis that exposure to acute hypoglycemia in the newborn will alter the glutamate binding site of both NMDA and kainate receptors. Studies were performed in 3-6 days-old piglets randomized to control (n=6) or hypoglycemic (n=6) groups. Hypoglycemia was maintained for 120 min using insulin infusion. Saturation binding assays were performed in cerebral cell membranes using (3)H-glutamate or (3)H-kainate to determine the characteristics of the glutamate binding sites of the NMDA and kainate receptors, respectively. The concentration of glucose in cerebral cortex was 10-fold less in hypoglycemic piglets than in controls (P<0.05). Brain ATP was not significantly decreased during hypoglycemia, but phosphocreatine decreased from control of 6.6 +/- 1.3 micromoles/g brain to 3.2 +/- 1.9 micromoles/g brain in hypoglycemic piglets. The B(max) for NMDA-displaceable (3)H-glutamate binding was 992 +/- 64 fmol/mg protein in hypoglycemic animals, significantly higher than the control value of 746 +/- 42 fmol/mg protein. However, the dissociation constant for glutamate was unchanged during hypoglycemia. The (3)H-kainate binding studies demonstrated no change in B(max) of high-affinity kainate receptors during hypoglycemia. In contrast, the affinity of the kainate receptor glutamate binding site significantly increased compared to control. Thus, acute hypoglycemia in the newborn piglet had specific effects on the glutamate binding sites of the NMDA and kainate receptors that could be due to alterations in cell membrane lipids or modification of receptor proteins.  相似文献   

6.
The effects of acute insulin-induced hypoglycemia on the cerebral NMDA receptor in the newborn were examined by determining [3H]MK-801 binding as an index of NMDA receptor function in 6 control and 7 hypoglycemic piglets. In hypoglycemic animals, the glucose clamp technique with constant insulin infusion was used to maintain a blood glucose concentration of 1.2 mmol/l for 120 min before obtaining cerebral cortex for further analysis; controls received a saline infusion. Concentrations of glucose, lactate, ATP, and PCr were measured in cortex, and Na+,K+-ATPase activity was determined in a brain cell membrane preparation. [3H]MK-801 binding was evaluated by: (1) saturation binding assays over the range of 0.5–50 nM [3H]MK-801 in the presence of 100 μM glutamate and glycine; and (2) binding assays at 10 nM [3H]MK-801 in the presence of glutamate and/or glycine at 0, 10, or 100 μM. Blood and brain glucose concentrations were significantly lower in hypoglycemic animals than controls. There was no change in brain ATP with hypoglycemia, but PCr was decreased 80% compared to control (P < 0.05). Na+,K+-ATPase activity was 13% lower in hypoglycemic animals (P < 0.05). Based on saturation binding data, hypoglycemia had no effect on the number of functional receptors (Bmax), but the apparent affinity was significantly increased, as indicated by a decrease in the Kd (dissociation constant) from the control value of 8.1 ± 1.6 nM to 5.5 ± 2.1 nM (P < 0.05). Augmentation of [3H]MK-801 binding by glutamate and glycine alone or in combination was also significantly greater in the hypoglycemic animals. These data suggest that acute hypoglycemia may enhance the excitotoxic effects of glutamate in the newborn.  相似文献   

7.
Y S Chang  W S Park  S Y Ko  M J Kang  J M Han  M Lee  J Choi 《Brain research》1999,844(1-2):135-142
This study was done to determine the effects of 12 h fasting-induced mild hypoglycemia (blood glucose 60 mg/dl) and insulin-induced moderate hypoglycemia (blood glucose 35 mg/dl) on brain cell membrane function and energy metabolism during hypoxia-ischemia in newborn piglets. Sixty-three ventilated piglets were divided into six groups; normoglycemic control (NC, n=8), fasting-induced mildly hypoglycemic control (FC, n=10), insulin-induced moderately hypoglycemic control (IC, n=10), normoglycemic/hypoxic-ischemic (NH, n=11), fasting-induced mildly hypoglycemic/hypoxic-ischemic (FH, n=12) and insulin-induced moderately hypoglycemic/hypoxic-ischemic (IH, n=12) group. Cerebral hypoxia-ischemia was induced by occlusion of bilateral common carotid arteries and simultaneous breathing with 8% oxygen for 30 min. The brain lactate level was elevated in NH group and this change was attenuated in FH and IH groups. The extent of cerebral lactic acidosis during hypoxic-ischemic insult showed significant positive correlation with blood glucose level (r=0.55, p<0.001). Cerebral Na+, K+-ATPase activity and concentrations of high-energy phosphate compounds were reduced in NH group and these changes were not ameliorated in FH or IH group. Cortical levels of conjugated dienes, measured as an index of lipid peroxidation of brain cell membrane, were significantly elevated in NH, FH and IH groups compared with NC, FC and IC groups and these increases were more profound in FH and IH with respect to NH. Blood glucose concentration showed significant inverse correlation with levels of conjugated dienes (r=-0.35, p<0.05). These findings suggest that, unlike in adults, mild or moderate hypoglycemia, regardless of methods of induction such as fasting or insulin-induced, during cerebral hypoxia-ischemia is not beneficial and may even be harmful in neonates.  相似文献   

8.
9.
The activity of glutamate related enzymes and the concentration of glutamine, glutamate and gamma-amino n-butyric acid (GABA) were investigated in the cerebral cortex of rats, in different stages of insulin-induced hypoglycemia. Hypoglycemia was produced by intraperitoneal injection of insulin 0.05-100 units per kg body weight. The minimum required dose to produce irreversible severe hypoglycemia was 0.5 units/kg. In 85% of the cases an insulin induced hypoglycemic convulsion, was achieved 130-150 minutes after injection. Blood glucose levels during insulin induced seizures ranged between 8-15 mg%. In the range of 0.5-100 u insulin/kg the degree of hypoglycemia and the onset of convulsions were identical. The concentration of glutamine was significantly reduced during convulsive and postconvulsive stages. Glutamate and GABA concentrations were reduced significantly in all stages of insulin-induced hypoglycemia. The decrease in glutamine concentration was concurrent with an increase in the activity of its degradative enzyme, glutaminase. This was apparent at the preconvulsive, convulsive and postconvulsive stages. The activity of other enzymes related to energy production such as glutamate dehydrogenase (GDH), glutamate transaminase (GPT) and aspartate aminotransferase (AAT) were also increased. The activity of glutamine synthase (GS) was unaffected by hypoglycemia. Insulin induced changes in glutamine, glutamate and their related enzymes could not be attributed to convulsion since a similar pattern of changes was observed in the preconvulsive and postconvulsive stages, and no changes were detected following picrotoxin-induced seizures.  相似文献   

10.
The authors studied the effects of a standardized mild-moderate hypoglycemic stimulus (glucose clamp) on brain functional magnetic resonance imaging (fMRI) responses to median nerve stimulation in anesthetized rats. In the baseline period (plasma glucose 6.6 +/- 0.3 mmol/L), the MR signal changes induced by median nerve activation were determined within a fixed region of the somatosensory cortex from preinfusion activation maps. Subsequently, insulin and a variable glucose infusion were administered to decrease plasma glucose. The goal was to produce a stable hypoglycemic plateau (2.8 +/- 0.2 mmol/L) for 30 minutes. Thereafter, plasma glucose was restored to euglycemic levels (6.0 +/- 0.3 mmol/L). In the early phase of insulin infusion (15 to 30 minutes), before hypoglycemia was reached (4.7 +/- 0.3 mmol/L), the activation signal was unchanged. However, once the hypoglycemic plateau was achieved, the activation signal was significantly decreased to 57 +/- 6% of the preinfusion value. Control regions in the brain that were not activated showed no significant changes in MR signal intensity. Upon return to euglycemia, the activation signal change increased to within 10% of the original level. No significant activation changes were noted during euglycemic hyperinsulinemic clamp experiments. The authors concluded that fMRI can detect alterations in cerebral function because of insulin-induced hypoglycemia. The signal changes observed in fMRI activation experiments were sensitive to blood glucose levels and might reflect increases in brain metabolism that are limited by substrate deprivation during hypoglycemia.  相似文献   

11.
Summary Prolonged insulin-induced hypoglycemia causes widespread loss of neurons and permanent brain damage with irreversible coma. Although the deprivation of carbohydrate stores affects all brain regions, the breakdown of energy metabolism and cessation of protein synthesis occur predominantly in the cerebral cortex, caudoputamen and hippocampus. The cerebellum, brain stem and hypothalamus are largely resistant. Following transplantation of the cerebellar anlage of rat fetuses (day 15 of gestation) into the caudoputamen of adult rats, the grafts were allowed to differentiate for a period of 8 weeks. The host animals were then subjected to 30 min of severe hypoglycemia with isoelectric EEG (coma). In contrast to the surrounding vulnerable brain structures, protein synthesis was fully preserved within the cerebellar transplant. Grafting of fetal forebrain cortex to the same location did not result in escape from hypoglycemic cell injury. This indicates that resistance to hypoglycemia is part of the programmed differentiation of the cerebellum and develops irrespective of its location and functional integration within the nervous system.Dedicated to Prof. F. Seitelberger on the occasion of his seventieth birthdaySupported by the Deutsche Forschungsgemeinschaft (SFB 70)  相似文献   

12.
This study was done to determine the effects of 12 h fasting-induced mild hypoglycemia (blood glucose 60 mg/dl) and insulin-induced moderate hypoglycemia (blood glucose 35 mg/dl) on brain cell membrane function and energy metabolism during hypoxia–ischemia in newborn piglets. Sixty-three ventilated piglets were divided into six groups; normoglycemic control (NC, n=8), fasting-induced mildly hypoglycemic control (FC, n=10), insulin-induced moderately hypoglycemic control (IC, n=10), normoglycemic/hypoxic–ischemic (NH, n=11), fasting-induced mildly hypoglycemic/hypoxic–ischemic (FH, n=12) and insulin-induced moderately hypoglycemic/hypoxic–ischemic (IH, n=12) group. Cerebral hypoxia–ischemia was induced by occlusion of bilateral common carotid arteries and simultaneous breathing with 8% oxygen for 30 min. The brain lactate level was elevated in NH group and this change was attenuated in FH and IH groups. The extent of cerebral lactic acidosis during hypoxic–ischemic insult showed significant positive correlation with blood glucose level (r=0.55, p<0.001). Cerebral Na+, K+-ATPase activity and concentrations of high-energy phosphate compounds were reduced in NH group and these changes were not ameliorated in FH or IH group. Cortical levels of conjugated dienes, measured as an index of lipid peroxidation of brain cell membrane, were significantly elevated in NH, FH and IH groups compared with NC, FC and IC groups and these increases were more profound in FH and IH with respect to NH. Blood glucose concentration showed significant inverse correlation with levels of conjugated dienes (r=−0.35, p<0.05). These findings suggest that, unlike in adults, mild or moderate hypoglycemia, regardless of methods of induction such as fasting or insulin-induced, during cerebral hypoxia–ischemia is not beneficial and may even be harmful in neonates.  相似文献   

13.
Severe hypoglycemia constitutes a medical emergency, involving seizures, coma and death. We hypothesized that seizures, during limited substrate availability, aggravate hypoglycemia-induced brain damage. Using immature isolated, intact hippocampi and frontal neocortical blocks subjected to low glucose perfusion, we characterized hypoglycemic (neuroglycopenic) seizures in vitro during transient hypoglycemia and their effects on synaptic transmission and glycogen content. Hippocampal hypoglycemic seizures were always followed by an irreversible reduction (>60% loss) in synaptic transmission and were occasionally accompanied by spreading depression-like events. Hypoglycemic seizures occurred more frequently with decreasing "hypoglycemic" extracellular glucose concentrations. In contrast, no hypoglycemic seizures were generated in the neocortex during transient hypoglycemia, and the reduction of synaptic transmission was reversible (<60% loss). Hypoglycemic seizures in the hippocampus were abolished by NMDA and non-NMDA antagonists. The anticonvulsant, midazolam, but neither phenytoin nor valproate, also abolished hypoglycemic seizures. Non-glycolytic, oxidative substrates attenuated, but did not abolish, hypoglycemic seizure activity and were unable to support synaptic transmission, even in the presence of the adenosine (A1) antagonist, DPCPX. Complete prevention of hypoglycemic seizures always led to the maintenance of synaptic transmission. A quantitative glycogen assay demonstrated that hypoglycemic seizures, in vitro, during hypoglycemia deplete hippocampal glycogen. These data suggest that suppressing seizures during hypoglycemia may decrease subsequent neuronal damage and dysfunction.  相似文献   

14.
Hypoglycemia can cause brain dysfunction, brain injury, and death. The present study seeks to broaden current information regarding mechanisms of hypoglycemic brain injury by investigating a novel etiology. The cat's high resistance to brain injury from hypoglycemia suggested that additional influences such as respiratory depression might play a facilitating role. Three groups of cats were exposed to fasting and insulin-induced hypoglycemia (HG; n = 6), euglycemic respiratory depression (RD; n = 5), and combined hypoglycemic respiratory depression (HG/RD; n = 10). The HG animals were maintained at <1.5 mmol (mean 1 mmol) serum glucose concentration for 2 to 6.6 hours. The respiratory depression was associated with PaO2 and PaCO2 values of approximately 50 mm Hg for 1 hour and of approximately 35 and approximately 75 mm Hg, respectively, for the second hour. Magnetic resonance diffusion-weighted imaging estimated brain energy state before, during, and after hypoglycemia. The hypoglycemic respiratory depression exposures were terminated either to euglycemia (n = 4) or to hyperglycemia (n = 6). Brain injury was assessed after 5 to 7 days of survival. Cats exposed to hypoglycemia alone maintained unchanged diffusion coefficients; that is, they lacked evidence of brain energy failure and all six remained brain-intact. Only 1 of 5 euglycemic RD but 10 of 10 HG/RD cats developed brain damage (HG and RD vs. HG/RD, P < 0.01). This difference in brain injury rates suggests injury potentiation by hypoglycemia and respiratory depression acting together. Three injury patterns emerged, including activation of microglia, selective neuronal necrosis, and laminar cortical necrosis. Widespread activation of microglia suggesting damage to neuronal cell processes affected all damaged brains. Selective neuronal necrosis affecting the cerebral cortex, hippocampus, and basal ganglia was observed in all but one case. Instances of laminar cortical necrosis were limited to cats exposed to hypoglycemic respiratory depression treated with hyperglycemia. Thus, treatment with hyperglycemia compared with euglycemia after hypoglycemic respiratory depression exposures significantly increased the brain injury scores (24 +/- 6 vs. 13 +/- 2 points; P < 0.05). This new experimental hypoglycemia model's contribution lies in recognizing additional factors that critically define the occurrence of hypoglycemic brain injury.  相似文献   

15.
The effect of severe insulin-induced hypoglycemia on the activity of the pyruvate dehydrogenase enzyme complex (PDHC) was investigated in homogenates of frozen rat cerebral cortex during burst suppression EEG, after 10, 30, and 60 min of isoelectric EEG, and after 30 and 180 min and 24 h of recovery following 30 min of hypoglycemic coma. Changes in PDHC activity were correlated to levels of labile organic phosphates and glycolytic metabolites. In cortex from control animals, the rate of [1-14C]pyruvate decarboxylation was 7.1 +/- 1.3 U/mg of protein, or 35% of the total PDHC activity. The activity was unchanged during burst suppression EEG whereas the active fraction increased to 81-87% during hypoglycemic coma. Thirty minutes after glucose-induced recovery, the PDHC activity had decreased by 33% compared to control levels, and remained significantly depressed after 3 h of recovery. This decrease in activity was not due to a decrease in the total PDHC activity. At 24 h of recovery, PDHC activity had returned to control levels. We conclude that the activation of PDHC during hypoglycemic coma is probably the result of an increased PDH phosphatase activity following depolarization and calcium influx, and allosteric inhibition of PDH kinase due to increased ADP/ATP ratio. The depression of PDHC activity following hypoglycemic coma is probably due to an increased phosphorylation of the enzyme, as a consequence of an imbalance between PDH phosphatase and kinase activities. Since some reduction of the ATP/ADP ratio persisted and since the lactate/pyruvate ratio had normalized by 3 h of recovery, the depression of PDHC most likely reflects a decrease in PDH phosphatase activity, probably due to a decrease in intramitochondrial Ca2+.  相似文献   

16.
The effects of short and long-term haloperidol treatment on somatostatin concentration and specific binding in rat cerebral cortex and hippocampus were examined using the binding ligand 125I-Tyr1-somatostatin. Haloperidol treatment did not affect the concentration of somatostatin-like immunoreactivity in the two brain areas. Nevertheless, long-term, and not short-term, haloperidol treatment decreased the number of somatostatin receptors in the cerebral cortex and hippocampus. No significant differences in the apparent binding affinity values were seen after haloperidol treatment. When added at the time of the binding assay haloperidol 34.2 microM produced a 42% and 27% decrease in cerebrocortical and hippocampal membrane somatostatin receptors respectively.  相似文献   

17.
Tight glycemic control during diabetic pregnancy has been shown to significantly reduce the occurrence of congenital malformations and other effects of maternal diabetes on the offspring. However, intensive insulin therapy often causes recurring acute maternal hypoglycemia, which has been found to be harmful to the developing fetus, although the mechanisms involved are not clear. The aim of our work was to study the effect of acute insulin-induced maternal hypoglycemia on glucose metabolism in the fetal brain. To this end, near-term pregnant New Zealand rabbits were rendered hypoglycemic, and [U-(13)C]glucose was infused into maternal circulation. The metabolic fate of the (13)C-labeled glucose was then studied in fetal brain extracts by (13)C NMR isotopomer analysis, together with conventional biochemical assays of glucose and lactate levels in both plasma and brain. For comparison [U-(13)C]glucose was also administered to insulin-induced hypoglycemic young adult rabbits. Our results showed that while plasma glucose levels were significantly reduced (approximately 70%) relative to controls, no changes in cerebral glucose levels could be detected. Lactate levels were found to be significantly decreased in hypoglycemic fetal plasma and brain. No differences in lactate levels between control and hypoglycemic young rabbit plasma and brain were observed. These differences were attributed to the utilization of lactate as an energy substrate in the fetal brain, but not in the adult brain. Higher relative (13)C enrichments of most glucose metabolites, except lactate, in the hypoglycemic fetal and young rabbit brains, observed by (13)C NMR, stem from reduced endogenous plasma glucose pools, thereby diluting the labeled glucose to a lower extent. The relative glucose (or glucose-derived lactate) flux via the pyruvate carboxylase and pyruvate dehydrogenase pathways (PC/PDH ratio) was not altered under hypoglycemic conditions in the fetal brain for both glutamine and glutamate, but significantly increased in the adult brain for both glutamine and glutamate. The presented data indicate the ability of the fetal brain to maintain energy metabolism during acute hypoglycemia, via lactate utilization. The increase in the adult PC/PDH ratio was suggested by us to stem from increased PC activity, in order to replenish TCA cycle intermediates.  相似文献   

18.
The effects of acute and chronic cocaine (40 mg/Kg i.p.) in vivo administration, on 125I-Tyr11-somatostatin binding and somatostatin-like immunoreactivity (SLI) in the rat frontoparietal cortex, hippocampus and olfactory bulb were explored. Acute and chronic cocaine administration did not affect the levels of SLI in the three brain areas studied. Acute cocaine administration resulted in an 55% and 32% decrease in the total number of specific somatostatin receptors in the hippocampus and olfactory bulb respectively, but not in the frontoparietal cortex. Somatostatin receptor affinity increased in the hippocampus and was unaltered in frontoparietal cortex and olfactory bulb. After two weeks of daily cocaine injections the somatostatin binding in the hippocampus and olfactory bulb returned to control values. The in vitro addition of cocaine to a brain membrane preparation obtained from untreated rats did not markedly affect somatostatin binding characteristics. These results are suggestive of a possible role for somatostatin in the limbic structures as a response to cocaine administration.  相似文献   

19.
In vivo, severe hypoglycemia is frequently associated with seizures. The hippocampus is a structure prone to develop seizures and seizure-induced damage. Patients with repeated hypoglycemic episodes have frequent memory problems, suggesting impaired hippocampal function. Here we studied the effects of moderate hypoglycemia on primarily generalized flurothyl-induced seizures in vivo and, using EEG recordings, we determined involvement of the hippocampus in hypoglycemic seizures. Moderate systemic hypoglycemia had proconvulsant effects on flurothyl-induced clonic (forebrain) seizures. During hypoglycemic seizures, seizure discharges were recorded in the hippocampus. Thus, we continued the studies in combined entorhinal cortex-hippocampus slices in vitro. However, in vitro, decreases in extracellular glucose from baseline 10 mM to 2 or 1 mM did not induce any epileptiform discharges. In fact, low glucose (2 and 1 mM) attenuated preexisting low-Mg2+-induced epileptiform activity in the entorhinal cortex and hippocampal CA1 region. Osmolarity compensation in low-glucose solution using mannitol impaired slice recovery. Additionally, using paired-pulse stimuli we determined that there was no impairment of GABAA inhibition in the dentate gyrus during glucopenia. The data strongly indicate that, although forebrain susceptibility to seizures is increased during moderate in vivo hypoglycemia and the hippocampus is involved during hypoglycemic seizures, glucose depletion in vitro contributes to an arrest of epileptiform activity in the system of the entorhinal cortex-hippocampus network and there is no impairment of net GABAA inhibition during glucopenia.  相似文献   

20.
The ability of endogenous substrates in brain to substitute for glucose as sources for energy metabolism during insulin-induced hypoglycemia was studied. The ratio of the arteriovenous difference of glucose to the arteriovenous difference of oxygen in the cerebral cortex was measured during progressive hypoglycemia in paralyzed, artificially ventilated cats that were anesthetized with pentobarbital sodium and nitrous oxide. The ratio did not change when blood glucose fell from a mean of 7.68 to approximately 2 mumol/ml. Below 2 mumol/ml the ratio decreased, indicating that substrates other than the glucose supplied by the blood were being utilized. In another series of experiments, changes in the redox state of respiratory chain NAD were monitored from the cerebral cortex using microfluorometry during the onset of hypoglycemia and the recovery. Hypoglycemia severe enough to produce isoelectric EEG was accompanied by an oxidation of NADH, demonstrating that the supply of reducing equivalents to the respiratory chain was decreased. Recovery from hypoglycemia, produced by intravenous glucose injections, was accompanied by an increase in blood glucose concentrations, the return of EEG activity, and a decrease in the NAD/NADH ratio. When blood glucose concentration reached 2.23 during the recovery, further increases in blood glucose had no effect on the redox state of NAD. Although alternative substrates appear to be utilized for energy metabolism during severe hypoglycemia, they cannot fully replace glucose as the source of reducing equivalent to the respiratory chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号