首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liu G  Zhao Y 《Immunology》2007,122(2):149-156
Regulatory CD4(+) CD25(+) T (Treg) cells with the ability to suppress host immune responses against self- or non-self antigens play important roles in the processes of autoimmunity, transplant rejection, infectious diseases and cancers. The proper regulation of CD4(+) CD25(+) Treg cells is thus critical for optimal immune responses. Toll-like receptor (TLR)-mediated recognition of specific structures of invading pathogens initiates innate as well as adaptive immune responses via antigen-presenting cells (APCs). Interestingly, new evidence suggests that TLR signalling may directly or indirectly regulate the immunosuppressive function of CD4(+) CD25(+) Treg cells in immune responses. TLR signalling may shift the balance between CD4(+) T-helper cells and Treg cells, and subsequently influence the outcome of the immune response. This immunomodulation pathway may therefore have potential applications in the treatment of graft rejection, autoimmune diseases, infection diseases and cancers.  相似文献   

2.
The immune system responds vigorously to invading pathogens (non-self, foreign), while remaining unresponsive (tolerant) to the body's own components and circulating constituents (self). This indifference to self components is a result of finely orchestrated events of thymic negative selection (central tolerance) of developing T cells that are autoaggressive combined with those operative in the periphery (peripheral tolerance) to control the activity of potentially autoreactive T cells that escaped thymic tolerance. Recently, autoimmune regulator expressed in the thymus has been identified as a critical mediator of central tolerance towards tissue-specific antigens. In the periphery, a variety of regulatory T cells are involved in effecting tolerance. There is immense interest and excitement about the newly identified subset of CD4(+)CD25(+) T cells. This is a unique subset of CD4(+) T cells that bear CD25 (IL-2Ralpha chain) on the cell surface in the na?ve state and express FoxP3 as a unique marker. These cells suppress the activity of autoreactive effector T cells primarily via cell-cell contact. The deficiency and/or altered function of CD4(+)CD25(+) T cells is associated with autoimmunity. Mice deficient in FoxP3 (scurfy mice) bear an autoimmune phenotype, and human males with mutations in the corresponding gene express the phenotype of wide-spread autoimmunity, the immune dysregulation, polyendocrinopathy and enteropathy, and X-linked syndrome. In vitro expansion of antigen-specific CD4(+)CD25(+) T cells and their adoptive transfer into patients suffering from autoimmunity is emerging as a promising new therapeutic approach for these debilitating disorders.  相似文献   

3.
Complications arising from abnormal immune responses are the major causes of mortality and morbidity in diabetic patients. CD4+CD25+T regulatory cells (Tregs) play pivotal roles in controlling immune homeostasis, immunity and tolerance. The effect of hyperglycemia on CD4+CD25+Tregs has not yet been addressed. Here we used streptozotocin (STZ)-induced diabetic mice to study the effects of long-term hyperglycemia on CD4+CD25+Tregs in vivo. Four months after the onset of diabetes, the frequency of CD4+CD25+Foxp3+ T regulatory cells was significantly elevated in the spleen, peripheral blood lymphocytes (PBLs), peripheral lymph nodes (pLNs) and mesenteric LNs (mLNs). CD4+CD25+Tregs obtained from mice with diabetes displayed defective immunosuppressive functions and an activated/memory phenotype. Insulin administration rescued these changes in the CD4+CD25+ Tregs of diabetic mice. The percentage of thymic CD4+CD25+ naturally occurring Tregs (nTregs) and peripheral CD4+Helios+Foxp3+ nTregs were markedly enhanced in diabetic mice, indicating that thymic output contributed to the increased frequency of peripheral CD4+CD25+Tregs in diabetic mice. In an in vitro assay in which Tregs were induced from CD4+CD25- T cells by transforming growth factor (TGF)-β, high glucose enhanced the efficiency of CD4+CD25+Foxp3+ inducible Tregs (iTregs) induction. In addition, CD4+CD25- T cells from diabetic mice were more susceptible to CD4+CD25+Foxp3+ iTreg differentiation than those cells from control mice. These data, together with the enhanced frequency of CD4+Helios-Foxp3+ iTregs in the periphery of mice with diabetes, indicate that enhanced CD4+CD25+Foxp3+ iTreg induction also contributes to a peripheral increase iCD4+CD25+Tregs in diabetic mice. Our data show that hyperglycemia may alter the frequency of CD4+CD25+Foxp3+ Tregs in mice, which may result in late-state immune dysfunction in patients with diabetes.  相似文献   

4.
Epstein-Barr virus-induced gene 3 (Ebi3) and the p35 subunit of IL-12 have been reported to form a heterodimeric cytokine, named IL-35, in human and mouse. In mice, IL-35 has been shown to be constitutively expressed by CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) and suggested to contribute to their suppressive activity. However, human CD4(+)CD25(+)Foxp3(+) Tregs do not constitutively express detectable amounts of IL-35 in both mRNA and protein levels. Circulating CD4(+)CD25(+) Treg frequency of chronic Hepatitis B patients significantly correlates with serum viral load. In this study, we investigated whether IL-35 expression could be detected in CD4(+) T cells from peripheral blood of chronic Hepatitis B patients. Using both RT-PCR and immunoprecipitation plus Western blot analysis, we demonstrated that IL-35 expression could be detected in the CD4(+) T cells from peripheral blood of Chronic Hepatitis B patients.  相似文献   

5.
A subset of CD4(+) T cells, the CD4(+) CD25(+) regulatory T (T(reg)) cells in the lymphoid organs and peripheral blood are known to possess suppressive function. Previous in vitro and in vivo studies have indicated that T cell receptor (TCR) signal is required for development of such 'natural regulatory (T(reg)) cells' and for activation of the effector function of CD4(+) CD25(+) regulatory T cells. CD5 is a cell surface molecule present on all T cells and a subtype of B lymphocytes, the B-1 cells, primarily localized to coelomic cavities, Peyer's patches, tonsils and spleen. CD5 acts as a negative regulator of T cell and B cell signaling via recruitment of SHP-1. Here, we demonstrate that T(reg) cells obtained from CD5(-/-) mice are more potent than those from wild type mice in suppressing the in vitro cell proliferation of anti-CD3 stimulated CD4(+) CD25(-) responder T cells. This phenomenon was cell contact and GITR dependent. Lack of CD5 expression on T(reg) cells (from spleen, lymph node and thymus) did not affect the intracellular levels of Foxp3. However, CD5(-/-) T(reg) thymocytes were able to elicit a higher Ca(2+) response to TCR + co-stimulatory signals than the wild type cells. CD5(-/-) mice expressed more Foxp3 mRNA in the colon than wild type mice, and additionally, the severity of the dextran sulfate sodium (DSS)-induced colitis in CD5(-/-) mice was less than the wild type strain. We suggest that manipulation of CD5 expression or the downstream signaling components of CD4(+) CD25(+) T(reg) cells as a potential strategy for therapeutic intervention in cases of auto-immune disorders.  相似文献   

6.
There are reports suggesting an influence of CD4(+)CD25(+) T regulatory cells (Treg) on cytotoxic lymphocytes. The aim of the study was to evaluate such an influence. Cytotoxic activity was examined in the cultures of peripheral blood mononuclear cells (PBMC) as well as in the cultures of separate T CD8(+) or NK cells mixed with Treg and other subpopulations of PBMC. We found that the production of IFNgamma, perforin and cytotoxic activity of T CD8(+) or NK cells were decreased in the presence of Treg, however, the percentage of conjugates formed by cytotoxic cells with target cells during cytotoxic reaction was decreased only in the cultures of T CD8(+) cells. Inhibition of the cytotoxic reactions in the presence of Treg cells was found to be associated with the generation of conglomerates formed by CD4(+)CD25(+) and the cytotoxic cells, as observed under the fluorescence microscope. Treg produced IL10 when mixed with the cytotoxic lymphocytes, however, an addition of anti-IL10 mAb into the cultures did not affect the results. It is concluded that Treg were able to inhibit both T CD8+ and NK lymphocyte cytotoxic activities in a direct cell-to-cell interaction. Treg decreased the number of T CD8+ cells attached to the target cells, while the mechanism underlying a decrease in NK cytotoxicity remained unclear.  相似文献   

7.
Total glucosides of paeony (TGP), an active compound extracted from Paeony root, has been used in therapy for autoimmune diseases. However the molecular mechanism of TGP in the prevention of autoimmune response remains unclear. In this study, we found that TGP treatment significantly increased the percentage and number of Treg cells in lupus CD4(+) T cells. Further investigation revealed that treatment with TGP increased the expression of Foxp3 in lupus CD4(+) T cells by down-regulating Foxp3 promoter methylation levels. However, we couldn't observe similar results in healthy control CD4(+) T cells treated by TGP. Moreover, our results also showed that IFN-γ and IL-2 expression was enhanced in TGP-treated lupus CD4(+) T cells. These findings indicate that TGP inhibits autoimmunity in SLE patients possibly by inducing Treg cell differentiation, which may in turn be due to its ability to regulate the methylation status of the Foxp3 promoter and activate IFN-γ and IL-2 signaling.  相似文献   

8.
CD4+CD25+ regulatory T-cells (Treg cells) are an important subset of T-cells that functions to negatively control immune responses to self or non-self antigens. Depletion of CD4+CD25+ Treg cells leads to the occurrence of lymphoproliferative autoimmune diseases in animals and humans. Therefore, CD4+CD25+ Treg cells must be tightly regulated in the physiologic situation. In this article, we try to summarize the regulating pathways of the development, survival, and function of CD4+CD25+ Treg cells at multiple levels and multiple pathways, including the dendritic cells, costimulatory signals, cytokines, as well as intracellular signals.  相似文献   

9.
The immune system has evolved numerous mechanisms of peripheral T cell immunoregulation, including a network of regulatory T (Treg) cells, to modulate and down-regulate immune responses at various times and locations and in various inflammatory circumstances. Amongst these, naturally occurring CD4(+)CD25(+) Treg cells (nTreg) represent a major lymphocyte population engaged in the dominant control of self-reactive T responses and maintaining tolerance in several models of autoimmunity. CD4(+)CD25(+) Treg cells differentiate in the normal thymus as a functionally distinct subpopulation of T cells bearing a broad T cell receptor repertoire, endowing these cells with the capacity to recognize a wide range of self and nonself antigen specificities. The generation of CD4(+)CD25(+) Treg cells in the immune system is genetically controlled, influenced by antigen recognition, and various signals, in particular, cytokines such as interleukin-2 and transforming growth factor-beta1, control their activation, expansion, and suppressive effector activity. Functional abrogation of these cells in vivo or genetic defects that affect their development or function unequivocally promote the development of autoimmune and other inflammatory diseases in animals and humans. Recent progress has shed light on our understanding of the cellular and molecular basis of CD4(+)CD25(+) Treg cell-mediated immune regulation. This article discusses the relative contribution of CD4(+)CD25(+) nTreg cells in the induction of immunologic self-tolerance and provides a comprehensive overview of recent finding regarding the functional properties and effector mechanism of these cells, as revealed from various in vitro and in vivo models.  相似文献   

10.
BACKGROUND: CD4(+)CD25(+) regulatory T cells are key controllers of peripheral immunological self-tolerance and suppress various autoimmune diseases in animal models, but few studies have been done to define their roles in myasthenia gravis (MG) so far. OBJECTIVE: To investigate frequencies and dynamic changes of blood CD4(+)CD25(+) T cells from MG patients. METHODS: The peripheral blood CD4(+)CD25(+) T cells of 29 MG patients and 23 healthy controls were detected by three-color flow cytometry. RESULTS: Myasthenic patients with symptomatically uncontrollable disease showed slightly lower percentages of CD4(+)CD25(+) T cells (mean = 3.79 +/- 1.40%; P = 0.12), whereas MG patients with clinically stable disease had significantly increased CD4(+)CD25(+) T cells (mean = 8.45 +/- 1.96%, P = 0.0001), as compared with healthy controls (mean = 4.53 +/- 0.96%). In addition, thymectomized MG patients had significantly higher percentages of CD4(+)CD25(+) T cells (mean = 8.44 +/- 2.39%), as compared with both non-thymectomized MG patients (mean = 5.88 +/- 2.89%, P = 0.038) and healthy controls (P = 0.003). CONCLUSIONS: Our observations indicate that increased percentages of CD4(+)CD25(+) T cells in MG patients may be related to disease stability and that thymectomy in patients with MG resulted in augmented CD4(+)CD25(+) T cells.  相似文献   

11.
A progressive decline in the integrity of the immune system is one of the physiologic changes during aging. The frequency of autoimmune diseases or immune disorders increases in the aging population, but the state of regulatory T (Treg) cells in aged individuals has not been well determined. In the present study, we investigated the levels, phenotypes, and function of CD4(+)CD25(+) Treg cells in Balb/c mice, which were older than 20 months. Significantly enhanced percentages of CD4(+)CD25(+) Treg cells in the periphery (blood, spleen, and lymph nodes) of the aged mice were observed. These Treg cells showed modified Vbeta family distribution, reduced levels of CD45 receptor B and CD62 ligand molecules, as well as normal levels of forkhead box p3. However, when the inhibiting function of Treg cells was assayed in the in vitro assays and in a delayed-type hypersensitivity (DTH) model, CD4(+)CD25(+) Treg cells of aged mice displayed significantly lower inhibiting ability on alloantigen-induced DTH reaction or cytokine productions (IL-2 and IFN-gamma) but not cell proliferation of effector T cells, as compared with CD4(+)CD25(+) Treg cells of young mice. In addition, the percentages of CD4(+)CD8(-)CD25(+) Treg cells in the thymi of aged mice increased significantly, but their total cell numbers decreased markedly in these mice. Our present studies indicated collectively that the percentages, phenotypes, the size of TCR repertoire, and function of CD4(+)CD25(+) Treg cells were altered significantly with aging in mice. The functional defects of CD4(+)CD25(+) Treg cells may shed light on the role of CD4(+)CD25(+) Treg cells in the increased sensitivity to autoimmune diseases of aged populations.  相似文献   

12.
CD25(+)CD4(+) regulatory T cells inhibit the activation of autoreactive T cells in vitro and in vivo, and suppress organ-specific autoimmune diseases. The mechanism of CD25(+)CD4(+) T cells in the regulation of experimental autoimmune encephalomyelitis (EAE) is poorly understood. To assess the role of CD25(+)CD4(+) T cells in EAE, SJL mice were immunized with myelin proteolipid protein (PLP)(139-151) to develop EAE and were treated with anti-CD25 mAb. Treatment with anti-CD25 antibody following immunization resulted in a significant enhancement of EAE disease severity and mortality. There was increased inflammation in the central nervous system (CNS) of anti-CD25 mAb-treated mice. Anti-CD25 antibody treatment caused a decrease in the percentage of CD25(+)CD4(+) T cells in blood, peripheral lymph node (LN) and spleen associated with increased production of IFN-gamma and a decrease in IL-10 production by LN cells stimulated with PLP(130-151) in vitro. In addition, transfer of CD25(+)CD4(+) regulatory T cells from naive SJL mice decreased the severity of active EAE. In vitro, anti-CD3-stimulated CD25(+)CD4(+) T cells from naive SJL mice secreted IL-10 and IL-10 soluble receptor (sR) partially reversed the in vitro suppressive activity of CD25(+)CD4(+) T cells. CD25(+)CD4(+) T cells from IL-10-deficient mice were unable to suppress active EAE. These findings demonstrate that CD25(+)CD4(+) T cells suppress pathogenic autoreactive T cells in actively induced EAE and suggest they may play an important natural regulatory function in controlling CNS autoimmune disease through a mechanism that involves IL-10.  相似文献   

13.
Natural regulatory CD4(+) CD25(+) T cells play an important role in preventing autoimmunity by maintaining self-tolerance. They express CD25 constitutively and are produced in the thymus as a functionally mature T-cell population. Changes in the potential of these cells to regulate the activity of conventional effector lymphocytes may contribute to an increased susceptibility to infection, cancer and age-associated autoimmune diseases. In this study we demonstrated that the thymi of aged mice are populated by a higher percentage of CD4(+) CD25(+) thymocytes than in young animals. The expression of several surface markers (CD69, CD5, CD28, CTLA-4, CD122, FOXP3), usually used to characterize the phenotype of CD4(+) CD25(+) T regulatory cells, was compared between young and aged mice. We also examined the ability of sorted thymus-deriving regulatory T cells of young and aged BALB/c mice to inhibit the proliferation of lymph node lymphocytes activated in vitro. Natural regulatory T cells isolated from the thymi of young mice suppress the proliferation of responder lymph node cells. We demonstrated that thymus-deriving CD4(+) CD25(+) T cells of old mice maintain their potential to suppress the proliferation of activated responder lymphocytes of young mice. However, their potential to inhibit the proliferation of old responder T cells is abrogated. Differences in the occurrence and activity of CD4(+) CD25(+) thymocytes between young and old animals are discussed in relation to the expression of these surface markers.  相似文献   

14.
"Suppressor T cells" were historically defined within the CD8(+) T-cell compartment and recent studies have highlighted several naturally occurring CD8(+) Foxp3(-) Treg populations. However, the relevance of CD8(+) Foxp3(+) T cells, which represent a minor population in both thymi and secondary lymphoid organs of nonmanipulated mice, remains unclear. We here demonstrate that de novo Foxp3 induction in peripheral CD8(+) Foxp3(-) T cells is counter-regulated by DC-mediated co-stimulation via CD80/CD86. CD8(+) Foxp3(+) T cells fail to develop in TCR-transgenic mice with Rag1(-/-) background, similar to classical CD4(+) Foxp3(+) Tregs. Notably, both naturally occurring and induced CD8(+) Foxp3(+) T cells express bona fide Treg markers including CD25, GITR, CTLA4 and CD103, and show defective IFN-γ production upon restimulation when compared with their CD8(+) Foxp3(-) counterparts. However, utilizing DEREG transgenic mice for the isolation of Foxp3(+) cells by eGFP reporter expression, we demonstrate that induced CD8(+) Foxp3(+) T cells similar to activated CD8(+) Foxp3(-) T cells only mildly suppress T-cell proliferation and IFN-γ production. We therefore categorize CD8(+) Foxp3(+) T cells as a tightly controlled population sharing certain developmental and phenotypic properties with classical CD4(+) Foxp3(+) Tregs, but lacking potent suppressive activity.  相似文献   

15.
Increasing evidence indicates that CD4(+)CD25(+) T regulatory (Treg) cells control a wide spectrum of immune responses. The initial identification of CD4(+)CD25(+) Treg cell as a "professional suppressor" was based on observations made in BALB/c mice. This mouse strain is well known to preferentially develop T helper cell type 2 responses, to be more susceptible to intracellular parasite infection, to have a higher tumor incidence, and to be more resistant to the induction of autoimmune diseases, as compared with C57BL/6 (B6) mice. We therefore decided to compare Treg cell function of B6 and BALB/c mice. We observed that the frequency of CD4(+)CD25(+) T cells in the thymus and peripheral lymphoid organs of BALB/c mice was higher than in B6 mice. CD4(+)CD25(+) Treg cells from both mouse strains shared similar phenotypic properties, including expression of characteristic immunological markers and hyporesponsiveness to T cell receptor cross-linking and in their capacity to suppress proliferation of BALB/c CD4(+)CD25(-) T responder (Tres) cells. However, CD4(+)CD25(-) Tres cells from B6 mice were notably less susceptible to suppression by CD4(+)CD25(+) Treg cells from either mouse strain. Our data suggest that the number and the level of suppression of CD4(+)CD25(+) Treg cells for CD4(+)CD25(-) Tres cells may be dictated by genetic background. Our data also suggest that differences in the CD4(+)CD25(+) Treg cell number and the susceptibility of CD4(+)CD25(-) Tres cells may, at least in part, account for the differences in immune response between B6 and BALB/c strains of mice.  相似文献   

16.
Anti-CD3 mAb can modulate graft rejection and attenuate autoimmune diseases but their mechanism(s) of action remain unclear. CD8(+) T cells with regulatory function are induced in vitro by Teplizumab, a humanized anti-CD3 antibody and inhibit responses of autologous and allogeneic T cells. They inhibit CD4(+) T-cell proliferation by mechanisms involving TNF and CCL4, and by blocking target cell entry into G2/M phase of cell cycle but neither kill them, nor compete for IL-2. CD8(+) Treg can be isolated from peripheral blood following treatment of patients with Type 1 diabetes with Teplizumab, but not from untreated patients. The induction of CD8(+) Treg by anti-CD3 mAb requires TNF and signaling through the NF-κB cascade. The CD8(+) Treg express CD25, glucocorticoid-induced TNF receptor family, CTLA-4, Foxp3, and TNFR2, and the combined expression of TNFR2 and CD25 identifies a potent subpopulation of CD8(+) Treg. These studies have identified a novel mechanism of immune regulation by anti-CD3 mAb and markers that may be used to track inducible CD8(+) Treg in settings such as chronic inflammation or immune therapy.  相似文献   

17.
IL-2 is crucial for the production of CD4(+)CD25(+) T regulatory (Treg) cells while important for the generation of effective T cell-mediated immunity. How to exploit the capacity of IL-2 to expand Treg cells, while restraining activation of T effector (Teff) cells, is an important and unanswered therapeutic question. Dexamethasone (Dex), a synthetic glucocorticoid steroid, has been reported to suppress IL-2-mediated activation of Teff cells and increase the proportion of Treg cells. Thus, we hypothesized that glucocorticoids may be useful as costimulants to amplify IL-2-mediated selective expansion of Treg cells. We show in this study that short-term simultaneous administration of Dex and IL-2 markedly expanded functional suppressive Foxp3(+)CD4(+)CD25(+) T cells in murine peripheral lymphoid tissues. In a myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) mouse model, we observed that splenic CD4(+)CD25(+) T cells failed to suppress the proliferation of CD4(+)CD25(-) T cells. Pretreatment with Dex/IL-2 remarkably increased the proportion of CD4(+)FoxP3(+) cells and partially restored the function of splenic CD4(+)CD25(+) T cells, and inhibited the development of EAE. Therefore, the combination of glucocorticoid and IL-2, two currently used therapeutics, may provide a novel approach for the treatment of autoimmune diseases, transplant rejection and graft-vs.-host disease.  相似文献   

18.
CD8(+) regulatory T cells (Treg) and CD4(+)CD25(+) Treg infiltrate human cancers, thus favoring tumor immune escape. Therefore, in the setting of antitumor therapeutic protocols, it is important to associate antitumor treatment with agents that are able to inhibit Treg function. Cyclophosphamide (CY) has been demonstrated to be effective in counteracting CD4(+)CD25(+) Treg activity. Hence, we tested its inhibitory efficacy on human CD8(+) Treg. Because CY is a prodrug, 4-hydroperoxycyclophosphamide (4-HC), a derivative of CY that in aqueous solution is converted to 4-hydroxycyclophosphamide, an active metabolite of CY, was used. 4-HC significantly inhibited CD8(+) Treg generation and function but only at the higher tested concentration (0.5 μg/mL), that is, in the therapeutic range of the drug. The lower 4-HC concentration tested (0.1 μg/mL) was almost ineffective. 4-HC inhibitory effects were related to apoptosis/necrosis induction. When CD8(+)CD28(+) non-Treg were analyzed for comparative purposes, significantly lower cytotoxic rates among these cells were observed than among CD8(+) Treg, which were differentiated because they did not express the CD28 molecule. These data demonstrate that CD8(+) Treg are inhibited through cytotoxic phenomena by CY, thus supporting the use of this drug at adequate concentrations and schedules of administration as a Treg inhibitor in combinatorial chemo- or immunotherapeutic anticancer protocols.  相似文献   

19.
Although previous studies have emphasized the tolerogenic property of murine neonatal immune system, recent studies indicate that neonatal mice are prone to autoimmune disease. This chapter will summarize the evidence for neonatal propensity to autoimmune ovarian disease (AOD) and describe the new finding that autoantibody can trigger a T cell–dependent autoimmune disease in neonatal but not adult mice. Based on depletion or addition of the CD4+CD25+ T cells, disease resistance of older mice is explicable by the emergence of CD4+CD25+ regulatory T-cell function after day 5, whereas disease susceptibility is associated with resistance to regulation by CD4+CD25+ T cells.  相似文献   

20.
Tolerance to self-antigens expressed in peripheral organs is maintained by CD4(+) CD25(+) Foxp3(+) Treg cells, which are generated as a result of thymic selection or peripheral induction. Here, we demonstrate that steady-state migratory DCs from the skin mediated Treg conversion in draining lymph nodes of mice. These DCs displayed a partially mature MHC II(int) CD86(int) CD40(hi) CCR7(+) phenotype, used endogenous TGF-β for conversion and showed nuclear RelB translocation. Deficiency of the alternative NF-κB signaling pathway (RelB/p52) reduced steady-state migration of DCs. These DCs transported and directly presented soluble OVA provided by s.c. implanted osmotic minipumps, as well as cell-associated epidermal OVA in transgenic K5-mOVA mice to CD4(+) OVA-specific TCR-transgenic OT-II T cells. The langerin(+) dermal DC subset, but not epidermal Langerhans cells, mediated conversion of naive OT-II×RAG-1(-/-) T cells into proliferating CD4(+) CD25(+) Foxp3(+) Tregs. Thus, our data suggest that steady-state migratory RelB(+) TGF-β(+) langerin(+) dermal DCs mediate peripheral Treg conversion in response to epidermal antigen in skin-draining lymph nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号