首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Acute kidney injury (AKI) is a potentially fatal syndrome characterized by a rapid decline in kidney function caused by ischemic or toxic injury to renal tubular cells. The widely used chemotherapy drug cisplatin accumulates preferentially in the renal tubular cells and is a frequent cause of drug-induced AKI. During the development of AKI the quiescent tubular cells reenter the cell cycle. Strategies that block cell-cycle progression ameliorate kidney injury, possibly by averting cell division in the presence of extensive DNA damage. However, the early signaling events that lead to cell-cycle activation during AKI are not known. In the current study, using mouse models of cisplatin nephrotoxicity, we show that the G1/S-regulating cyclin-dependent kinase 4/6 (CDK4/6) pathway is activated in parallel with renal cell-cycle entry but before the development of AKI. Targeted inhibition of CDK4/6 pathway by small-molecule inhibitors palbociclib (PD-0332991) and ribociclib (LEE011) resulted in inhibition of cell-cycle progression, amelioration of kidney injury, and improved overall survival. Of additional significance, these compounds were found to be potent inhibitors of organic cation transporter 2 (OCT2), which contributes to the cellular accumulation of cisplatin and subsequent kidney injury. The unique cell-cycle and OCT2-targeting activities of palbociclib and LEE011, combined with their potential for clinical translation, support their further exploration as therapeutic candidates for prevention of AKI.Cell division is a fundamental biological process that is tightly regulated by evolutionarily conserved signaling pathways (1, 2). The initial decision to start cell division, the fidelity of subsequent DNA replication, and the final formation of daughter cells is monitored and regulated by these essential pathways (26). The cyclin-dependent kinases (CDKs) are the central players that orchestrate this orderly progression through the cell cycle (1, 2, 6, 7). The enzymatic activity of CDKs is regulated by complex mechanisms that include posttranslational modifications and expression of activating and inhibitory proteins (1, 2, 6, 7). The spatial and temporal changes in the activity of these CDK complexes are thought to generate the distinct substrate specificities that lead to sequential and unidirectional progression of the cell cycle (1, 8, 9).Cell-cycle deregulation is a universal feature of human cancer and a long-sought-after target for anticancer therapy (1, 1013). Frequent genetic or epigenetic changes in mitogenic pathways, CDKs, cyclins, or CDK inhibitors are observed in various human cancers (1, 4, 11). In particular, the G1/S-regulating CDK4/6–cyclin D–inhibitors of CDK4 (INK4)–retinoblastoma (Rb) protein pathway frequently is disrupted in cancer cells (11, 14). These observations provided an impetus to develop CDK inhibitors as anticancer drugs. However, the earlier class of CDK inhibitors had limited specificity, inadequate clinical activity, poor pharmacokinetic properties, and unacceptable toxicity profiles (10, 11, 14, 15). These disappointing initial efforts now have been followed by the development of the specific CDK4/6 inhibitors palbociclib (PD0332991), ribociclib (LEE011), and abemaciclib (LY2835219), which have demonstrated manageable toxicities, improved pharmacokinetic properties, and impressive antitumor activity, especially in certain forms of breast cancer (14, 16). Successful early clinical trials with these three CDK4/6 inhibitors have generated cautious enthusiasm that these drugs may emerge as a new class of anticancer agents (14, 17). Palbociclib recently was approved by Food and Drug Administration for the treatment of metastatic breast cancer and became the first CDK4/6 inhibitor approved for anticancer therapy (18).In addition to its potential as an anticancer strategy, CDK4/6 inhibition in normal tissues could be exploited therapeutically for wide-ranging clinical conditions. For example, radiation-induced myelosuppression, caused by cell death of proliferating hematopoietic stem/progenitor cells, can be rescued by palbociclib (19, 20). Furthermore, cytotoxic anticancer agents cause significant toxicities to normal proliferating cells, which possibly could be mitigated by the concomitant use of CDK4/6 inhibitors (20, 21). More broadly, cell-cycle inhibition could have beneficial effects in disorders in which maladaptive proliferation of normal cells contributes to the disease pathology, as observed in vascular proliferative diseases, hyperproliferative skin diseases, and autoimmune disorders (22, 23). In support of this possibility, palbociclib treatment recently was reported to ameliorate disease progression in animal models of rheumatoid arthritis through cell-cycle inhibition of synovial fibroblasts (24).Abnormal cellular proliferation also is a hallmark of various kidney diseases (25), and cell-cycle inhibition has been shown to ameliorate significantly the pathogenesis of polycystic kidney disease (26), nephritis (27), and acute kidney injury (AKI) (28). Remarkably, during AKI, the normally quiescent renal tubular cells reenter the cell cycle (2934), and blocking cell-cycle progression can reduce renal injury (28). Here, we provide evidence that the CDK4/6 pathway is activated early during AKI and demonstrate significant protective effects of CDK4/6 inhibitors in animal models of cisplatin-induced AKI. In addition, we found that the CDK4/6 inhibitors palbociclib and LEE011 are potent inhibitors of organic cation transporter 2 (OCT2), a cisplatin uptake transporter highly expressed in renal tubular cells (3537). Our findings provide a rationale for the clinical development of palbociclib and LEE011 for the prevention and treatment of AKI.  相似文献   

2.
3.
The adaptor protein Numb has been implicated in the switch between cell proliferation and differentiation made by satellite cells during muscle repair. Using two genetic approaches to ablate Numb, we determined that, in its absence, muscle regeneration in response to injury was impaired. Single myofiber cultures demonstrated a lack of satellite cell proliferation in the absence of Numb, and the proliferation defect was confirmed in satellite cell cultures. Quantitative RT-PCR from Numb-deficient satellite cells demonstrated highly up-regulated expression of p21 and Myostatin, both inhibitors of myoblast proliferation. Transfection with Myostatin-specific siRNA rescued the proliferation defect of Numb-deficient satellite cells. Furthermore, overexpression of Numb in satellite cells inhibited Myostatin expression. These data indicate a unique function for Numb during the initial activation and proliferation of satellite cells in response to muscle injury.Satellite cells represent a muscle-specific stem cell population that allows for muscle growth postnatally and is necessary for muscle repair (1). In response to muscle-fiber damage, quiescent satellite cells that lie along the myofibers under the plasmalemma are activated and proliferate. Proliferating satellite cells have a binary fate decision to make—they can differentiate into myoblasts and intercalate into myofibers by fusion to repair the damaged muscle or they can renew the satellite cell population and return to a quiescent state (24). Quiescent satellite cells express paired box 7 (Pax7), but low or undetectable levels of the myogenic regulatory factors Myf5 and MyoD (5, 6). Activated satellite cells robustly express Pax7 and MyoD/Myf5, but a subset will subsequently down-regulate the myogenic regulatory factors in the process of satellite cell self-renewal (7). Recent studies have demonstrated that, in vivo, Pax7-positive cells are necessary for muscle repair (8, 9).Notch signaling is an important regulator of satellite cell function; it is implicated in satellite cell activation, proliferation (2, 10, 11), and maintenance of quiescence (12, 13). Expression of constitutively active Notch1 results in maintenance of Pax7 expression and down-regulation of Myod/Myf5 whereas inhibition of Notch signaling leads to myogenic differentiation (10, 14). In fact, conditional ablation of Rbpj embryonically results in hypotrophic muscle (15), and, if ablated in the adult, satellite cells undergo spontaneous activation and precocious differentiation with a failure of self-renewal (12, 13). In adult muscle, the Notch ligand, Delta-like1 (Dll1), is expressed on satellite cells, myofibers, and newly differentiating myoblasts and is necessary for repair (10, 11, 16). In aged muscle, impairment of regeneration is due, in part, to a failure of Dll1 expression (17).Numb en`s four proteins with molecular masses of 65, 66, 71, and 72 kDa by alternative splicing of two exons (18, 19). The Numb proteins are cytoplasmic adaptors that direct ubiquitination and degradation of Notch1 by recruiting the E3 ubiquitin ligase Itch to the receptor (1822). Numb is a cell-fate determinant that mediates asymmetric cell division, leading to selective Notch inhibition in one daughter cell and its subsequent differentiation whereas the other daughter has active Notch signaling and remains proliferative (10). Embryonically, Numb is expressed in the myotome whereas Notch1 is limited to the dermomyotome (23, 24). This pattern suggests that the expression of Numb in one daughter cell allows entry into the myogenic lineage. Indeed, overexpression of Numb embryonically increases the number of myogenic progenitors in the somite (25, 26).Numb expression increases during the activation and proliferative expansion of satellite cells, becoming asymmetrically segregated in transit-amplifying cells and leading to asymmetric cell divisions (10, 27). These observations led to a model in which Numb inhibits Notch signaling in one daughter satellite cell, allowing it to undergo myogenic differentiation. The molecular switch that controls the decision of satellite cell progeny to continue proliferating or to differentiate is not well understood. This process seems to be controlled by a decrease of Notch signaling due to increased expression of Numb and an increase in Wnt signaling (1014, 17, 28). In these studies, we examined the role of Numb in satellite cell function by genetic deletion of Numb from myogenic progenitors and satellite cells. Our observations reveal that Numb is necessary for satellite cell-mediated repair. Furthermore, Numb-deficient satellite cells have an unexpected proliferation defect due to an up-regulation of Myostatin. These data indicate a unique role for Numb in regulating the activation and proliferation of satellite cells.  相似文献   

4.
The dismal prognosis of malignant brain tumors drives the development of new treatment modalities. In view of the multiple activities of growth hormone-releasing hormone (GHRH), we hypothesized that pretreatment with a GHRH agonist, JI-34, might increase the susceptibility of U-87 MG glioblastoma multiforme (GBM) cells to subsequent treatment with the cytotoxic drug, doxorubicin (DOX). This concept was corroborated by our findings, in vivo, showing that the combination of the GHRH agonist, JI-34, and DOX inhibited the growth of GBM tumors, transplanted into nude mice, more than DOX alone. In vitro, the pretreatment of GBM cells with JI-34 potentiated inhibitory effects of DOX on cell proliferation, diminished cell size and viability, and promoted apoptotic processes, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide proliferation assay, ApoLive-Glo multiplex assay, and cell volumetric assay. Proteomic studies further revealed that the pretreatment with GHRH agonist evoked differentiation decreasing the expression of the neuroectodermal stem cell antigen, nestin, and up-regulating the glial maturation marker, GFAP. The GHRH agonist also reduced the release of humoral regulators of glial growth, such as FGF basic and TGFβ. Proteomic and gene-expression (RT-PCR) studies confirmed the strong proapoptotic activity (increase in p53, decrease in v-myc and Bcl-2) and anti-invasive potential (decrease in integrin α3) of the combination of GHRH agonist and DOX. These findings indicate that the GHRH agonists can potentiate the anticancer activity of the traditional chemotherapeutic drug, DOX, by multiple mechanisms including the induction of differentiation of cancer cells.Glioblastoma multiforme (GBM) is one of the most aggressive human cancers, and the afflicted patients inevitably succumb. The dismal outcome of this malignancy demands great efforts to find improved methods of treatment (1). Many compounds have been synthesized in our laboratory in the past few years that have proven to be effective against diverse malignant tumors (214). These are peptide analogs of hypothalamic hormones: luteinizing hormone-releasing hormone (LHRH), growth hormone-releasing hormone (GHRH), somatostatin, and analogs of other neuropeptides such as bombesin and gastrin-releasing peptide. The receptors for these peptides have been found to be widely distributed in the human body, including in many types of cancers (214). The regulatory functions of these hypothalamic hormones and other neuropeptides are not confined to the hypothalamo–hypophyseal system or, even more broadly, to the central nervous system (CNS). In particular, GHRH can induce the differentiation of ovarian granulosa cells and other cells in the reproductive system and function as a growth factor in various normal tissues, benign tumors, and malignancies (24, 6, 11, 1418). Previously, we also reported that antagonistic cytototoxic derivatives of some of these neuropeptides are able to inhibit the growth of several malignant cell lines (214).Our earlier studies showed that treatment with antagonists of LHRH or GHRH rarely effects complete regression of glioblastoma-derived tumors (5, 7, 10, 11). Previous studies also suggested that growth factors such as EGF or agonistic analogs of LHRH serving as carriers for cytotoxic analogs and functioning as growth factors may sensitize cancer cells to cytotoxic treatments (10, 19) through the activation of maturation processes. We therefore hypothesized that pretreatment with one of our GHRH agonists, such as JI-34 (20), which has shown effects on growth and differentiation in other cell lines (17, 18, 21, 22), might decrease the pluripotency and the adaptability of GBM cells and thereby increase their susceptibility to cytotoxic treatment.In vivo, tumor cells were implanted into athymic nude mice, tumor growth was recorded weekly, and final tumor mass was measured upon autopsy. In vitro, proliferation assays were used for the determination of neoplastic proliferation and cell growth. Changes in stem (nestin) and maturation (GFAP) antigen expression was evaluated with Western blot studies in vivo and with immunocytochemistry in vitro. The production of glial growth factors (FGF basic, TGFβ) was verified by ELISA. Further, using the Human Cancer Pathway Finder real-time quantitative PCR, numerous genes that play a role in the development of cancer were evaluated. We placed particular emphasis on the measurement of apoptosis, using the ApoLive-Glo Multiplex Assay kit and by detection of the expression of the proapoptotic p53 protein. This overall approach permitted the evaluation of the effect of GHRH agonist, JI-34, on the response to chemotherapy with doxorubicin.  相似文献   

5.
6.
7.
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal−metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal−metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.Square-planar d8 platinum(II) polypyridine complexes have long been known to exhibit intriguing spectroscopic and luminescence properties (154) as well as interesting solid-state polymorphism associated with metal−metal and π−π stacking interactions (114, 25). Earlier work by our group showed the first example, to our knowledge, of an alkynylplatinum(II) terpyridine system [Pt(tpy)(C ≡ CR)]+ that incorporates σ-donating and solubilizing alkynyl ligands together with the formation of Pt···Pt interactions to exhibit notable color changes and luminescence enhancements on solvent composition change (25) and polyelectrolyte addition (26). This approach has provided access to the alkynylplatinum(II) terpyridine and other related cyclometalated platinum(II) complexes, with functionalities that can self-assemble into metallogels (2731), liquid crystals (32, 33), and other different molecular architectures, such as hairpin conformation (34), helices (3538), nanostructures (3945), and molecular tweezers (46, 47), as well as having a wide range of applications in molecular recognition (4852), biomolecular labeling (4852), and materials science (53, 54). Recently, metal-containing amphiphiles have also emerged as a building block for supramolecular architectures (4244, 5559). Their self-assembly has always been found to yield different molecular architectures with unprecedented complexity through the multiple noncovalent interactions on the introduction of external stimuli (4244, 5559).Helical architecture is one of the most exciting self-assembled morphologies because of the uniqueness for the functional and topological properties (6069). Helical ribbons composed of amphiphiles, such as diacetylenic lipids, glutamates, and peptide-based amphiphiles, are often precursors for the growth of tubular structures on an increase in the width or the merging of the edges of ribbons (64, 65). Recently, the optimization of nanotube formation vs. helical nanostructures has aroused considerable interests and can be achieved through a fine interplay of the influence on the amphiphilic property of molecules (66), choice of counteranions (67, 68), or pH values of the media (69), which would govern the self-assembly of molecules into desirable aggregates of helical ribbons or nanotube scaffolds. However, a precise control of supramolecular morphology between helical ribbons and nanotubes remains challenging, particularly for the polycyclic aromatics in the field of molecular assembly (6469). Oligo(para-phenylene ethynylene)s (OPEs) with solely π−π stacking interactions are well-recognized to self-assemble into supramolecular system of various nanostructures but rarely result in the formation of tubular scaffolds (7073). In view of the rich photophysical properties of square-planar d8 platinum(II) systems and their propensity toward formation of directional Pt···Pt interactions in distinctive morphologies (2731, 3945), it is anticipated that such directional and noncovalent metal−metal interactions might be capable of directing or dictating molecular ordering and alignment to give desirable nanostructures of helical ribbons or nanotubes in a precise and controllable manner.Herein, we report the design and synthesis of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing hydrophilic OPEs with two 3,6,9-trioxadec-1-yloxy chains. The mononuclear alkynylplatinum(II) terpyridine complex with amphiphilic property is found to show a strong tendency toward the formation of supramolecular structures on diffusion of diethyl ether in dichloromethane or dimethyl sulfoxide (DMSO) solution. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would result in nanotubes or helical ribbons in the self-assembly process. To the best of our knowledge, this finding represents the first example of the utilization of the steric bulk of the moieties, which modulates the formation of directional metal−metal interactions to precisely control the formation of nanotubes or helical ribbons in the self-assembly process. Application of the nucleation–elongation model into this assembly process by UV-visible (UV-vis) absorption spectroscopic studies has elucidated the nature of the molecular self-assembly, and more importantly, it has revealed the role of metal−metal interactions in the formation of these two types of nanostructures.  相似文献   

8.
9.
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification. FOP patients harbor point mutations in ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP). Two mechanisms of mutated ACVR1 (FOP-ACVR1) have been proposed: ligand-independent constitutive activity and ligand-dependent hyperactivity in BMP signaling. Here, by using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs), we report a third mechanism, where FOP-ACVR1 abnormally transduces BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling but not BMP signaling. Activin-A enhanced the chondrogenesis of induced mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs) via aberrant activation of BMP signaling in addition to the normal activation of TGF-β signaling in vitro, and induced endochondral ossification of FOP-iMSCs in vivo. These results uncover a novel mechanism of extraskeletal bone formation in FOP and provide a potential new therapeutic strategy for FOP.Heterotopic ossification (HO) is defined as bone formation in soft tissue where bone normally does not exist. It can be the result of surgical operations, trauma, or genetic conditions, one of which is fibrodysplasia ossificans progressiva (FOP). FOP is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification (16). The responsive mutation for classic FOP is 617G > A (R206H) in the intracellular glycine- and serine-rich (GS) domain (7) of ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP) (810). ACVR1 mutations in atypical FOP patients have been found also in other amino acids of the GS domain or protein kinase domain (11, 12). Regardless of the mutation site, mutated ACVR1 (FOP-ACVR1) has been shown to activate BMP signaling without exogenous BMP ligands (constitutive activity) and transmit much stronger BMP signaling after ligand stimulation (hyperactivity) (1225).To reveal the molecular nature of how FOP-ACVR1 activates BMP signaling, cells overexpressing FOP-ACVR1 (1220), mouse embryonic fibroblasts derived from Alk2R206H/+ mice (21, 22), and cells from FOP patients, such as stem cells from human exfoliated deciduous teeth (23), FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) (24, 25) and induced mesenchymal stromal cells (iMSCs) from FOP-iPSCs (FOP-iMSCs) (26) have been used as models. Among these cells, Alk2R206H/+ mouse embryonic fibroblasts and FOP-iMSCs are preferred because of their accessibility and expression level of FOP-ACVR1 using an endogenous promoter. In these cells, however, the constitutive activity and hyperactivity is not strong (within twofold normal levels) (22, 26). In addition, despite the essential role of BMP signaling in development (2731), the pre- and postnatal development and growth of FOP patients are almost normal, and HO is induced in FOP patients after physical trauma and inflammatory response postnatally, not at birth (16). These observations led us to hypothesize that FOP-ACVR1 abnormally responds to noncanonical BMP ligands induced by trauma or inflammation.Here we show that FOP-ACVR1 transduced BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling (10, 3234) and contributes to inflammatory responses (35, 36). Our in vitro and in vivo data indicate that activation of TGF-β and aberrant BMP signaling by Activin-A in FOP-cells is one cause of HO in FOP. These results suggest a possible application of anti–Activin-A reagents as a new therapeutic tool for FOP.  相似文献   

10.
Epilepsy is characterized by recurrent seizure activity that can induce pathological reorganization and alter normal function in neocortical networks. In the present study, we determined the numbers of cells and neurons across the complete extent of the cortex for two epileptic baboons with naturally occurring seizures and two baboons without epilepsy. Overall, the two epileptic baboons had a 37% average reduction in the number of cortical neurons compared with the two nonepileptic baboons. The loss of neurons was variable across cortical areas, with the most pronounced loss in the primary motor cortex, especially in lateral primary motor cortex, representing the hand and face. Less-pronounced reductions of neurons were found in other parts of the frontal cortex and in somatosensory cortex, but no reduction was apparent in the primary visual cortex and little in other visual areas. The results provide clear evidence that epilepsy in the baboon is associated with considerable reduction in the numbers of cortical neurons, especially in frontal areas of the cortex related to motor functions. Whether or not the reduction of neurons is a cause or an effect of seizures needs further investigation.Epilepsy is associated with structural changes in the cerebral cortex (e.g., refs. 16), and partial epilepsies (i.e., seizures originating from a brain region) may lead to loss of neurons (7) and altered connectivity (8). The cerebral cortex is a heterogeneous structure comprised of multiple sensory and motor information-processing systems (e.g., refs. 9 and 10) that vary according to their processing demands, connectivity (e.g., refs. 11 and 12), and intrinsic numbers of cells and neurons (1316). Chronic seizures have been associated with progressive changes in the region of the epileptic focus and in remote but functionally connected cortical or subcortical structures (3, 17). Because areas of the cortex are functionally and structurally different, they may also differ in susceptibility to pathological changes resulting from epilepsy.The relationship between seizure activity and neuron damage can be difficult to study in humans. Seizure-induced neuronal damage can be convincingly demonstrated in animals using electrically or chemically induced status epilepticus (one continuous seizure episode longer than 5 min) to reveal morphometric (e.g., refs. 18 and 19) or histological changes (e.g., refs. 20 and 21). Subcortical brain regions are often studied for vulnerability to seizure-induced injury (2127); however, a recent study by Karbowski et al. (28) observed reduction of neurons in cortical layers 5 and 6 in the frontal lobes of rats with seizures. Seizure-induced neuronal damage in the cortex has also been previously demonstrated in baboons with convulsive status epilepticus (29).The goal of the present study was to determine if there is a specific pattern of cell or neuron reduction across the functionally divided areas of the neocortex in baboons with epilepsy. Selected strains of baboons have been studied as a natural primate model of generalized epilepsy (3036) that is analogous to juvenile myoclonic epilepsy in humans. The baboons demonstrate generalized myoclonic and tonic-clonic seizures, and they have generalized interictal and ictal epileptic discharges on scalp EEG. Because of their phylogenetic proximity to humans, baboons and other Old World monkeys share many cortical areas and other features of cortical organization with humans (e.g., refs. 9 and 10). Cortical cell and neuron numbers were determined using the flow fractionator method (37, 38) in epileptic baboon tissue obtained from the Texas Biomedical Research Institute, where a number of individuals develop generalized epilepsy within a pedigreed baboon colony (3136). Our results reveal a regionally specific neuron reduction in the cortex of baboons with naturally occurring, generalized seizures.  相似文献   

11.
Nonresolving chronic inflammation at the neoplastic site is consistently associated with promoting tumor progression and poor patient outcomes. However, many aspects behind the mechanisms that establish this tumor-promoting inflammatory microenvironment remain undefined. Using bladder cancer (BC) as a model, we found that CD14-high cancer cells express higher levels of numerous inflammation mediators and form larger tumors compared with CD14-low cells. CD14 antigen is a glycosyl-phosphatidylinositol (GPI)-linked glycoprotein and has been shown to be critically important in the signaling pathways of Toll-like receptor (TLR). CD14 expression in this BC subpopulation of cancer cells is required for increased cytokine production and increased tumor growth. Furthermore, tumors formed by CD14-high cells are more highly vascularized with higher myeloid cell infiltration. Inflammatory factors produced by CD14-high BC cells recruit and polarize monocytes and macrophages to acquire immune-suppressive characteristics. In contrast, CD14-low BC cells have a higher baseline cell division rate than CD14-high cells. Importantly, CD14-high cells produce factors that further increase the proliferation of CD14-low cells. Collectively, we demonstrate that CD14-high BC cells may orchestrate tumor-promoting inflammation and drive tumor cell proliferation to promote tumor growth.Solid tumors represent a complex mass of tissue composed of multiple distinct cell types (1, 2). Cells within the tumor produce a range of soluble factors to create a complex of signaling networks within the tumor microenvironment (37). One of the outcomes of this crosstalk is tumor-promoting inflammation (TPI) (8, 9). TPI can modulate the functions of tumor-infiltrating myeloid lineage cells including macrophages (1012). Tumor-associated macrophages (TAMs) consistently display an alternatively activated phenotype (M2) commonly found in sites of wound healing (1318). These macrophages promote tumor growth while suppressing the host immune response locally (1922). Polarization and subversion of tumor-infiltrating macrophages is accomplished via immune mediators in the tumor microenvironment (23, 24). Adding to the complexity of solid tumors is the heterogeneity of the cancer cells (2). Tumor cells of varying differentiation states and different characteristics coexist within a tumor (2529). However, the different roles of each tumor cell subset during cancer progression remain undefined.Bladder cancer (BC) represents a growing number of solid tumors characterized by the infiltration of a significant number of myeloid cells in the neoplastic lesion (30, 31). We have previously determined that keratin 14 (KRT14) expression marks the most primitive differentiation state in BC cells (32). KRT14 expression is significantly associated with poor overall patient survival. However, the mechanisms used by KRT14-expressing cells to promote tumor growth remain unclear. In the current study, we found that KRT14+ basal BC cells also express higher levels of CD14. Here, we investigate the strategies used by KRT14+ CD14-high BC cells to promote tumor growth.  相似文献   

12.
Extracellular vesicles (EVs) secreted by cells present an attractive strategy for developing new therapies, but progress in the field is limited by several issues: The quality of the EVs varies with the type and physiological status of the producer cells; protocols used to isolate the EVs are difficult to scale up; and assays for efficacy are difficult to develop. In the present report, we have addressed these issues by using human mesenchymal stem/stromal cells (MSCs) that produce EVs when incubated in a protein-free medium, preselecting the preparations of MSCs with a biomarker for their potency in modulating inflammation, incubating the cells in a chemically defined protein-free medium that provided a stable environment, isolating the EVs with a scalable chromatographic procedure, and developing an in vivo assay for efficacy of the cells in suppressing neuroinflammation after traumatic brain injury (TBI) in mice. In addition, we demonstrate that i.v. infusion of the isolated EVs shortly after induction of TBI rescued pattern separation and spatial learning impairments 1 mo later.Traumatic brain injury (TBI) has devastating effects on the victims and creates a large burden on the healthcare system (1). TBI was originally considered an acute injury syndrome, but it is now recognized to have chronic effects similar to those found in neurodegenerative disorders (25). In the acute phase, the trauma destroys tissue, and it also triggers a cascade of events that include excessive neural excitability, oxidative stress, disruption of the blood–brain barrier, and inflammation. The cascade causes additional cell death that occurs through necrosis, apoptosis, and excessive autophagy. The cascade involves astrocytes and microglia, in addition to invading neutrophils, monocytes/macrophages, and T cells. The sequence of events is similar to the sequence seen with sterile injuries to other tissues. Initially, proinflammatory effects predominate and are useful in clearing tissue debris. Thereafter, there is a transition to an antiinflammatory phase, with the microglia and macrophages transiting from “classical” proinflammatory M1 phenotype to multiple alternative M2 phenotypes that suppress the M1 proinflammatory mediators and enhance tissue repair. The chronic effects of TBI occur because the inflammatory phase is not fully suppressed. Instead, the inflammatory responses persist, and they initiate a self-perpetuating cycle of tissue destruction, followed by further inflammation. A similar cycle is now recognized to contribute to the pathology of many chronic diseases.Multiple strategies have been tested to modulate inflammation in TBI and other CNS disorders (24). Among these strategies is the use of mesenchymal stem/stromal cells (MSCs) from bone marrow and other tissues (619). The beneficial effects of the MSCs are probably explained by their normal roles as perivascular cells that are among the first responders to tissue injury. One of their responses is to act in concert with other cells as guardians of excessive inflammation because they are activated by proinflammatory cytokines such as TNF-α to secrete modulators of inflammation that include TNF-alpha stimulated gene/protein 6 (TSG-6), PGE-2, STC-1, IL-1 receptor antagonist, and TIMP3 (18, 2025).Recently, we have explored the hypothesis that extracellular vesicles (EVs) produced by MSCs may be an effective therapy for TBI because extensive recent reports indicate that EVs may provide a highly efficient means of delivering therapeutic factors to target cells (2629). As noted by György et al. (29), there are several issues that currently limit therapeutic applications of EVs. In the present report, we have addressed most of these issues. In addition, we demonstrate the efficacy of EVs isolated from MSCs in a mouse model for TBI. As this work was in progress, Zhang et al. (30) reported that exosomes isolated from MSCs improved functional recovery in a rat model for TBI, but they did not characterize the exosomes.  相似文献   

13.
Rickettsiae are responsible for some of the most devastating human infections. A high infectivity and severe illness after inhalation make some rickettsiae bioterrorism threats. We report that deletion of the exchange protein directly activated by cAMP (Epac) gene, Epac1, in mice protects them from an ordinarily lethal dose of rickettsiae. Inhibition of Epac1 suppresses bacterial adhesion and invasion. Most importantly, pharmacological inhibition of Epac1 in vivo using an Epac-specific small-molecule inhibitor, ESI-09, completely recapitulates the Epac1 knockout phenotype. ESI-09 treatment dramatically decreases the morbidity and mortality associated with fatal spotted fever rickettsiosis. Our results demonstrate that Epac1-mediated signaling represents a mechanism for host–pathogen interactions and that Epac1 is a potential target for the prevention and treatment of fatal rickettsioses.Rickettsiae are responsible for some of the most devastating human infections (14). It has been forecasted that temperature increases attributable to global climate change will lead to more widespread distribution of rickettsioses (5). These tick-borne diseases are caused by obligately intracellular bacteria of the genus Rickettsia, including Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF) in the United States and Latin America (2, 3), and Rickettsia conorii, the causative agent of Mediterranean spotted fever endemic to southern Europe, North Africa, and India (6). A high infectivity and severe illness after inhalation make some rickettsiae (including Rickettsia prowazekii, R. rickettsii, Rickettsia typhi, and R. conorii) bioterrorism threats (7). Although the majority of rickettsial infections can be controlled by appropriate broad-spectrum antibiotic therapy if diagnosed early, up to 20% of misdiagnosed or untreated (1, 3) and 5% of treated RMSF cases (8) result in a fatal outcome caused by acute disseminated vascular endothelial infection and damage (9). Fatality rates as high as 32% have been reported in hospitalized patients diagnosed with Mediterranean spotted fever (10). In addition, strains of R. prowazekii resistant to tetracycline and chloramphenicol have been developed in laboratories (11). Disseminated endothelial infection and endothelial barrier disruption with increased microvascular permeability are the central features of SFG rickettsioses (1, 2, 9). The molecular mechanisms involved in rickettsial infection remain incompletely elucidated (9, 12). A comprehensive understanding of rickettsial pathogenesis and the development of novel mechanism-based treatment are urgently needed.Living organisms use intricate signaling networks for sensing and responding to changes in the external environment. cAMP, a ubiquitous second messenger, is an important molecular switch that translates environmental signals into regulatory effects in cells (13). As such, a number of microbial pathogens have evolved a set of diverse virulence-enhancing strategies that exploit the cAMP-signaling pathways of their hosts (14). The intracellular functions of cAMP are predominantly mediated by the classic cAMP receptor, protein kinase A (PKA), and the more recently discovered exchange protein directly activated by cAMP (Epac) (15). Thus, far, two isoforms, Epac1 and Epac2, have been identified in humans (16, 17). Epac proteins function by responding to increased intracellular cAMP levels and activating the Ras superfamily small GTPases Ras-proximate 1 and 2 (Rap1 and Rap2). Accumulating evidence demonstrates that the cAMP/Epac1 signaling axis plays key regulatory roles in controlling various cellular functions in endothelial cells in vitro, including cell adhesion (1821), exocytosis (22), tissue plasminogen activator expression (23), suppressor of cytokine signaling 3 (SOCS-3) induction (2427), microtubule dynamics (28, 29), cell–cell junctions, and permeability and barrier functions (3037). Considering the critical importance of endothelial cells in rickettsioses, we examined the functional roles of Epac1 in rickettsial pathogenesis in vivo, taking advantage of the recently generated Epac1 knockout mouse (38) and Epac-specific inhibitors (39, 40) generated from our laboratory. Our studies demonstrate that Epac1 plays a key role in rickettsial infection and represents a therapeutic target for fatal rickettsioses.  相似文献   

14.
15.
Tumor heterogeneity confounds cancer diagnosis and the outcome of therapy, necessitating analysis of tumor cell subsets within the tumor mass. Elevated expression of hyaluronan (HA) and HA receptors, receptor for HA-mediated motility (RHAMM)/HA-mediated motility receptor and cluster designation 44 (CD44), in breast tumors correlates with poor outcome. We hypothesized that a probe for detecting HA–HA receptor interactions may reveal breast cancer (BCa) cell heterogeneity relevant to tumor progression. A fluorescent HA (F-HA) probe containing a mixture of polymer sizes typical of tumor microenvironments (10–480 kDa), multiplexed profiling, and flow cytometry were used to monitor HA binding to BCa cell lines of different molecular subtypes. Formulae were developed to quantify binding heterogeneity and to measure invasion in vivo. Two subsets exhibiting differential binding (HA−/low vs. HAhigh) were isolated and characterized for morphology, growth, and invasion in culture and as xenografts in vivo. F-HA–binding amounts and degree of heterogeneity varied with BCa subtype, were highest in the malignant basal-like cell lines, and decreased upon reversion to a nonmalignant phenotype. Binding amounts correlated with CD44 and RHAMM displayed but binding heterogeneity appeared to arise from a differential ability of HA receptor-positive subpopulations to interact with F-HA. HAhigh subpopulations exhibited significantly higher local invasion and lung micrometastases but, unexpectedly, lower proliferation than either unsorted parental cells or the HA−/low subpopulation. Querying F-HA binding to aggressive tumor cells reveals a previously undetected form of heterogeneity that predicts invasive/metastatic behavior and that may aid both early identification of cancer patients susceptible to metastasis, and detection/therapy of invasive BCa subpopulations.Breast tumors display substantial heterogeneity driven by genetic and epigenetic mechanisms (13). These processes select and support tumor cell subpopulations with distinct phenotypes in proliferation, metastatic/invasive proclivity, and treatment susceptibility that contribute to clinical outcomes. Currently, there is a paucity of biomarkers to identify these subpopulations (312). Although detection of genetic heterogeneity may itself be a breast cancer (BCa) prognostic marker (3, 1315), the phenotypes manifested from this diversity are context-dependent. Therefore, phenotypic markers provide additional powerful tools for biological information required to design diagnostics and therapeutics. Glycomic approaches have enormous potential for revealing tumor cell phenotypic heterogeneity because glycans are themselves highly heterogeneous and their complexity reflects the nutritional, microenvironmental, and genetic dynamics of the tumors (1618).We used hyaluronan (HA) as a model carbohydrate ligand for probing heterogeneity in glycosaminoglycan–BCa cell receptor interactions. We reasoned this approach would reveal previously undetected cellular and functional heterogeneity linked to malignant progression because the diversity of cell glycosylation patterns, which can occur as covalent and noncovalent modifications of proteins and lipids as well as different sizes of such polysaccharides as HA, is unrivaled (16, 17, 19). In particular, tumor and wound microenvironments contain different sizes of HA polymers that bind differentially to cell receptors to activate signaling pathways regulating cell migration, invasion, survival, and proliferation (1922).More than other related glycosaminoglycans, HA accumulation within BCa tumor cells and peritumor stroma is a predictor of poor outcome (23) and of the conversion of the preinvasive form of BCa, ductal carcinoma in situ, to an early invasive form of BCa (24). HA is a nonantigenic and large, relatively simple, unbranched polymer, but the manner in which it is metabolized is highly complex (19, 25). There are literally thousands of different HA sizes in remodeling microenvironments, including tumors. HA polymers bind to cells via at least six known receptors (16, 19, 20, 2632). Two of these, cluster designation 44 (CD44) and receptor for HA-mediated motility/HA-mediated motility receptor (RHAMM/HMMR), form multivalent complexes with different ranges of HA sizes (19, 29, 33), and both receptors are implicated in BCa progression (1921, 23, 29, 30, 3336). Elevated CD44 expression in the peritumor stroma is associated with increased relapse (37), and in primary BCa cell subsets may contribute to tumor initiation and progression (3840). Elevated RHAMM expression in BCa tumor subsets is a prognostic indicator of poor outcome and increased metastasis (22, 33, 41). RHAMM polymorphisms may also be a factor in BCa susceptibility (42, 43).We postulated that multivalent interactions resulting from mixture of a polydisperse population of fluorescent HA (F-HA) sizes, typical of those found in remodeling microenvironments of wounds and tumors (19, 20, 29), with cellular HA receptors would uncover a heterogeneous binding pattern useful for sorting tumor cells into distinct subsets. We interrogated the binding of F-HA to BCa lines of different molecular subtypes, and related binding/uptake patterns to CD44 and RHAMM display, and to tumor cell growth, invasion, and metastasis.  相似文献   

16.
Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor.Protein toxins from venomous organisms have been invaluable tools for studying the ion channel proteins they target. For example, in the case of voltage-activated potassium (Kv) channels, pore-blocking scorpion toxins were used to identify the pore-forming region of the channel (1, 2), and gating modifier tarantula toxins that bind to S1–S4 voltage-sensing domains have helped to identify structural motifs that move at the protein–lipid interface (35). In many instances, these toxin–channel interactions are highly specific, allowing them to be used in target validation and drug development (68).Tarantula toxins are a particularly interesting class of protein toxins that have been found to target all three families of voltage-activated cation channels (3, 912), stretch-activated cation channels (1315), as well as ligand-gated ion channels as diverse as acid-sensing ion channels (ASIC) (1621) and transient receptor potential (TRP) channels (22, 23). The tarantula toxins targeting these ion channels belong to the inhibitor cystine knot (ICK) family of venom toxins that are stabilized by three disulfide bonds at the core of the molecule (16, 17, 2431). Although conventional tarantula toxins vary in length from 30 to 40 aa and contain one ICK motif, the recently discovered double-knot toxin (DkTx) that specifically targets TRPV1 channels contains two separable lobes, each containing its own ICK motif (22, 23).One unifying feature of all tarantula toxins studied thus far is that they act on ion channels by modifying the gating properties of the channel. The best studied of these are the tarantula toxins targeting voltage-activated cation channels, where the toxins bind to the S3b–S4 voltage sensor paddle motif (5, 3236), a helix-turn-helix motif within S1–S4 voltage-sensing domains that moves in response to changes in membrane voltage (3741). Toxins binding to S3b–S4 motifs can influence voltage sensor activation, opening and closing of the pore, or the process of inactivation (4, 5, 36, 4246). The tarantula toxin PcTx1 can promote opening of ASIC channels at neutral pH (16, 18), and DkTx opens TRPV1 in the absence of other stimuli (22, 23), suggesting that these toxin stabilize open states of their target channels.For many of these tarantula toxins, the lipid membrane plays a key role in the mechanism of inhibition. Strong membrane partitioning has been demonstrated for a range of toxins targeting S1–S4 domains in voltage-activated channels (27, 44, 4750), and for GsMTx4 (14, 50), a tarantula toxin that inhibits opening of stretch-activated cation channels in astrocytes, as well as the cloned stretch-activated Piezo1 channel (13, 15). In experiments on stretch-activated channels, both the d- and l-enantiomers of GsMTx4 are active (14, 50), implying that the toxin may not bind directly to the channel. In addition, both forms of the toxin alter the conductance and lifetimes of gramicidin channels (14), suggesting that the toxin inhibits stretch-activated channels by perturbing the interface between the membrane and the channel. In the case of Kv channels, the S1–S4 domains are embedded in the lipid bilayer and interact intimately with lipids (48, 51, 52) and modification in the lipid composition can dramatically alter gating of the channel (48, 5356). In one study on the gating of the Kv2.1/Kv1.2 paddle chimera (53), the tarantula toxin VSTx1 was proposed to inhibit Kv channels by modifying the forces acting between the channel and the membrane. Although these studies implicate a key role for the membrane in the activity of Kv and stretch-activated channels, and for the action of tarantula toxins, the influence of the toxin on membrane structure and dynamics have not been directly examined. The goal of the present study was to localize a tarantula toxin in membranes using structural approaches and to investigate the influence of the toxin on the structure of the lipid bilayer.  相似文献   

17.
18.
Optimal infectivity of HIV-1 virions requires synthesis of the HIV-1 regulatory protein Nef in some producer cells but not others. A survey of 18 lymphoid cell lines found that Nef was dispensable in three, each of which harbored gammaretroviruses. Nef-dependent cell lines were rendered Nef-independent by a cell-free supernatant from the independent lines or by transfection of cloned murine leukemia virus (MLV). Analysis of MLV deletion mutations identified glycosylated gag (glycogag) as the factor that rescues Nef-defective HIV-1 virions. Glycogag was also demonstrated to be required for the infectivity of MLV virions produced in lymphoid cells. Direct comparison of Nef and glycogag revealed identical dependence for activity on Env-pseudotype and producer cell type. The two proteins colocalize within cells, and both increase the yield of viral cDNA in target cells. The functional similarity of Nef and glycogag is a compelling example of convergent evolution in which two structurally unrelated proteins provide a function necessary for virion infectivity in lymphoid cells.Nef is a myristoylated protein encoded by HIV-1, HIV-2, and SIV, crucial for virus replication in vivo and rapid AIDS progression (13). It performs a remarkable array of activities by exploiting many of its surfaces to interact with several cellular molecules. By interacting with proteins implicated in intracellular trafficking, it modulates cell surface expression of numerous molecules, including the receptor CD4 (4, 5) and MHC-I (6). Alleles derived from most SIV isolates also down-regulate the TCR/CD3 complex (79). In addition, Nef alters the activation threshold of lymphocytes (1012) by interacting with protein kinases (1316) and modulates apoptotic signals (10, 17).Nef also has a positive effect on the infectivity of virions (18, 19), a function which remains mechanistically unexplained. Although the ability to down-regulate CD4 can contribute to the effect of Nef on infectivity (20), this activity is visible by using CD4-negative producer cells and was shown to be independent from other Nef effects (18, 2123), it requires its expression in virus-producing cells and is manifested at an early step of the infection process of target cells (18, 22, 2426). Nef might play a crucial role during penetration of retroviral cores into the cytoplasm (27). Accordingly, HIV-1 pseudotyped by vesicular stomatitis virus G (VSV-G), which relies on endosomal uptake and, therefore, might enhance cytoplasmic delivery, does not require Nef (28, 29). Although found in virus particles, recent data indicate that Nef itself might not function as a virion protein (30, 31), suggesting that it could induce a yet unknown modification of the particle. The effect of Nef on infectivity was shown to depend on dynamin 2 and clathrin activities in producer cells (32) and on a di-leucine motif critical for the interaction with the clathrin adaptor complexes AP2 (33, 34). The biogenesis and/or trafficking of intracellular vesicles in virus producing cells might therefore play a crucial role in modulating virion infectivity.Most gammaretroviruses encode an accessory protein (gPr80 or glycogag) from unspliced RNA via an alternative CUG initiation codon upstream and in-frame with the standard Gag polyprotein (3539). As a result, a leader sequence [88 amino acids in MLV provirus genome (MoMLV)] is added to the N terminus of conventional Gag. The protein encoded has a type II transmembrane topology, with the conventional Gag residues being extracellular or located in the lumen of the ER, and glycosylated. Mature gPr80 is proteolytically cleaved, and only half of the conventional Gag sequence remains attached to the integral transmembrane protein (40). Although not strictly required for virus replication in vitro, gPr80 is crucial in vivo for sustained virus replication and disease progression (4147). The mechanisms engaged by gPr80 to promote virus replication remain largely unknown. However, a recent report has revealed that gPr80 affects release of both MLV and HIV-1 by facilitating budding from lipid rafts (48).In this study, a screen of 18 producer cell lines identified three lymphoid cell lines capable of generating HIV-1 that does not require Nef for maximal infectivity. Glycosylated gag expressed from gammaretrovirus genomes harbored by these cell lines was found to functionally replace the infectivity function of Nef, unveiling a role for glycogag as an infectivity factor.  相似文献   

19.
An ideal nanocarrier for efficient drug delivery must be able to target specific cells and carry high doses of therapeutic drugs and should also exhibit optimized physicochemical properties and biocompatibility. However, it is a tremendous challenge to engineer all of the above characteristics into a single carrier particle. Here, we show that natural H-ferritin (HFn) nanocages can carry high doses of doxorubicin (Dox) for tumor-specific targeting and killing without any targeting ligand functionalization or property modulation. Dox-loaded HFn (HFn-Dox) specifically bound and subsequently internalized into tumor cells via interaction with overexpressed transferrin receptor 1 and released Dox in the lysosomes. In vivo in the mouse, HFn-Dox exhibited more than 10-fold higher intratumoral drug concentration than free Dox and significantly inhibited tumor growth after a single-dose injection. Importantly, HFn-Dox displayed an excellent safety profile that significantly reduced healthy organ drug exposure and improved the maximum tolerated dose by fourfold compared with free Dox. Moreover, because the HFn nanocarrier has well-defined morphology and does not need any ligand modification or property modulation it can be easily produced with high purity and yield, which are requirements for drugs used in clinical trials. Thus, these unique properties make the HFn nanocage an ideal vehicle for efficient anticancer drug delivery.An ideal nanocarrier for efficient drug delivery must be able to target specific cells and carry high doses of therapeutic drugs and should also exhibit optimized physicochemical properties and biocompatibility (13). However, it is a tremendous challenge to engineer all of the above characteristics into a single carrier particle (46). Ferritin is a spherical iron storage protein composed of 24 subunits of two types, heavy-chain ferritin (HFn) and light-chain ferritin (LFn). Ferritin protein self-assembles naturally into a hollow nanocage with an outer diameter of 12 nm and an interior cavity 8 nm in diameter (7). The cavity is a useful template for synthesizing highly crystalline and monodisperse nanoparticles (NPs) (810). Recently, it was reported that HFn binds to human cells via interacting with the transferrin receptor 1 (TfR1) (11). Although it is well known that TfR1 is highly expressed on human cancer cells and has long been used as a targeting marker for tumor diagnosis and therapy, current HFn-based methods for tumor detection and treatment still rely on functionalization of HFn with recognition ligands to achieve tumor-specific targeting (1216).By using the intrinsic tumor-targeting properties of HFn, we recently reported that iron-encapsulated HFn NPs specifically target and visualize tumor tissues without the use of additional targeting ligands or signal molecules (17). In the present study, we loaded HFn nanocage with doxorubicin (Dox) for tumor-specific drug delivery. HFn nanocages can encapsulate large amounts of foreign molecules (1824), bind specifically to tumor cells that overexpress TfR1 (17), and should be able to efficiently deliver high doses of therapeutic drugs to tumors. In particular, natural HFn nanocarriers are expected to possess an outstanding biocompatibility and safety profile, because they exist naturally in the human body and are composed of nontoxic elements that therefore would not activate inflammatory or immunological responses (25). In addition, HFn can be produced economically in Escherichia coli and can be purified easily by exploiting their heat-resistant property (17, 26). The production and purification characteristics of the HFn nanocarriers are effective for scale-up of the manufacturing process with robust and reproducible procedures.Although ferritin-based drug delivery has been recently developed for cancer treatment, in almost all published studies ferritin was modified with recognition ligands to achieve tumor-specific targeting (1215). These extra surface modifications destroy the intrinsic tumor-specific binding of natural ferritin and disturb its in vivo performance and biocompatibility because of the altered surface physicochemical properties of ferritin. In addition, it was shown recently that the foreign ligands introduced by genetic engineering affect the self-assembling process of ferritin during their expression in E. coli, and thus result in a low yield of the final products (2729) [e.g., the typical yields of RGD-modified HFn are less than 1/10 those of free HFn (26)].In addition, many currently available methods for drug loading into ferritin involves disassembling ferritin nanocages in severe acidic pH (1822), which irreversibly damages ferritin protein cages and forms hole defects on the spherical protein surface (30). The irreversible damages to ferritin will seriously affect their in vivo stability and drug delivery efficiency. So far, most of the published work on ferritin-based drug delivery only reported in vitro results (1821), reflecting that the drug-loaded ferritin prepared using the acidic pH method might not be suitable for in vivo applications.  相似文献   

20.
Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.Since Darwin, understanding the evolution of cognition has been widely regarded as one of the greatest challenges for evolutionary research (1). Although researchers have identified surprising cognitive flexibility in a range of species (240) and potentially derived features of human psychology (4161), we know much less about the major forces shaping cognitive evolution (6271). With the notable exception of Bitterman’s landmark studies conducted several decades ago (63, 7274), most research comparing cognition across species has been limited to small taxonomic samples (70, 75). With limited comparable experimental data on how cognition varies across species, previous research has largely relied on proxies for cognition (e.g., brain size) or metaanalyses when testing hypotheses about cognitive evolution (7692). The lack of cognitive data collected with similar methods across large samples of species precludes meaningful species comparisons that can reveal the major forces shaping cognitive evolution across species, including humans (48, 70, 89, 9398).To address these challenges we measured cognitive skills for self-control in 36 species of mammals and birds (Fig. 1 and Tables S1–S4) tested using the same experimental procedures, and evaluated the leading hypotheses for the neuroanatomical underpinnings and ecological drivers of variance in animal cognition. At the proximate level, both absolute (77, 99107) and relative brain size (108112) have been proposed as mechanisms supporting cognitive evolution. Evolutionary increases in brain size (both absolute and relative) and cortical reorganization are hallmarks of the human lineage and are believed to index commensurate changes in cognitive abilities (52, 105, 113115). Further, given the high metabolic costs of brain tissue (116121) and remarkable variance in brain size across species (108, 122), it is expected that the energetic costs of large brains are offset by the advantages of improved cognition. The cortical reorganization hypothesis suggests that selection for absolutely larger brains—and concomitant cortical reorganization—was the predominant mechanism supporting cognitive evolution (77, 91, 100106, 120). In contrast, the encephalization hypothesis argues that an increase in brain volume relative to body size was of primary importance (108, 110, 111, 123). Both of these hypotheses have received support through analyses aggregating data from published studies of primate cognition and reports of “intelligent” behavior in nature—both of which correlate with measures of brain size (76, 77, 84, 92, 110, 124).Open in a separate windowFig. 1.A phylogeny of the species included in this study. Branch lengths are proportional to time except where long branches have been truncated by parallel diagonal lines (split between mammals and birds ∼292 Mya).With respect to selective pressures, both social and dietary complexities have been proposed as ultimate causes of cognitive evolution. The social intelligence hypothesis proposes that increased social complexity (frequently indexed by social group size) was the major selective pressure in primate cognitive evolution (6, 44, 48, 50, 87, 115, 120, 125141). This hypothesis is supported by studies showing a positive correlation between a species’ typical group size and the neocortex ratio (80, 81, 8587, 129, 142145), cognitive differences between closely related species with different group sizes (130, 137, 146, 147), and evidence for cognitive convergence between highly social species (26, 31, 148150). The foraging hypothesis posits that dietary complexity, indexed by field reports of dietary breadth and reliance on fruit (a spatiotemporally distributed resource), was the primary driver of primate cognitive evolution (151154). This hypothesis is supported by studies linking diet quality and brain size in primates (79, 81, 86, 142, 155), and experimental studies documenting species differences in cognition that relate to feeding ecology (94, 156166).Although each of these hypotheses has received empirical support, a comparison of the relative contributions of the different proximate and ultimate explanations requires (i) a cognitive dataset covering a large number of species tested using comparable experimental procedures; (ii) cognitive tasks that allow valid measurement across a range of species with differing morphology, perception, and temperament; (iii) a representative sample within each species to obtain accurate estimates of species-typical cognition; (iv) phylogenetic comparative methods appropriate for testing evolutionary hypotheses; and (v) unprecedented collaboration to collect these data from populations of animals around the world (70).Here, we present, to our knowledge, the first large-scale collaborative dataset and comparative analysis of this kind, focusing on the evolution of self-control. We chose to measure self-control—the ability to inhibit a prepotent but ultimately counterproductive behavior—because it is a crucial and well-studied component of executive function and is involved in diverse decision-making processes (167169). For example, animals require self-control when avoiding feeding or mating in view of a higher-ranking individual, sharing food with kin, or searching for food in a new area rather than a previously rewarding foraging site. In humans, self-control has been linked to health, economic, social, and academic achievement, and is known to be heritable (170172). In song sparrows, a study using one of the tasks reported here found a correlation between self-control and song repertoire size, a predictor of fitness in this species (173). In primates, performance on a series of nonsocial self-control control tasks was related to variability in social systems (174), illustrating the potential link between these skills and socioecology. Thus, tasks that quantify self-control are ideal for comparison across taxa given its robust behavioral correlates, heritable basis, and potential impact on reproductive success.In this study we tested subjects on two previously implemented self-control tasks. In the A-not-B task (27 species, n = 344), subjects were first familiarized with finding food in one location (container A) for three consecutive trials. In the test trial, subjects initially saw the food hidden in the same location (container A), but then moved to a new location (container B) before they were allowed to search (Movie S1). In the cylinder task (32 species, n = 439), subjects were first familiarized with finding a piece of food hidden inside an opaque cylinder. In the following 10 test trials, a transparent cylinder was substituted for the opaque cylinder. To successfully retrieve the food, subjects needed to inhibit the impulse to reach for the food directly (bumping into the cylinder) in favor of the detour response they had used during the familiarization phase (Movie S2).Thus, the test trials in both tasks required subjects to inhibit a prepotent motor response (searching in the previously rewarded location or reaching directly for the visible food), but the nature of the correct response varied between tasks. Specifically, in the A-not-B task subjects were required to inhibit the response that was previously successful (searching in location A) whereas in the cylinder task subjects were required to perform the same response as in familiarization trials (detour response), but in the context of novel task demands (visible food directly in front of the subject).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号