首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
The objective of the present study was to determine the location of the neurons that give rise to catecholamine-containing terminals in the nucleus tractus solitarii. This was done by injecting rhodamine-filled latex microspheres into the nucleus tractus solitarii of rats to retrogradely label neuronal cell bodies and by processing sections from the brains of these animals to determine if the labelled neurons were immunoreactive for the catecholamine-synthesizing enzymes, dopamine-beta-hydroxylase (DBH) and phenylethanolamine-N-methyl transferase (PNMT). Approximately 60% of the DBH-immunoreactive neurons that projected to the nucleus tractus solitarii belonged to the A1/C1 cell group, while an additional 20% belonged to the A5 cell group. Thus, these two ventrolateral rhombencephalic cell groups accounted for nearly 80% of the total number of rhodamine-bead-labelled DBH-immunoreactive neurons in this series of experiments. Only a small number of DBH-immunoreactive neurons of the A2/C2 cell group contained rhodamine-filled latex microspheres. Rarely, DBH-immunoreactive neurons in the locus coeruleus and the nucleus subcoeruleus were found to project to the nucleus tractus solitarii. The majority of the PNMT-immunoreactive neurons that projected to the nucleus tractus solitarii belonged to the C1 cell group. Only small numbers of PNMT-immunoreactive neurons of the C2 and C3 groups were found to contain rhodamine-filled latex microspheres. It is concluded that neurons in the ventrolateral medulla and pons, some of which presumably utilize norepinephrine and/or epinephrine as a transmitter, could regulate autonomic function via direct projections to the nucleus tractus solitarii.  相似文献   

2.
The objective of the present study was to determine the location of the neurons that give rise to serotonin- and substance P-containing terminals in the nucleus tractus solitarii. This was done by injecting rhodamine-filled latex microspheres into the nucleus tractus solitarii of rats to retrogradely label neuronal cell bodies and by processing sections from the brains of these animals to determine whether the labelled neurons contained serotonin or substance P immunoreactivity. Serotonin-immunoreactive neurons that projected to the nucleus tractus solitarii were found in the nucleus raphe magnus, nucleus raphe obscurus, nucleus raphe pallidus, and in the ventral medulla, lateral to the pyramidal tract. Substance P-immunoreactive neurons that projected to the nucleus tractus solitarii were found in similar areas but were proportionately less numerous in the nucleus raphe magnus and proportionately more numerous in the nucleus raphe pallidus. It is concluded that neurons in the medullary raphe nuclei, some of which presumably utilize serotonin or substance P as a neurotransmitter, could regulate autonomic function via direct projections to the nucleus tractus solitarii.  相似文献   

3.
Spinal parasympathetic enkephalin fibers: patterns and projections   总被引:1,自引:0,他引:1  
The immunocytochemical distribution of enkephalin (Enk) was examined in the sacral spinal cord of the rat. Enk fibers are found interspersed among preganglionic parasympathetic neurons in the sacral parasympathetic nucleus. In addition, Enk fibers parallel the localization of primary visceral afferents found in the pelvic nerve. These findings provide a morphological substrate for enkephalin interactions with parasympathetic functions and with primary visceral inputs to the sacral cord.  相似文献   

4.
5.
Barrington's nucleus projects directly to the sacral parasympathetic nucleus. The purpose of this study was to clarify whether neurons in Barrington's nucleus that increase their firing during bladder contractions project to the spinal cord and, if so, to which level(s) the axon reaches. Single units were recorded in Barrington's nucleus of cat with glass microelectrodes, and the termination level of descending axons was determined by antidromic stimulation of the spinal cord. Thirty-nine neurons projecting to the spinal cord were located in rostral parts of the dorsolateral pontine tegmentum, medial and ventral to the mesencephalic trigeminal tract. This finding is consistent with previous neuronal tracing studies. All neurons increased their firing rates during contraction associated with micturition. In 19 examined neurons, the most caudal level of the descending axon distributed between the L7 and the S3 level. Stimulation of the axon at this most caudal level resulted in antidromic spike latencies ranging between 19.5 msec and 45.0 msec. These antidromic latencies were much smaller than previously reported orthodromic conduction times between neurons in Barrington's nucleus and sacral preganglionic neurons innervating the bladder. The mean conduction velocity of the descending axon from the cell body to the border between Th13 and the L1 ranged between 7.2 m/sec and 27.7 m/sec. The decrease of the mean conduction velocity was observed at the lumbar as well as at the sacral segments, suggesting that axons issue collaterals to the lumbar level as well as to the sacral level.  相似文献   

6.
7.
After injecting horseradish peroxidase into the thalamic regions around the paraventricular thalamic nucleus (Pv) in the rat, small neurons in the globus pallidus (GP) were labeled retrogradely with the ezyme. After injecting [3H]leucine into the GP, terminal labeling was autoradiographically observed in the Pv bilaterally with an ipsilateral dominance. These terminals in the Pv were shown by electron microscopic autoradiography to make asymmetrical synaptic contacts upon small dendrites of Pv neurons.  相似文献   

8.
Superfusion onto hippocampal slices of low concentrations of the tetradecapeptide somatostatin (SS), or an SS analogue having CNS activity, reversibly hyperpolarized pyramidal neurons, as revealed by intracellular recording. The hyperpolarizations were accompanied by reductions in spontaneous and evoked spike discharge and in input resistance; the magnitude of the hyperpolarizations was not influenced by 10 mM MgCl2 added to the perfusate to block synaptic transmission.  相似文献   

9.
HRP applied to cut dorsal and ventral roots of the cat sacral spinal cord labeled afferent axons with swellings in close apposition to labeled preganglionic neurons (PGNs) in the sacral parasympathetic nucleus. Electron microscopy allowed characterization of synaptic contacts between afferents and PGNs. The results suggest that both the dorsal and ventral root afferents can directly activate autonomic preganglionic neurons.  相似文献   

10.
Hypocretin-1 (hcrt-1)-containing axons have been shown to have an extensive distribution within the central nervous system, although the total number of hypothalamic hcrt-1 neurons has been shown to be small. This suggests that hcrt-1 neurons may innervate central structures with similar function through collateral axonal projections. Retrograde tract-tracing techniques combined with immunohistochemistry were used in this study to investigate whether hypothalamic hcrt-1-containing neurons send collateral axonal projections to cardiovascular sites in the nucleus of the solitary tract (NTS) and in the nucleus ambiguus (Amb) in the rat. Fluorogold- (FG) and/or rhodamine (Rd)-labeled latex microspheres were microinjected into either the NTS or Amb at sites that elicited bardycardia responses (L-glutamate; 0.25 M; 10 nl). After a survival period of 10-15 days, the rats were sacrificed and tissue sections of the hypothalamus were processed immunohistochemically for the identification of hcrt-1-containing cell bodies. After injection of the tract-tracers into the NTS or Amb, retrogradely labeled neurons were observed within several hypothalamic regions; the paraventricular hypothalamic nucleus, lateral hypothalamic area, perifornical hypothalamic area, and posterior hypothalamus, bilaterally, but with an ipsilateral predominance. In addition, after NTS injections, retrogradely labeled neurons were found within the ipsilateral caudal arcuate nucleus. Of the total number (1107+/-97) of hcrt-1-immunoreactive neurons found bilaterally within the lateral and perifornical hypothalamic nuclei, 7.9+/-1.4% were found to be retrogradely labeled from the NTS, 16.4+/-1.8% from the Amb, and 3.1+/-0.5% from both medullary sites. Hcrt-1 neurons projecting to the NTS were found mainly in and around the perifornical hypothalamic region, with a smaller number in the caudal lateral hypothalamic area. On the other hand, those innervating the Amb were primarily observed within the caudal lateral hypothalamic area, with a smaller number in the perifornical hypothalamic area. Neurons with collateral axonal projections to NTS and Amb were observed within two specific hypothalamic areas: one group of neurons was found in the perifornical hypothalamic area, and the other was observed in the lateral hypothalamic region just dorsal to the retrochiasmatic component of the supraoptic nucleus. These data indicate that axons from hcrt-1 neurons bifurcate to innervate functionally similar cardiovascular-responsive sites in the NTS and Amb. Although the function of these hcrt-1-containing hypothalamic-medullary pathways is not known, they likely represent the anatomical substrate by which the lateral hypothalamic hcrt-1 neurons simultaneously coordinate autonomic-cardiovascular responses to different behaviors.  相似文献   

11.
将结合生物素的葡聚糖胺 (BDA)注射到大鼠腰骶髓后 ,在电镜下观察脑桥Barrington核内腰骶髓投射神经元与来自腰骶髓传入投射纤维间的突触联系。与先前的研究相一致 ,注射BDA到腰 6和骶 1节段后 ,光镜下可见Barrington核内出现大量顺行标记的神经末梢和一定数量的逆行标记细胞。电镜下发现标记的轴突末梢和标记的树突之间存在直接的突触连接。结果表明 ,Barrington核直接接受腰骶髓的传入投射 ,提示大鼠脑桥排尿反射的脊髓内上行投射通路中可能存在一条直接通路。  相似文献   

12.
The nucleus tractus solitarii (NTS) receives primary visceral afferents and sends projections to other autonomic nuclei at all levels of the neuroaxis. However, it is unknown if distinct populations of NTS neurons project to individual autonomic targets or if individual neurons in the NTS project to multiple autonomic targets. Understanding the basic circuitry of visceral reflex pathways is essential for the analyses of functional central autonomic networks. We examined projections from the NTS to autonomic targets within the hypothalamus (paraventricular nucleus, PVN), pons (parabrachial nucleus, PB), and medulla (caudal ventrolateral medulla, CVL) using retrograde tracing and immunohistochemistry. Dual retrograde tracer microinjections were made into pairs of targets (PVN + CVL; PVN + PB; PB + CVL), and the pattern of retrograde labeling was examined within NTS. The extent of collateralization, seen as dual retrogradely labeled neurons, was negligible for combined PVN and CVL injections and increased for injections combining PB with either PVN or CVL, but the majority of NTS neurons project to only one autonomic target. Immunohistochemistry for tyrosine hydroxylase (TH) was used to examine the pattern of TH-immunoreactivity (TH-ir) within retrogradely labeled NTS neurons. TH-ir was seen predominantly in projections to PVN, to a lesser degree in projections to PB, and was largely absent from projections to CVL. The percentage of dual retrogradely labeled neurons displaying TH-ir corresponded to the target displaying the most TH-ir, and TH-ir was not predictive of collateralization. Together, these results indicate that NTS neurons project to individual autonomic targets in the brain.  相似文献   

13.
Omnipause neurons (OPNs) are inhibitory neurons located in the midline region of the caudal pons. Their role in gating the discharges of saccade-related burst neurons is well known, but there is no agreement concerning their influence on brainstem neurons that control other muscle groups participating in rapid gaze shifts. In the present study, we inquired whether OPNs project directly to pontobulbar reticulospinal neurons (RSNs) in the cat. Retrograde transport of horseradish peroxidase from the cervical spinal cord was used to label RSNs and an anterograde tracer (biocytin) was iontophoresed at sites of extracellular recording of the OPN activity. Somadendritic characteristics of biocytin-labeled OPNs were largely similar to those obtained previously with intracellular labeling. Three-dimensional reconstruction of axonal trajectories and collaterals revealed that projections of OPNs, regarded as a population, are bilateral. Their terminals were restricted to the reticular formation and midline structures throughout the rostral bulbar and pontine tegmentum. Appositions of synaptic boutons originating from five fully stained OPNs were detected on 38 retrogradely labeled RSNs, each of the OPNs contacting 3-13 cells. The numbers of boutons (1-46; mean 11.8) on the RSN somata and proximal dendrites indicate that the anatomical strength of paired OPN-RSN connections is comparable to that of other similarly studied inhibitory neurons in the cat. The existence of connections with RSNs supports the hypothesis of a generalized influence of OPNs on several effectors participating in orienting gaze shifts as opposed to the idea of their strict specialization for the control of eye saccades.  相似文献   

14.
The vagus nerve contains primary visceral afferents that convey sensory information from cardiovascular, pulmonary, and gastrointestinal tissues to the nucleus tractus solitarii (NTS). The heterogeneity of vagal afferents and their central terminals within the NTS is a common obstacle for evaluating functional groups of afferents. To determine whether different anterograde tracers can be used to identify distinct subpopulations of vagal afferents within NTS, we injected cholera toxin B subunit (CTb) and isolectin B4 (IB4) into the vagus nerve. Confocal analyses of medial NTS following injections of both CTb and IB4 into the same vagus nerve resulted in labeling of two exclusive populations of fibers. The ultrastructural patterns were also distinct. CTb was found in both myelinated and unmyelinated vagal axons and terminals in medial NTS, whereas IB4 was found only in unmyelinated afferents. Both tracers were observed in terminals with asymmetric synapses, suggesting excitatory transmission. Because glutamate is thought to be the neurotransmitter at this first primary afferent synapse in NTS, we determined whether vesicular glutamate transporters (VGLUTs) were differentially distributed among the two distinct populations of vagal afferents. Anterograde tracing from the vagus with CTb or IB4 was combined with immunohistochemistry for VGLUT1 or VGLUT2 in medial NTS and evaluated with confocal microscopy. CTb‐labeled afferents contained primarily VGLUT2 (83%), whereas IB4‐labeled afferents had low levels of vesicular transporters, VGLUT1 (5%) or VGLUT2 (21%). These findings suggest the possibility that glutamate release from unmyelinated vagal afferents may be regulated by a distinct, non‐VGLUT, mechanism. J. Comp. Neurol. 522:642–653, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The rostral ventrolateral medulla (RVL) contains reticulospinal adrenergic (C1) neurons that are thought to be sympathoexcitatory and that form the medullary efferent limb of the baroreceptor reflex pathway. The RVL receives direct projections from two important autonomic regions, the caudal ventrolateral medulla (CVL) and the nucleus tractus solitarii (NTS). In the present study, we used anterograde tracing from the CVL or the NTS combined with immunocytochemical identification of C1 adrenergic neurons in the RVL to compare the morphology of afferent input from these two autonomic regions into the RVL. NTS (n = 203) and CVL (n = 380) efferent terminals had similar morphology and vesicular content, but CVL efferent terminals were slightly larger than NTS efferent terminals. Overall, efferent terminals from either region were equally likely to contact adrenergic neurons in the RVL (21% for NTS, 25% for CVL). Although efferents from both regions formed both symmetric and asymmetric synapses, NTS efferent terminals were statistically more likely to form asymmetric synapses than CVL efferent terminals. CVL efferent terminals were more likely to contact adrenergic somata than were NTS efferents, which usually contacted dendrites. These findings 1) support the hypothesis that a portion of NTS efferents to the RVL may be involved in sympathoexcitatory, e.g., chemoreceptor, reflexes (via asymmetric synapses), whereas those from the CVL mediate sympathoinhibition (via symmetric synapses); and 2) provide an anatomical substrate for differential postsynaptic modulation of C1 neurons by projections from the NTS and CVL. With their more frequent somatic localization, CVL inhibitory inputs may be more influential than excitatory NTS inputs in determining the discharge of RVL neurons. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Neurons of the nucleus of the solitary tract (NTS) serve as interneurons in swallowing. We investigated the synaptology of the terminals of these neurons and whether they project directly to the esophageal motoneurons in the compact formation of the nucleus ambiguus (AmC). Following wheat germ agglutinin conjugated horseradish peroxidase (WGA-HRP) injection into the NTS, many anterogradely labeled axodendritic terminals were found in the neuropil of the AmC. The majority of labeled axodendritic terminals (89%) contained round vesicles and made asymmetric synaptic contacts (Gray's type I), but a few (11%) contained pleomorphic vesicles and made symmetric synaptic contacts (Gray's type II). More than half of the labeled terminals contacted intermediate dendrites (1-2 μm diameter). There were no retrogradely labeled medium-sized motoneurons, but there were many retrogradely labeled small neurons having anterogradely labeled axosomatic terminals. A combined retrograde and anterograde transport technique was developed to verify the direct projection from the NTS to the esophageal motoneurons. After the esophageal motoneurons were retrogradely labeled by cholera toxin subunit B conjugated HRP, the injection of WGA-HRP into the NTS permitted ultrastructural recognition of anterogradely labeled axosomatic terminals contacting directly labeled esophageal motoneurons. Serial sections showed that less than 20% of the axosomatic terminals were labeled in the esophageal motoneurons. They were mostly Gray's type I, but a few were Gray's type II. In the small neurons, more than 30% of axosomatic terminals were labeled, which were exclusively Gray's type I. These results indicate that NTS neurons project directly not only to the esophageal motoneurons, but also to the small neurons which have bidirectional connections with the NTS. J. Comp. Neurol. 381:18-30, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Activation of P2x-purinoceptors in the nucleus tractus solitarius (NTS) via microinjection of ATP mimics baroreflex responses (bradycardia, hypotension); however, the physiological role of these receptors in cardiovascular control remains unclear. We tested whether blockade of these receptors attenuates arterial baroreflex control of heart rate (HR). Baroreflex-induced changes in HR (via graded i.v. infusion of phenylephrine and nitroprusside) were observed in seven α-chloralose/urethane anesthetized male Sprague-Dawley rats before and after microinjection of the purinergic P2 receptor antagonist suramin (0.5 nmol in 50 nL) into the subpostremal NTS. Before suramin, typical baroreflex changes in HR were observed (maximum gain, Gmax = 2.94 ± 0.54 bpm/mmHg). Suramin markedly impaired baroreflex-induced changes in HR (gain = 0.02 ± 0.08 and 0.18 ± 0.09 bpm/mmHg for increases and decreases in mean arterial blood pressure, respectively); however, after 90–130 min, HR and baroreflex reactivity returned to control levels. Microinjections of vehicle into the same area did not alter baroreflex function. In addition, suramin did not alter the depressor responses to microinjections of glutamate into the same site of the NTS. We conclude that normal P2x-purinoceptor function in subpostremal NTS may be necessary for baroreflex regulation of HR.  相似文献   

18.
Golgi-impregnated and methionine-enkephalin (ME)- and substance P (SP)-immunoreactive neurons were studied throughout the feline nucleus tractus solitarii. The majority of Golgi-impregnated neurons in the NTS range in size from 5 to 18 micron. A noticeable exception is the large (15-30 micron) neurons of the ventrolateral subdivision. The Golgi-impregnated neurons possess dendritic trees which remain within the nucleus and even at times within the particular subdivisions. Golgi-impregnated neurons had a variety of spine forms: pedunculated, sessile, filiform, and complex. A number of neurons exhibited axons originating from the cell and they could be followed for distances up to 100 micron. ME- and SP-immunoreactive neurons were found in commissural, medial, lateral, and parvocellular subdivisions while ME-immunoreactive neurons were situated additionally in the intermediate and ventrolateral subdivisions. Both types of immunostained neurons were similar in size (6-20 micron) and shape of dendritic arbor. One population of ME-immunoreactive neurons resembled the large ventrolateral neurons of the Golgi impregnations. Neither type of immunostained neuron possessed the extensive dendritic arbor, numbers of spines, or axons of the Golgi-impregnated neurons. The presence of ME- and SP-immunoreactive neurons in regions which are associated with autonomic regulation suggests that these two peptides are involved in this process.  相似文献   

19.
Direct projections from the dorsolateral pontine tegmentum to pudendal motoneurons innervating the external urethral sphincter and the external anal sphincter muscles were examined in the rat by the tract-tracing methods utilizing retrograde transport of cholera toxin B subunit and anterograde transport of biotinylated dextran amine. The dorsolateral pontine tegmental region, corresponding to the micturition reflex center of Barrington, was confirmed to send bilaterally, with an ipsilateral dominance, projection fibers to the spinal parasympathetic nucleus (inferior intermediolateral nucleus). The micturition reflex center of Barrington, however, did not seem to send many projection fibers to the ventral horn of the lumbosacral cord segments, whereas the region immediately ventral to the micturition reflex center of Barrington was found to send bilaterally, with a contralateral dominance, projection fibers to the dorsolateral group of pudendal motoneurons in both the male and female rats. In the female rat, the dorsolateral group of pudendal motoneurons are comprised primarily of motoneurons that innervate the external urethral sphincter muscle. The dorsomedial group of pudendal motoneurons, which contain motoneurons that innervate the external anal sphincter and the bulbocavernosus muscles, did not seem to receive major projections from the dorsolateral pontine tegmental regions. It was also observed that the locus coeruleus sent some projection fibers bilaterally to the spinal parasympathetic nucleus but only a few to the ventral horn of the lumbosacral cord segments. Thus, the present results indicate that the dorsolateral group of pudendal motoneurons containing those innervating the external urethral sphincter muscle receive pontospinal projection fibers mainly from the dorsolateral pontine tegmental region immediately ventral to the micturition reflex center of Barrington. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Projections from the nucleus subceruleus (nSC) to the hypoglossal nucleus (XII) were investigated with complementary retrograde and anterograde axonal transport techniques at the light and electron microscopic level in the rat. Injections of WGA-HRP into XII resulted in labeling of neurons in and around the nSC. Labeled nSC neurons were few in number (less than 4 per 40-60 microns sections) and variable in size and shape. Most labeled nSC neurons were medium-sized (mean = 16.89 microns), fusiform, triangular, or oval, with 3-4 dendrites typically oriented dorsomedially and ventrolaterally. These neurons were found throughout the rostrocaudal extent of the nSC but were most numerous medial, dorsomedial, and ventromedial to the motor trigeminal nucleus. Others were observed rostral to the motor trigeminal nucleus and ventral to the parabrachial nuclear complex. Confirmation of retrograde results was obtained following injections of tritiated amino acids or WGA-HRP into the nSC. This resulted in labeling throughout the rostrocaudal extent of XII mainly ipsilaterally. Labeled fibers descended the brainstem in the dorsolateral and, to a lesser extent, in the ventromedial component of Probst's tract. Fibers entered XII mainly rostrally along the lateral border of the nucleus. All regions of XII were recipients of nSC afferents, but the caudoventromedial quadrant contained the greatest density of terminal labeling. Electron microscopic evaluation confirmed that nSC afferents synapsed on motoneurons in XII. Axon terminals containing WGA-HRP reaction product were found contacting dendrites and somata, but primarily the former (81.3% versus 10.6%). Axodendritic terminals synapsed mainly on medium-to-small sized dendrites (less than 3 microns in diameter). The majority of labeled axodendritic terminals (90.1%) contained small, round, and clear synaptic vesicles (S-type: 20-50 nm) and were associated with an asymmetric (60.6%), symmetric (11.4%), or no (18%) postsynaptic specialization. By contrast, most axosomatic terminals contained flattened vesicles (F-type) and formed a symmetric or no postsynaptic specialization (75%). Large dense core vesicles (55-90 nm) were observed within a small proportion of all labeled axon terminals (1.3%). The results from this study demonstrate that the nSC projects to XII, preferentially targets a specific subgrouping of protrusor motoneurons, and synapses on both somata and dendrites, although mainly on the latter. The implications of these data are discussed relative to tongue control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号