首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Although it is well established that CD4+ T cells generally recognize major histocompatibility complex (MHC) class II molecules, MHC class I-reactive CD4+ T cells have occasionally been reported. Here we describe the isolation and characterization of six MHC class I-reactive CD4+ T-cell lines, obtained by co-culture of CD4+ peripheral blood T cells with the MHC class II-negative, transporter associated with antigen processing (TAP)-negative cell line, T2, transfected with human leucocyte antigen (HLA)-B27. Responses were inhibited by the MHC class I-specific monoclonal antibody (mAb), W6/32, demonstrating the direct recognition of MHC class I molecules. In four cases, the restriction element was positively identified as HLA-A2, as responses by these clones were completely inhibited by MA2.1, an HLA-A2-specific mAb. Interestingly, three of the CD4+ T-cell lines only responded to cells expressing HLA-B27, irrespective of their restricting allele, implicating HLA-B27 as a possible source of peptides presented by the stimulatory MHC class I alleles. In addition, these CD4+ MHC class I alloreactive T-cell lines could recognize TAP-deficient cells and therefore may have particular clinical relevance to situations where the expression of TAP molecules is decreased, such as viral infection and transformation of cells.  相似文献   

2.
Target cells expressing influenza virus hemagglutinin (HA) could be recognized by cytotoxic T lymphocytes (CTL) in conjunction with the murine major histocompatibility complex class I antigen, H-2Kd, when both antigens were encoded by recombinant vaccinia virus. This recognition occurred if HA and H-2Kd were encoded by separate vaccinia viruses following dual infection of target cells or if HA and H-2Kd were encoded by a single recombinant virus. In contrast, target cells expressing nucleoprotein (NP) were only recognized by H-2Kd-restricted CTL if both NP and H-2Kd were encoded by the same vaccinia virus. These results show that the requirements for association of H-2Kd with different viral antigens derived from HA or NP can vary. Possible factors contributing to this difference are discussed.  相似文献   

3.
Three reference and 16 field strains of Mycobacterium paratuberculosis were tested with the Gen-Probe Mycobacterium avium complex DNA probe (Gen-Probe Inc., San Diego, Calif.). All reference strains and 12 of 16 field strains gave positive hybridization results with the probe. This study shows that the M. avium complex probe does not distinguish between M. avium and M. paratuberculosis and indicates heterogeneity in the 16S rRNA gene of M. paratuberculosis.  相似文献   

4.
As unusual tumor-specific cytotoxic T lymphocyte (CTL) clone was isolated which expressed both CD4 and CD8 molecules. The target cells for this CTL can be induced to express either class I major histocompatibility complex (MHC) alone (with dimethylsulfoxide) or both class I and class II MHC (with interferon-gamma). Lysis of the tumor target depends on expression of class I MHC molecules, but does not require expression of class II MHC molecules. Furthermore, the lysis of target cells expressing both class I and class II is inhibited only by antibodies to class I (Kd), and not by antibodies to class II, demonstrating that the T cell receptor is class I restricted. We have used this CTL to assess the role of the interaction between CD4 and class II MHC in the absence of a class II-restricted T cell receptor. Our data indicate that CD4-class II interaction does not contribute to recognition by T cells in the absence of binding of the T cell receptor to class II molecules.  相似文献   

5.
This report shows that lymphoid tissues of mice which have resolved a primary infection with Leishmania major contain parasite-specific major histocompatibility complex (MHC) class I-restricted cytolytic CD8+ T cell precusors that can be expanded after specific restimulation in vitro with syngeneic antigen-presenting cells pulsed with a cyanogen bromide digest of L. major. In H-2b mice, two distinct populations of CD8+ T cells were identified which both lysed target cells pulsed with L. major-derived peptides but were restricted by a different H-2b class I gene product. Interestingly, these two populations appear to recognize different parasite-derived peptides. It is noteworthy that one K°-restricted CD8+ T cell line was able to specifically lyse syngeneic macrophages infected with viable L. major, indicating that some L. major-derived peptides may reach the MHC class I pathway of presentation from the phagolysosomal compartment where the parasites are confined in infected macrophages. The importance of these parasite-specific MHC class I restricted cytolytic CD8+ T cells for the elimination of L. major by the infected host remains to be determined.  相似文献   

6.
7.
Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas' disease, lives free within the cytoplasm of infected host cells. This intracellular niche suggests that parasite antigens may be processed and presented on major histocompatibility complex (MHC) class I molecules for recognition by CD8+ T cells. However, the parasite persists indefinitely in the mammalian host, indicating its success at evading immune clearance. It has been shown that T. cruzi interferes with processing and presentation of antigenic peptides in the MHC class II pathway. This investigation sought to determine whether interference in MHC class I processing and presentation occurs with T. cruzi infection. Surface expression of MHC class I molecules was found to be unaffected or up-regulated by T. cruzi infection in vitro. A model system employing a β-galactosidase (β-gal)-specific murine cytotoxic T lymphocyte (CTL) line (0805B) showed: (i) in vitro infection of mouse peritoneal macrophages or J774 cells with T. cruzi did not inhibit MHC class I presentation of exogenous peptide (a nine-amino acid epitope of β-gal) to the CTL line, (ii) in vitro infection of a β-gal-expressing 3T3 cell line (LZEJ) with T. cruzi did not inhibit MHC class I presentation of the endogenous protein to the CTL line and (iii) mouse renal adenocarcinoma cells infected with T. cruzi and subsequently infected with adenovirus expressing β-gal were able to present antigen to the β-gal-specific CTL line. These findings indicate that the failure of the immune response to clear T. cruzi does not result from global interference by the parasite with MHC class I processing and presentation. Parasites engineered to express β-gal were unable to sensitize infected antigen-presenting cells in vitro to lysis by the CTL 0805B line. This was probably due to the intracellular localization of the β-gal within the parasite and its inaccessibility to the host cell cytoplasm.  相似文献   

8.
5T4 is a surface glycoprotein expressed on placental trophoblasts and also on a wide range of human carcinomas. Its highly restricted expression on normal tissues and broad distribution on many carcinomas make 5T4 a promising target for cancer immunotherapy. In the current study, we set out to investigate whether a 5T4-specific cytotoxic T lymphocyte (CTL) repertoire exists in healthy individuals. CD4-depleted peripheral blood mononuclear cells (PBMCs) from blood donors were screened using an ex vivo interferon-gamma (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay. A panel of overlapping peptides, spanning the full length of the 5T4 protein, was used as a source of antigen. In the process of screening, one out of 30 blood donors demonstrated a positive ex vivo IFN-gamma ELISPOT response to a single 5T4 peptide. A polyclonal T-cell line was derived from this donor by culturing PBMCs with autologous peptide-pulsed dendritic cells (DCs). The resulting polyclonal T-cell line and clones were tested in a 51Cr-release assay and by ELISPOT and were shown to be peptide specific. Furthermore, antigen-presenting cells (APCs), infected with a viral vector expressing 5T4, were able to stimulate IFN-gamma production by the peptide-specific T-cell clones. A minimal CD8 epitope, PLADLSPFA, has been identified and found to be restricted through human leucocyte antigen (HLA) Cw7. Subsequently, we have demonstrated that HLA-Cw7-positive colorectal cancer patients vaccinated with a recombinant vaccinia viral vector encoding 5T4 (TroVax) are capable of mounting a strong IFN-gamma ELISPOT response to this novel CTL epitope. These findings have potential application in cancer immunotherapy in terms of subunit vaccine design and the monitoring of immune responses induced in patients by 5T4-based therapies.  相似文献   

9.
10.
The peptides recognized by an H-2Db-restricted CD8 cytotoxic T lymphocyte (CTL) clone which is specific for the 60-kDa mycobacterial heat shock protein (hsp) and cross-reacts with stressed host cells were characterized. None of the nonapeptides from hsp60 conforming to the H-2Db binding motif were able to sensitize target cells for lysis by this CTL clone. Sequence analysis of the stimulatory fraction from a trypsin digest of hsp60, together with synthetic peptide studies, defined a cluster of overlapping epitopes. Carboxy-terminal extension by at least one amino acid of the nonamer predicted to bind best to H-2Db was essential for CTL recognition. Two such elongated peptides, a 10-mer and a 12-mer stimulated the clone at similarly low concentrations in the 100 pM range. We assume that these two peptides comply best with the natural epitope. In contrast, the 11-mer was inactive. The stimulatory 10-mer bound to H-2Db with an efficacy similar to that of the nonapeptide corresponding to the H-2Db motif, as revealed by peptide induced major histocompatibility complex (MHC) surface expression on RMA-S cells and competitive blocking of epitope recognition by the nonamer. Binding of these carboxy-terminally extended peptides to the MHC groove can be explained by anchoring through the amino acid residue Asn in position 5 of the peptide and by intrusion of the hydrophobic carboxy-terminal Ala (10-mer) or Leu (12-mer), but not Gly (11-mer), into the hydrophobic pocket of the H-2Db cleft. Because the carboxy-terminal part is thus larger than predicted this region of the peptide may arch up from the binding groove. We assume that recognition of steric components of the MHC/peptide complex broaden the range of epitope specificity for a single T cell receptor. This flexibility not only promotes recognition of several overlapping peptides from a single antigen, but may also increase the chance of cross-reaction with similar peptides from unrelated proteins, including autoantigens. Consistent with this latter assumption, the T cell clone cross-recognizes mycobacterial hsp60 and stressed host cells.  相似文献   

11.
We have re-investigated the roles of CD4 and CD8 T cell subsets in skin graft rejection across a single class I MHC disparity. Recipient mice were transplanted with skin from donors transgenic for the class I MHC molecule Kb. As expected, CD8 T cells were sufficient for rapid injection; but surprisingly, CD4 T cells were also competent to do the same. Rejection was dependent on one or the other subset, since elimination of both resulted in indefinite graft survival. The possibility that alloantibody was the downstream effector of CD4 mediated rejection was excluded because CD8-depleted mice rendered B cell deficient still rejected rapidly, but T cell-depleted recipients with pre-existing high titers of alloantibody were unable to do so. In addition, if CD4 cells act to reject by recruiting and/or activating macrophages then this was not dependent on CR3, IFN-γ or TNF-α. Transplantation of skin grafts where the MHC class I disparity was at the level of passenger leukocytes only, demonstrated that transient bystander damage could occur, but that this was insufficient to result in full rejection. We surmise that for CD4 T cells to reject an MHC class I-incompatible graft it is necessary that an appropriate allogeneic peptide is processed and presented in the context of recipient MHC class II. CD4 T cells from B6 mice may fail to reject skin from MHC class I mutants because of the lack of such MHC class II-restricted presentation.  相似文献   

12.
The appropriate crosses of mice lacking conventional major histocompatibility complex (MHC) class I or class II molecules generate single- and double-deficient offspring. These were used as donors for skin grafts across major plus minor, or just minor, histocompatibility differences. Surprisingly, in the two circumstances, there was a rapid rejection of grafts lacking both MHC class I and class II molecules. Rejection was mediated by thymically derived CD4+ T cells of the host. We provide evidence that these T cells recognize an unconventional ligand, capable of activating a pre-formed T cell compartment but incapable of positively selecting it. The existence of this unexpected rejection phenomenon should serve to caution those aiming to engineer “universal donor” cells by simply abrogating expression of MHC class I and class II molecules.  相似文献   

13.
In contrast to antigen-specific immunity orchestrated by major histocompatibility complex (MHC) class Ia molecules, the ancestrally related nonclassical MHC class Ib molecules generally mediate innate immune responses. Here we have demonstrated the structural basis by which the MHC class Ib molecule HLA-E mediates an adaptive MHC-restricted cytotoxic T lymphocyte response to human cytomegalovirus. Highly constrained by host genetics, the response showed notable fine specificity for position 8 of the viral peptide, which is the sole discriminator of self versus nonself. Despite the evolutionary divergence of MHC class Ia and class Ib molecules, the structure of the T cell receptor-MHC class Ib complex was very similar to that of conventional T cell receptor-MHC class Ia complexes. These results emphasize the evolutionary 'ambiguity' of HLA-E, which not only interacts with innate immune receptors but also has the functional capacity to mediate virus-specific cytotoxic T lymphocyte responses during adaptive immunity.  相似文献   

14.
The aim of the present study was to better characterize the expansion of double-negative (DN) T cells in vivo in AIDS patients and to ascertain the discrepant response of an immunodepressed immune system towards two distinct mycobacterial infections. In a large cohort of HIV-1 seropositive patients with low CD4(+) T cell counts (<100/mm(3)), we have recently reported on an expansion of DN T cells which was observed only in patients with disseminated Mycobacterium avium infection, toxoplasmosis and Kaposi sarcoma, but not in patients with tuberculosis. The potential differential gammadelta T cells response observed in vivo in AIDS patients with tuberculosis or disseminated M. avium complex infection was investigated by collecting the concomitant or the closest T lymphocyte counts performed within 2 weeks of bacterial diagnosis of 112 disseminated M. avium infection and 41 tuberculosis patients. The DN and gammadelta T cell percentages were different between the two groups (P < 10(-4)) and the expansion of this compartment was found only with disseminated M. avium infections. An analysis of the variable delta2 segment versus pan-delta bearing T cells ratio disclosed a predominance of non-V(delta)2 T cells in these patients whose average values were identical in both groups. It is therefore concluded that the difference seen between these two types of mycobacterial infections concerning the DN T cells only involved the gammadelta T cells although the mechanism of their preferential expansion in disseminated M. avium infections remains a matter of speculation.  相似文献   

15.
Activation of cytotoxic T cells is initiated by engagement of the T-cell receptor (TCR) with peptide-major histocompatibility class I complexes (pMHCI). The CD8 co-receptor also binds to pMHCI, but at a distinct site, and allows the potential for tripartite TCR/pMHCI/CD8 interactions, which can increase T cell antigen sensitivity. There has been a substantial interest in the effect of the pMHCI/CD8 interaction upon TCR/pMHCI engagement, and several conflicting studies have examined this event, using the soluble extracellular domains of CD8 and the TCR, by surface plasmon resonance. However, the evidence to date suggests that the TCR engages cognate pMHCI before CD8 recruitment, so the question of whether TCR engagement alters CD8 binding is likely to be more relevant to the biological order of T cell antigen encounter. Here, we have examined the binding of CD8 to several variants of the HLA A2-restricted telomerase(540-548) antigen (ILAKFLHWL) and the HLA A2-restricted NY-ESO-1(157-165) antigen (SLLMWITQC) that bind to their cognate TCRs with distinct affinities and kinetics. These interactions represent a range of agonists that exhibit different CD8 dependency for activation of their respective T cells. By using engineered affinity enhanced TCRs to these ligands, which have extended off-rates of approximately 1h compared to seconds for the wildtype TCRs, we have examined pMHCI/CD8 binding before and during TCR-engagement. Here we show that the binding of the extracellular domain of the TCR to pMHCI does not transmit structural changes to the pMHCI-CD8 binding site that would alter the subsequent pMHCI/CD8 interaction.  相似文献   

16.
Damage to neurites with transection of axons and spheroid formation is commonly noted in the central nervous system during viral and autoimmune diseases such as multiple sclerosis, but it remains open whether such changes are caused primarily by immune mechanisms or whether they are secondary to inflammation. The present experiments explored whether neurites can be directly attacked by cytotoxic T lymphocytes (CTLs). Cultured murine neurons induced by interferon-gamma and tetrodotoxin to express major histocompatibility complex class I were pulsed with a dominant peptide of the lymphochoriomeningitis virus envelope glycoprotein (GP33) and then confronted with GP33-specific CD8(+) CTLs. Within 3 hours the neurites developed cytoskeleton breaks with adjacent solitary neuritic spheroids, as documented by confocal examination of the cytoskeletal marker beta-tubulin III. At the same time cytoskeleton staining of the neuronal somata showed no damage. The CTLs selectively attacked neurites and induced segmental membrane disruption 5 to 30 minutes after the establishment of peptide-specific CTL-neurite contact, as directly visualized by live confocal imaging. Thus, major histocompatibility complex class I/peptide-restricted CD8(+) T lymphocytes can induce lesions to neurites, which might be responsible for axonal damage during neuroinflammatory diseases.  相似文献   

17.
Syngeneic cells exogenously supplied with hen egg lysozyme (HEL) or endogenously synthesizing HEL were used as antigen-presenting cells to induce major histocompatibility complex class I-restricted cytotoxic T lymphocytes (CTL). Immunization of C57BL/6 mice followed by repeated stimulation of their splenocytes in vitro with trypsinized HEL peptides led to the generation of CTL lines specific for trypsinized HEL peptides and restricted by H-2Kb. Immunization of C3H mice with a mixture of soluble native HEL and irradiated syngeneic spleen cells followed by in vitro stimulation of immune spleen cells with soluble HEL could in a few cases result in HEL-specific CTL able to kill syngeneic transfectant L cells secreting HEL (HELs) or expressing cytosol-targeted HEL (HELc). The use of HELs or HELc transfectant L cells as in vivo and in vitro immunogens was a potent way for eliciting HEL-specific polyclonal CTL. These CTL and two CD8+ clones were found to be H-2Kk restricted and specific for the 1-17 N-terminal HEL peptide. In addition, the anti-HEL CTL could also exhibit a significant cross-reactivity against unsensitized and HEL-untransfected targets expressing the K restriction element. This cross-reactivity was likely due to recognition of unidentified HEL mimicking peptides (self-derived ?) presented by the MHC class I (H-2Kb or H-2Kk) molecule used as the restriction element for the specific recognition of HEL. The CTL raised after immunization with HELs or HELc transfectant cells were found to recognize both the HELs and HELc transfectant cells even though HEL was not detected in the latter after a 2- or 5-min radiolabeling pulse. Recognition of both HELs and HELc transfectant cells by a given CTL clone suggests that HEL subjected to two separate processing pathways, each depending on the initial subcellular localization, can ensure the generation of similar MHC class I peptide complexes.  相似文献   

18.
Contact sensitivity (CS) is a form of delayed-type hypersensitivity to haptens applied epicutaneously and is thought to be mediated, like classical delayed-type hypersensitivity responses, by CD4+ T helper-1 cells. The aim of this study was to identify the effector T cells involved in CS. We studied CS to the strongly sensitizing hapten dinitrofluorobenzene (DNFB) in mice rendered deficient by homologous recombination in either major histocompatibility complex (MHC) class I, MHC class II, or both, and which exhibited deficiencies in, respectively, CD8+, CD4+, or both, T cells. MHC class I single-deficient and MHC class I/class II double-deficient mice, both of which have a drastic reduction in the number of CD8+ T cells, were unable to mount a CS response to DNFB. In contrast, both MHC class II-deficient mice and normal mice treated with an anti-CD4 monoclonal antibody (mAb) developed exaggerated and persistent responses relative to heterozygous control littermates. Furthermore, anti-CD8 mAb depletion of class II-deficient mice totally abolished their ability to mount an inflammatory response to DNFB. Removal of residual CD4+ T cells in class II-deficient mice by anti-CD4 mAb treatment did not diminish the intensity of CS. These data clearly demonstrate that class I-restricted CD8+ T cells are sufficient for the induction of CS to DNFB, and further support the idea that MHC class II-restricted CD4+ T cells down-regulate this inflammatory response.  相似文献   

19.
Major histocompatibility complex (MHC) class I expression is reduced in several viral infections, but it is not known whether the same happens during infections caused by intracellular enterobacteria. In this study, the expression of MHC class I antigens on peripheral blood mononuclear cells (PBMC) from 16 patients with Salmonella, Yersinia, or Klebsiella infection was investigated. During or after the acute infection, the expression of MHC class I antigens was markedly decreased in eight patients, all with genotype HLA-B27, and six out of eight with reactive arthritis (ReA). A significant decrease of monomorphic MHC class I was found in three patients, of HLA-B27 in eight (P<0.05) and of HLA-A2 in two. However, patients negative for the HLA-B27 genotype, or healthy HLA-B27-positive individuals, did not have a significant decrease of MHC class I antigens. During the decreased expression on the cell surface, intracellular retention of MHC class I antigens was observed, whereas HLA-B27 mRNA levels did not vary significantly. This is the first evidence that enterobacterial infection may down-regulate expression of MHC class I molecules in vivo and that down-regulation is predominant in patients with the HLA-B27 genotype.  相似文献   

20.
The effect on antigenicity of covalent attachment of lipid groups to a protein antigen was investigated. Coupling of palmitic acid to ovalbumin (OVA) enhanced major histocompatibility complex (MHC) class II-restricted presentation to most OVA-specific murine T-cell clones in vitro. The enhanced antigenicity of palmitoylated antigen was localized to the level of presentation of the synthetic peptide epitope, OVA 323-339. T-cell responses to palmitoylated antigen were more difficult to block with anti-MHC class II antibodies than responses to native antigen. However, T-cell proliferation to palmitoyl (p)-OVA and native (n)-OVA were blocked equally by anti-CD4 antibodies. Taken together, the results suggest that lipid conjugation of a protein antigen leads to the formation of a lipopeptide T-cell epitope with increased affinity of binding to MHC class II and/or T-cell receptor (TcR). These results have implications for the design of synthetic peptide vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号