首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Mesenchymal stem/stromal cells (MSCs) have been isolated from various tissues and utilized for an expanding number of therapies. The developmental pathways involved in producing MSCs and the phenotypic precursor/progenitor cells that give rise to human MSCs remain poorly defined. Human embryonic stem cells (hESCs) have the capability to generate functional hemato-endothelial cells and other mesoderm lineage cells. hESC-derived CD73+ cells have been isolated and found to have similar phenotypic and functional characteristics as adult MSCs. Here we demonstrate hESC-derived CD34+CD73? cells can serve as MSC progenitor cells with the ability to differentiate into adipocytes, osteoblasts and chondrocytes. Additionally, gene array analysis of hESC-derived MSCs show substantially different gene expression compared to bone marrow (BM)-derived MSCs, especially with increased expression of pluripotent and multipotent stem cell and endothelial cell-associated genes. The isolation of functional MSCs from hESC-derived CD34+CD73? cells provides improved understanding of MSC development and utilization of pluripotent stem cells to produce MSCs suited for novel regenerative therapies.  相似文献   

2.
Arinzeh TL 《Foot and Ankle Clinics》2005,10(4):651-65, viii
Mesenchymal stem cells (MSCs), derived from adult bone marrow, are multi-potent stem cells capable of differentiating along several lineage pathways. From a small bone marrow aspirate, MSCs can be readily isolated and easily expanded. Therefore, MSCs are thought to be a readily available source of cells for many tissue engineering and regenerative medicine applications. This review covers preclinical models that evaluate the efficacy of MSC-loaded scaffolds in large bone defects as a potential substitute for autologous and allogeneic bone grafts. This review also covers new approaches to clinical use of MSC technology.  相似文献   

3.
Mesenchymal stem cells (MSCs) are multipotent stromal elements that can differentiate into a variety of cell types. MSCs are good sources of therapeutic cells for degenerative diseases. For these reason, many researchers have focused on searching for other sources of MSCs. To obtain MSCs for clinical use requires surgery of the donor that therefore can induce donor morbidity, since the common sources at present are bone marrow and adipose tissues. In this study, we investigated the existence of MSCs in postoperative discarded tissues. Subacromial bursal tissues were obtained from the shoulders of 3 injured patients. The cells from the bursa tissues were isolated through treatment with collagenase. The isolated cells were then seeded and expanded by serial passaging under normal culture system. To evaluate MSC characteristics of the cells, their MSC markers were confirmed by mRNA and protein expression. Multipotent ability was assessed using differentiation media and immunohistochemistry. Cells from the bursa expressed MSCs markers—CD29, CD73, CD90, and PDGFRB (platelet-derived growth factor receptor-beta). Moreover, as to their multipotency, bursal cells differentiated into adipocytes (fat cells), osteocytes (bone cells), and chondrocytes (cartilage cells). In summary, we showed that MSCs could be generated from the subacromial bursa, which is medical waste after surgery.  相似文献   

4.
Mesenchymal stem cells (MSCs) represent an ideal source of autologous cell‐based therapy for chronic wounds. Functional characteristics of MSCs may benefit wound healing by exerting their multi‐regenerative potential. However, cell ageing resulting from chronic degenerative diseases or donor age could cause inevitable effects on the regenerative abilities of MSCs. A variety of studies have shown the relationship between MSC ageing and age‐related dysfunction, but few associate these age‐related impacts on MSCs with their ability of repairing chronic wounds, which are common in the elderly population. Here, we discuss the age‐associated changes of MSCs and describe the potential impacts on MSC‐based therapy for chronic wounds. Furthermore, critical evaluation of the current literatures is necessary for understanding the underlying mechanisms of MSC ageing and raising the corresponding concerns on considering their possible use for chronic wound repair.  相似文献   

5.
Mesenchymal stem cells (MSCs) are non-haematopoietic stromal stem cells that have many sources, such as bone marrow, periosteum, vessel walls, adipose, muscle, tendon, peripheral circulation, umbilical cord blood, skin and dental tissues. They are capable of self-replication and of differentiating into, and contributing to the regeneration of, mesenchymal tissues, such as bone, cartilage, ligament, tendon, muscle and adipose tissue. The homing of MSCs may play an important role in the repair of bone fractures. As a composite material, the formation and growth of bone tissue is a complex process, including molecular, cell and biochemical metabolic changes. The recruitment of factors with an adequate number of MSCs and the micro-environment around the fracture are effective for fracture repair. Several studies have investigated the functional expression of various chemokine receptors, trophic factors and adhesion molecules in human MSCs. Many external factors affect MSC homing. MSCs have been used as seed cells in building tissue-engineered bone grafts. Scaffolds seeded with MSCs are most often used in tissue engineering and include biotic and abiotic materials. This knowledge provides a platform for the development of novel therapies for bone regeneration with endogenous MSCs.  相似文献   

6.

Purpose

Mesenchymal stem cells (MSCs) are particularly valuable for structural tissue replacement. We compared the response to hypoxia among human MSCs derived from four different clinically relevant sources as an adjunct to translational developments.

Methods

Immunophenotypically indistinguishable human MSC lineages derived from bone marrow (bmMSCs), adipose tissue (adMSCs), amniotic fluid (afMSCs), and umbilical cord blood (cbMSCs) were submitted to either room air or 1% O2, under otherwise standard culture conditions. Cell expansion and quantitative RT-PCR data were obtained at different time points. Statistical analysis was by two-way mixed model and the F-test (P < 0.05).

Results

The effect of hypoxia on expansion kinetics was dependent on cell source. Only prenatal sources of MSCs – afMSCs (P = 0.002) and cbMSCs (P < 0.001) – proliferated significantly faster under hypoxia than normoxia. Increased HIF1-alpha expression correlated consistently with increased cell expansion only among afMSCs. There were no significant variabilities in Survivin, Oct-4, and VEGF expressions.

Conclusions

Mesenchymal stem cell tolerance to hypoxia in vitro varies with cell source. Prenatal cells, particularly those derived from amniotic fluid, are more robust than their postnatal counterparts. HIF1-alpha may play a role in the amniotic fluid-derived cells’ enhanced response. These findings should inform the choice of mesenchymal stem cells for prospective regenerative strategies.  相似文献   

7.
Mesenchymal stem cells (MSCs) represent a powerful tool for applications in regenerative medicine. In this study, we used in vivo bioluminescence imaging to noninvasively investigate the fate and the contribution to bone formation of adult MSCs in tissue engineered constructs. Goat MSCs expressing GFP‐luciferase were seeded on ceramic scaffolds and implanted subcutaneously in immune‐deficient mice. The constructs were monitored weekly with bioluminescence imaging and were retrieved after 7 weeks to quantify bone formation by histomorphometry. With increasing amounts of seeded MSCs (from 0 to 1 × 106 MSC/scaffold), a cell‐dose related increase in bioluminescence was observed at all time points, correlating with increased bone formation at 7 weeks. To investigate the relevance of MSC proliferation to bone deposition, cell‐seeded scaffolds were irradiated. The irradiated cells were functional with respect to oxygen consumption but no increase in bioluminescence was observed in vivo, and only minimal bone was produced. Proliferating MSCs are likely required for initiation of bone formation in tissue engineered constructs in vivo. Bioluminescence is a useful tool to monitor cellular responses and predict bone formation in vivo. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:901–909, 2008  相似文献   

8.
9.
The application of stem cells and their use in tissue‐engineering approaches is emerging in clinical therapeutic intervention strategies. The use of adult stem cells, either autologous or allogenic, does not raise ethical concerns, in contrast to embryonic stem cells. Mesenchymal stromal cells (MSCs) can be easily obtained from bone marrow or from adipose tissue and further expanded in vitro. Due to their differentiation capacity, MSCs are very attractive for tissue engineering purposes. Furthermore, MSCs secrete a variety of mediators that have beneficial effects on the regenerating tissue. In this review we give an insight into stem cell hierarchy, define the properties of MSCs and summarize recent reports of their administration in urological diseases.  相似文献   

10.
Graft-versus-host disease (GvHD) and graft rejection have remained significant complications of allogeneic stem cell transplantation. Mesenchymal stem cells (MSCs) from the bone marrow have been shown to suppress T-cell activation in vitro and in vivo, and may be used to reduce GvHD in the recipient or to facilitate engraftment across MHC barriers. MSCs can be derived from a variety of tissues. Thus, we asked whether MSCs from different tissues might have differential effects on T-cell responses. We were particularly interested in MSCs derived from adipose tissue because of its abundance and accessibility. We investigated and compared the immunosuppressive potential of murine MSCs derived from muscle tissue, adipose tissue, omentum, and bone. Cells from the different tissues were enriched for MSCs and cultured for 2-3 weeks to deplete hematopoietic cells. Mixed lymphocyte reactions (MLRs) including MSCs were performed using concanavalin A or allogeneic T cells as inducers of T-cell activation. MSCs from all tissues differentiated into multiple lineages. Mitogen-induced T-cell activation, as well as allogeneic T-cell responses, was reduced in MLRs mediated by the addition of MSCs. Reduction of T-cell activation was most pronounced for muscle tissue in the mitogen-induced MLR and fat tissue during the allogeneic MLR. These data demonstrate that MSCs from multiple tissues efficiently reduce T-cell activation. The results suggest that MSCs from adipose tissue can serve as an alternative source for MSCs to bone or bone marrow for the modulation of GvHD after allogeneic stem cell transplantation or to enhance engraftment across MHC barriers.  相似文献   

11.
Mesenchymal stem cells (MSCs) can be obtained from various tissues, and contain common features. However, an increasing number of reports have described variant properties dependent of cell sources. We examined (1) whether MSCs existed in several intraarticular tissues, (2) whether gene expression profiles in intraarticular tissue MSCs closely resembled each other, and (3) whether identified genes were specific to intraarticular tissue MSCs. Human synovium, meniscus, intraarticular ligament, muscle, adipose tissue, and bone marrow were harvested, and colony‐forming cells were analyzed. All these cells showed multipotentiality and surface markers typical of MSCs. Gene profiles of intraarticular tissue MSCs and chondrocytes were closer to each other than those of extraarticular tissues MSCs. Among three characteristic genes specific for intraarticular tissue MSCs, we focused on proline arginine‐rich end leucine‐rich repeat protein (PRELP). Higher expression of PRELP was confirmed in chondrocytes and intraarticular tissue MSCs among three elderly and three young donors. Synovium MSCs stably expressed PRELP, contrarily, bone marrow MSCs increased PRELP expression during in vitro chondrogenesis. In conclusion, MSCs could be isolated from various intraarticular tissues including meniscus and ligament, gene expression profiles of intraarticular tissue MSCs closely resembled each other, and the higher expression of PRELP was characteristic of intraarticular tissue MSCs. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 435–441, 2009  相似文献   

12.
AimMesenchymal stem cell (MSC) therapies are emerging as a promising strategy to promote tissue repair, and may extend their utility to burn care. This comprehensive review of the extant literature, evaluated all in vivo studies, to elucidate the potential protective and therapeutic effect of MSCs in acute thermal skin burns.MethodsPubMed was systematically searched, according to PRISMA guidelines, and all relevant preclinical and clinical studies were included according to pre-specified eligibility criteria.ResultsForty-two studies were included in a qualitative synthesis, of which three were human and 39 were animal studies. The preclinical studies showed that MSCs can significantly reduce inflammation, burn wound progression and accelerate healing rate of acute burns. The underlying mechanisms are complex and not fully understood but paracrine modulators, such as immunomodulatory, antioxidative and trophic factors, seem to play important roles. Allogeneic MSC therapy has proved feasible in humans, and could allow for prompt treatment of acute burns in a clinical setting.ConclusionMSC therapy show positive results, regarding improved burn wound healing and immunologic response. However, most findings are based on small animal studies. Randomized clinical trials are warranted to investigate the regenerative effects in human burns before translating the findings into clinical practice.  相似文献   

13.
BACKGROUND: Recent reports suggest that mesenchymal stem cells (MSCs) have immunomodulatory properties. Mesenchymal stem cells can suppress the immune response toward alloantigen in vitro by inhibiting T cell proliferation in mixed-lymphocyte reactions (MLRs). However, relatively little has been reported regarding the immunomodulative potential of MSCs in vivo. Herein the authors confirm the immunomodulatory effects of rat MSCs in vitro and tested for tolerogenic features in a model of allogeneic heart transplantation. METHODS: Mesenchymal stem cells were obtained from bone marrow aspirates of male Lewis rats (major histocompatibility complex [MHC] haplotype RT1) and ACI rats (RT1). Lewis MSCs were cocultured with ACI spleen cells to reveal direct effects of MSCs on lymphocytes. In addition, MSCs were added to MLRs between ACI T cells as responders and irradiated Lewis spleen cells as stimulators. Finally, MSCs were administered in an allogeneic heart transplantation model at different doses (with and without cyclosporin A [CsA]). RESULTS: Mesenchymal stem cells appeared with typical spindle-shaped morphology in culture and readily differentiated into adipocytes when exposed to differentiation media. Mesenchymal stem cells expressed MHC class I, but not class II or costimulatory molecules. In vitro, MSCs phagocytosed ACI spleen cells. When introduced into an MLR, donor MSCs suppressed the proliferation of stimulated T cells. However, in vivo, MSC injection did not prolong allograft survival. In addition, concurrent treatment with low-dose CsA and MSCs accelerated allograft rejection. CONCLUSIONS: The present data confirm previous reports suggesting that MSCs have immunomodulatory properties in vitro. However, their tolerogenic properties in vivo must be questioned, as MSC injections were not only ineffective at prolonging allograft survival, but tended to promote rejection.  相似文献   

14.
15.
Abdi R  Fiorina P  Adra CN  Atkinson M  Sayegh MH 《Diabetes》2008,57(7):1759-1767
Mesenchymal stem cells (MSCs) are pluripotent stromal cells that have the potential to give rise to cells of diverse lineages. Interestingly, MSCs can be found in virtually all postnatal tissues. The main criteria currently used to characterize and identify these cells are the capacity for self-renewal and differentiation into tissues of mesodermal origin, combined with a lack in expression of certain hematopoietic molecules. Because of their developmental plasticity, the notion of MSC-based therapeutic intervention has become an emerging strategy for the replacement of injured tissues. MSCs have also been noted to possess the ability to impart profound immunomodulatory effects in vivo. Indeed, some of the initial observations regarding MSC protection from tissue injury once thought mediated by tissue regeneration may, in reality, result from immunomodulation. Whereas the exact mechanisms underlying the immunomodulatory functions of MSC remain largely unknown, these cells have been exploited in a variety of clinical trials aimed at reducing the burden of immune-mediated disease. This article focuses on recent advances that have broadened our understanding of the immunomodulatory properties of MSC and provides insight as to their potential for clinical use as a cell-based therapy for immune-mediated disorders and, in particular, type 1 diabetes.  相似文献   

16.
INTRODUCTION: Bone marrow mesenchymal stem cells (MSCs) are ideal target cells for cell transplantation and tissue engineering. We investigated their biological characteristics and differentiation mediated by different methods. It is important to study the short-term fate of labeled allogeneic MSCs after subcutaneous implantation in rabbits in order to provide insights into the application of allogeneic MSCs for tissue regeneration. MATERIALS AND METHODS: Mesenchymal stem cells were labeled by two different methods in vitro and then were incubated with gelatin sponge. Autologous MSCs-Gelatin constructs and allogeneic MSCs-Gelatin constructs were subcutaneously implanted into 32 rabbits. The constructs were analyzed for the survival and migration of labeled MSCs at day 3, week 1, 3, and 5 post-implantation. RESULTS: EGFP was successfully expressed following transfection of MSCs with the retroviral vector pLEGFP-N1. In addition, EGFP-MSCs can be functionally induced into osteocytes, chondrocytes, and adipocytes in conditioned media. By weeks 3 after implantation, the labeled cells distributed extensively on the surface of gelatin sponge and gradually integrated into host tissues. EGFP-labeled MSCs were observed under fluorescence microscopy and BrdU-expressing cells were detected with immunohistochemical stain in allogeneic or autologous MSCs-Gelatin constructs during the initial five weeks after implantation. CONCLUSIONS: It is a simple and reliable way to trace the changes of MSCs in vivo by EGFP in cell transplantation and gene therapy. Allogeneic rabbit MSCs can survive for at least 5 weeks after subcutaneous implantation and maintain a strong ability of migration, indicating that allogeneic MSCs are of certain value in clinical application for temporary replacement.  相似文献   

17.
间充质干细胞(Mesenchymal stem cell,MSC)因高度的自我增殖与多向分化能力在再生医学和组织工程领域具有广阔的应用前景。目前,MSC成骨分化的研究很多,但体外、内的成骨效率仍然较低。因此,提高MSC的成骨性能成为关注热点。MSC成骨性能受多方面因素的影响,我们从细胞来源、分离纯化、诱导策略及血管化等4个方面对影响MSC成骨性能的因素进行综述。  相似文献   

18.
李汪洋  熊辉 《中国骨伤》2020,33(7):689-692
间充质干细胞(mesenchymal stem cells,MSCs)是近些年在骨科研究领域中治疗各种疾病很有吸引力和潜力的种子细胞。因MSCs具有向成骨细胞分化的特性,且前的研究主要集中在MSCs的成骨分化。随着研究的深入,逐渐发现MSCs归巢在骨形成和骨科疾病治疗中也起到重要作用。MSCs归巢是指MSCs离开原有的微环境(主要是骨髓)进入外周血循环,并迁出外周血管至组织损伤处的过程。MSCs归巢是骨形成的前提条件,只有MSCs首先归巢至损伤处后,进而分化为成骨细胞,才能参与骨组织的修复。促进MSCs归巢在骨质疏松症、骨折、骨缺损及颗粒磨损性骨溶解等骨科疾病治疗中已起到积极的作用。因此,进一步研究MSCs归巢将对治疗骨科疾病提供新的思路。  相似文献   

19.
Mesenchymal stem cells (MSCs) of mammals have been isolated from many tissues and are characterized by their aptitude to differentiate into bone, cartilage, and fat. Differentiation into cells of other lineages like skeletal muscle, tendon/ligament, nervous tissue, and epithelium has been attained with MSCs derived from some tissues. Whether such abilities are shared by MSCs of all tissues is unknown. We therefore compared for three human donors the myogenic properties of MSCs from adipose tissue (AT), bone marrow (BM), and synovial membrane (SM). Our data show that human MSCs derived from the three tissues differ in phenotype, proliferation capacity, and differentiation potential. The division rate of AT-derived MSCs (AT-MSCs) was distinctly higher than that of MSCs from the other two tissue sources. In addition, clear donor-specific differences in the long-term maintenance of MSC proliferation ability were observed. Although similar in their in vitro fusogenic capacity with murine myoblasts, MSCs of the three sources contributed to a different extent to skeletal muscle regeneration in vivo. Transplanting human AT-, BM-, or SM-MSCs previously transduced with a lentiviral vector encoding β-galactosidase into cardiotoxin-damaged tibialis anterior muscles (TAMs) of immunodeficient mice revealed that at 30 days after treatment the frequency of hybrid myofibers was highest in the TAMs treated with AT-MSCs. Our finding of human-specific β-spectrin and dystrophin in hybrid myofibers containing human nuclei argues for myogenic programming of MSCs in regenerating murine skeletal muscle. For the further development of MSC-based treatments of myopathies, AT-MSCs appear to be the best choice in view of their efficient contribution to myoregeneration, their high ex vivo expansion potential, and because their harvesting is less demanding than that of BM- or SM-MSCs.  相似文献   

20.
Yong-Beom Park 《Arthroscopy》2021,37(1):379-380
Mesenchymal stem cells (MSCs) have been investigated for the treatment of knee osteoarthritis because of their unique properties, including self-renewal, multi-linear cellular differentiation, and immunomodulatory capacity. However, the efficacy of MSCs for positive clinical outcomes in the treatment of knee osteoarthritis remains controversial. Because clinical studies in general have high variability, the heterogeneity in the sources of the stem cells used, efficacy of delivery methods, and concomitant surgery should be carefully considered to interpret the benefits of MSC therapy for knee osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号