首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epidermal growth factor receptor (EGFR) plays an important role in neoplastic growth control of malignant gliomas. We have demonstrated that radiation activates EGFR Tyr-phosphorylation (EGFR Tyr-P) and the proliferation of surviving human carcinoma cells, a likely mechanism of accelerated cellular repopulation, a major cytoprotective response after radiation. We now investigate the importance of radiation-induced activation of EGFR on the radiosensitivity of the human malignant glioma cells U-87 MG and U-373 MG. The function of EGFR was inhibited through a genetic approach of transducing cells with an Adenovirus (Ad) vector containing dominant-negative (DN) EGFR-CD533 (Ad-EGFR-CD533) at efficiencies of 85-90%. The resulting cells are referred to as U-87-EGFR-CD533 and U-373-EGFR-CD533. After irradiation at 2 Gy, both of the cell lines exhibited a mean 3-fold increase in EGFR Tyr-P. The expression of EGFR-CD533 completely inhibited the radiation-induced activation of EGFR. In clonogenic survival assays after a single radiation exposure, the radiation dose for a survival of 37% (D37) for U-87-EGFR-CD533 cells was 1.4- to 1.5-fold lower, relative to cells transduced with AdLacZ or untransduced U-87 MG cells. This effect was amplified with repeated radiation exposures (3 x 2 Gy) yielding a D37 ratio of 1.8-2.0. In clonogenic survival studies with U-373 MG cells, the radiosensitizing effect of EGFR-CD533 was similar. Furthermore, in vivo studies with U-87 MG xenografts confirmed the effect of EGFR-CD533 on tumor radiosensitization (dose enhancement ratio, 1.8). We conclude that inhibition of EGFR function via Ad-mediated gene transfer of EGFR-CD533 results in significant radiosensitization. As underlying mechanism, we suggest the disruption of a major cytoprotective response involving EGFR and its downstream effectors, such as mitogen-activated protein kinase. The experiments demonstrate for the first time that radiosensitization of malignant glioma cells through disruption of EGFR function may be achieved by genetic therapy approaches.  相似文献   

2.
PURPOSE: Epidermal growth factor receptor (EGFR) and other members of the ErbB family of receptor tyrosine kinases (RTK) mediate autocrine growth regulation in a wide spectrum of human tumor cells. We have previously demonstrated that in stably transfected mammary carcinoma cells a dominant negative (DN) mutant of EGFR, EGFR-CD533 is a potent inhibitor of EGFR and its cytoprotective signaling after exposure to ionizing radiation. In the present study, we further investigate the capacity of a genetic approach, using replication-incompetent adenovirus (Ad)-mediated transfer of EGFR-CD533 (Ad-EGFR-CD533), to enhance the radiosensitivity in vitro of four cell lines representative of three major cancer phenotypes. METHODS AND MATERIALS: The cell lines MDA-MB-231 and T-47D mammary carcinoma, A-431 squamous carcinoma, and U-373 MG malignant glioma cells were used. The ErbB expression profiles and the EGFR tyrosine phosphorylation (Tyr-P) levels following irradiation were quantified by Western blotting. The relative radiosensitivities of tumor cells were assessed by standard colony formation assays after infection with control vector (Ad-LacZ) or Ad-EGFR-CD533. RESULTS: The expression profiles demonstrated varying levels of EGFR, ErbB2, ErbB3, and ErbB4 expression. The overexpression of EGFR-CD533 after infection with Ad-EGFR-CD533 completely inhibited the radiation-induced stimulation of EGFR Tyr-P relative to the immediate 2.4- to 3.1-fold increases in EGFR Tyr-P in control infected cells (Ad-LacZ). Ad-EGFR-CD533-infected cells demonstrated significant (p < 0.001) radiosensitization over a range of radiation doses (1-8 Gy), yielding dose-enhancement ratios (DER) between 1.4 and 1.7. This radiosensitization was maintained under conditions of repeated radiation exposures, using 3 x 2 Gy, yielding DERs of 1.6 and 1.7 for MDA-MB-231 and U-373 cells, respectively. CONCLUSIONS: Overexpression of EGFR-CD533 significantly sensitizes human carcinoma and glioma cells to single and repeated radiation exposures irrespective of their ErbB expression levels. Therefore, transduction of human tumor cells with EGFR-CD533 holds promise as a gene therapeutic approach for the radiosensitization of neoplastic cells that are growth-regulated by EGFR or other ErbB receptors.  相似文献   

3.
BACKGROUND: Exposure of human cancer cells to ionizing radiation activates the epidermal growth factor receptor (EGFR), which, in turn, mediates a cytoprotective response that reduces the cells' sensitivity to ionizing radiation. Overexpression of a dominant-negative EGFR mutant, EGFR-CD533, disrupts the cytoprotective response by preventing radiation-induced activation of the receptor and its downstream effectors. To investigate whether gene therapy with EGFR-CD533 has the potential to increase tumor cell radiosensitivity, we introduced an adenoviral vector containing EGFR-CD533 into xenograft tumors in nude mice and evaluated the tumor response to ionizing radiation. METHODS: Xenograft tumors established from the human mammary carcinoma cell line MDA-MB-231 were transduced via infusion with the adenoviral vector Ad-EGFR-CD533 or a control vector containing the beta-galactosidase gene, Ad-LacZ. The transduced tumors were then exposed to radiation in the therapeutic dose range, and radiation-induced EGFR activation was assessed by examining the tyrosine phosphorylation of immunoprecipitated EGFR. Radiosensitization was determined in vitro by colony-formation assays. All statistical tests were two-sided. RESULTS: The transduction efficiency of MDA-MB-231 tumors by Ad-LacZ was 44%. Expression of EGFR-CD533 in tumors reduced radiation-induced EGFR activation by 2.94-fold (95% confidence interval [CI] = 2.23 to 4.14). The radiosensitivity of Ad-EGFR-CD533-transduced tumors was statistically significantly higher (46%; P<.001) than that of Ad-LacZ-transduced tumors, yielding a dose-enhancement ratio of 1.85 (95% CI = 1.54 to 2.51). CONCLUSIONS: Transduction of MDA-MB-231 xenograft tumors with Ad-EGFR-CD533 conferred a dominant-negative EGFR phenotype and induced tumor radiosensitization. Therefore, disruption of EGFR function through overexpression of EGFR-CD533 may hold promise as a gene therapeutic approach to enhance the sensitivity of tumor cells to ionizing radiation.  相似文献   

4.
Ionizing radiation activates the epidermal growth factor receptor (EGFR) and downstream signaling involving the cytoprotective mitogen-activated protein kinase (MAPK) pathway. In our effort to investigate the role of EGFR in cellular responses to radiation, we generated mammary carcinoma cell clones, MCF-TR5-EGFR-CD533 and MDA-TR15-EGFR-CD533, that inducibly express EGFR-CD533, a truncated EGFR mutant lacking mitogenic and transformation activity. EGFR-CD533 expression inhibits radiation- and EGF-induced EGFR autophosphorylation and MAPK activation and, therefore, functions as a dominant-negative mutant without blocking the expression of EGFR or erbB-2, another member of the erbB receptor Tyr kinase family. Expression of EGFR-CD533 only minimally inhibited cell growth and did not alter radiosensitivity to single radiation exposures. However, repeated 2 Gy radiation exposures of cells, under conditions of EGFR-CD533 expression, essentially abolished their ability for subsequent cell growth. These results identify the inhibition of EGFR function through genetic manipulation as a potential therapeutic maneuver. The concept of such an intervention would be the radiosensitization of cells by counteracting a radiation-induced cytoprotective proliferation response.  相似文献   

5.
PURPOSE: The expression of epidermal growth factor receptor (EGFR)-CD533, a truncation mutant of the wild-type EGFR, radiosensitizes carcinoma and malignant glioma cell lines. This deletion mutant disrupts EGFR activation and downstream signaling through the formation of inhibitory dimerizations. In this study, the effects of EGFR-CD533 on other ErbB receptor tyrosine kinase (RTK) family members were quantified to better understand the mechanism of EGFR-CD533-mediated radiosensitization. METHODS AND MATERIALS: Breast carcinoma cell lines with different ErbB RTK expression profiles were transduced with EGFR or ErbB2 deletion mutants (EGFR-CD533 and ErbB2-CD572) using an adenoviral vector. ErbB RTK activation, mitogen activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/p70S6K signaling, and clonogenic survival were determined for expression of each deletion mutant. RESULTS: EGFR-CD533 radiosensitizes carcinoma cells with either high EGFR expression (MDA-MB231) or low EGFR expression (T47D) through significant blockade of the ErbB RTK network. Analysis of clonogenic survival demonstrate significant enhancement of the alpha/beta ratios, as determined by the linear-quadratic model. Split-dose survival experiments confirm that EGFR-CD533 reduces the repair of cellular damage after ionizing radiation. CONCLUSION: Expression of EGFR-CD533 inhibits the ErbB RTK network and radiosensitizes carcinoma cells irrespective of the ErbB RTK expression patterns, and ErbB2-CD572 does not radiosensitize cells with low EGFR expression. These studies demonstrate that the mechanism of action for EGFR-CD533-mediated radiosensitization is inhibition of the ErbB RTK network, and is an advantage for radiosensitizing multiple malignant cell types.  相似文献   

6.
EGFRvIII-mediated radioresistance through a strong cytoprotective response   总被引:2,自引:0,他引:2  
The constitutively active, truncated epidermal growth factor receptor EGFRvIII lacks the ability of EGF binding due to a deletion of the NH(2)-terminal domain. EGFRvIII confers increased tumorigenicity, is coexpressed with EGFR wild type (wt) in human carcinoma and malignant glioma cells when grown as xenografts, but is not expressed in vitro. The effects of EGFRvIII expression on cellular radiation responses were studied in Chinese hamster ovary (CHO) cells transfected with plasmids expressing EGFRvIII (CHO.EGFRvIII) or EGFRwt (CHO.EGFRwt). CHO cells expressing similar levels of either receptor were employed to define their roles in response to EGF and ionizing radiation. EGF activated EGFRwt with no effect on EGFRvIII. In contrast, a single radiation exposure of 2 Gy resulted in a 2.8- and 4.3-fold increase in Tyr phosphorylation of EGFRwt and EGFRvIII, respectively. Downstream consequences of this radiation-induced activation were examined by inhibiting EGFRwt and EGFRvIII with AG1478 (kinase inhibitor). The radiation-induced 8.5-fold activation of the pro-proliferative mitogen-activated protein kinase and the 3.2-fold stimulation of the antiapoptotic AKT/phosphatidylinositol-3-kinase pathways by EGFRvIII far exceeded that in CHO.EGFR wt cells. Thus, based on colony formation and apoptosis assays, EGFRvIII expression conferred a stronger cytoprotective response to radiation than EGFRwt, resulting in relative radioresistance. Therefore, disabling EGFRvIII in addition to EGFRwt needs to be considered in any therapeutic approach aimed at targeting EGFR for tumor cell radiosensitization.  相似文献   

7.
Exposure of MDA-MB-231 human mammary carcinoma cells to an ionizing radiation dose of 2 Gy results in immediate activation and Tyr phosphorylation of the epidermal growth factor receptor (EGFR). Doxycycline induced expression of a dominant negative EGFR-CD533 mutant, lacking the COOH-terminal 533 amino acids, in MDA-TR15-EGFR-CD533 cells was used to characterize intracellular signaling responses following irradiation. Within 10 min, radiation exposure caused an immediate, transient activation of mitogen activated protein kinase (MAPK) which was completely blocked by expression of EGFR-CD533. The same radiation treatment also induced an immediate activation of the c-Jun-NH2-terminal kinase 1 (JNK1) pathway that was followed by an extended rise in kinase activity after 30 min. Expression of EGFR-CD533 did not block the immediate JNK1 response but completely inhibited the later activation. Treatment of MDA-TR15-EGFR-CD533 cells with the MEK1/2 inhibitor, PD98059, resulted in approximately 70% inhibition of radiation-induced MAPK activity, and potentiated the radiation-induced increase of immediate JNK1 activation twofold. Inhibition of Ras farnesylation with a concomitant inhibition of Ras function completely blocked radiation-induced MAPK and JNK1 activation. Modulation of EGFR and MAPK functions also altered overall cellular responses of growth and apoptosis. Induction of EGFR-CD533 or treatment with PD98059 caused a 3-5-fold increase in radiation toxicity in a novel repeated radiation exposure growth assay by interfering with cell proliferation and potentiating apoptosis. In summary, this data demonstrates that both MAPK and JNK1 activation in response to radiation occur through EGFR-dependent and -independent mechanisms, and are mediated by signaling through Ras. Furthermore, we have demonstrated that radiation-induced activation of EGFR results in downstream activation of MAPK which may affect the radiosensitivity of carcinoma cells.  相似文献   

8.
ERBB receptor tyrosine kinases and cellular radiation responses   总被引:3,自引:0,他引:3  
Ionizing radiation induces in autocrine growth-regulated carcinoma and malignant glioma cells powerful cytoprotective responses that confer relative resistance to consecutive radiation exposures. Understanding the mechanisms of these responses should provide new molecular targets for tumor radiosensitization. ERBB and other receptor Tyr kinases have been identified as immediate early response gene products that are activated by radiation within minutes, as by their physiological growth factor ligands, and induce secondary stimulation of cytoplasmic protein kinase cascades. The simultaneous activation of all receptor Tyr kinases and nonreceptor Tyr kinases leads to complex cytoprotective responses including increased cell proliferation, reduced apoptosis and enhanced DNA repair. Since these responses contribute to cellular radioresistance, ERBB1, the most extensively studied ERBB receptor, is examined as a target for tumor cell radiosensitization. The three methods of ERBB1 inhibition include blockade of growth factor binding by monoclonal antibody against the ligand-binding domain, inhibition of the receptor Tyr kinase-mediating receptor activation, and overexpression of a dominant-negative epidermal growth factor receptor-CD533 that lacks the COOH-terminal 533 amino acids and forms nonfunctional heterodimeric complexes with wild-type receptors. All the three approaches enhance radiation toxicity in vitro and in vivo. The different mechanisms of inhibition have contributed to the understanding of cellular responses to radiation, vary in relative effectiveness and pose different challenges for translation.  相似文献   

9.
Most malignant astrocytomas (gliomas) express a high level of Fas, whereas the surrounding normal tissues such as neurons and astrocytes express a very low level of Fas. Thus, transduction of Fas ligand would selectively kill malignant astrocytoma cells. On the other hand, glioma cells harboring p53 mutation have been reported to be resistant to conventional therapies including radiation. To override the resistance mechanism of glioma cells with p53 mutation to radiation, we transduced U-373MG malignant astrocytoma (glioma) cells harboring mutant p53 with Fas ligand via an adenovirus (Adv) vector in combination with X-ray irradiation, and evaluated the degree of apoptosis. The degree of apoptosis in U-373MG cells infected with the Adv for Fas ligand (Adv-FL) and treated with irradiation (81%) was much higher than that in U-373MG cells infected with Adv-FL and not treated with irradiation (0.8%) or that in U-373MG cells infected with the control Adv for lacZ and treated with irradiation (5.0%). In U-373MG cells infected with Adv-FL, irradiation increased the expression of Fas ligand. Coincident with the increase in Fas ligand, there was a marked reduction in the caspase-3 level and a marked increase in the cleaved form of poly(ADP-ribose) polymerase (PARP), which are downstream components of Fas ligand-mediated apoptosis. This suggests that the enhanced activation of caspase-3 by the transduction of Fas ligand combined with irradiation, induced extensive apoptosis in U-373MG cells. In summary, transduction of Fas ligand may override the resistance mechanism to radiotherapy in glioma cells harboring p53 mutation.  相似文献   

10.
Most malignant astrocytomas (gliomas) express a high level of Fas, whereas the surrounding normal tissues such as neurons and astrocytes express a very low level of Fas. Thus, transduction of Fas ligand would selectively kill malignant astrocytoma cells. On the other hand, glioma cells harboring p53 mutation have been reported to be resistant to conventional therapies including radiation. To override the resistance mechanism of glioma cells with p53 mutation to radiation, we transduced U-373MG malignant astrocytoma (glioma) cells harboring mutant p53 with Fas ligand via an adenovirus (Adv) vector in combination with X-ray irradiation, and evaluated the degree of apoptosis. The degree of apoptosis in U-373MG cells infected with the Adv for Fas ligand (Adv-FL) and treated with irradiation (81%) was much higher than that in U-373MG cells infected with Adv-FL and not treated with irradiation (0.8%) or that in U-373MG cells infected with the control Adv for lacZ and treated with irradiation (5.0%). In U-373MG cells infected with Adv-FL, irradiation increased the expression of Fas ligand. Coincident with the increase in Fas ligand, there was a marked reduction in the caspase-3 level and a marked increase in the cleaved form of poly(ADP-ribose) polymerase (PARP), which are downstream components of Fas ligand-mediated apoptosis. This suggests that the enhanced activation of caspase-3 by the transduction of Fas ligand combined with irradiation, induced extensive apoptosis in U-373MG cells. In summary, transduction of Fas ligand may override the resistance mechanism to radiotherapy in glioma cells harboring p53 mutation.  相似文献   

11.
BACKGROUND AND PURPOSE: EGFRvIII has been described to function as an oncoprotein with constitutive activation promoting neoplastic transformation and tumorigenicity. The present study was undertaken to test whether EGFRvIII also contributes to hypoxia tolerance. MATERIAL AND METHODS: The human glioma cell line U373 was genetically modified to stably express EGFRvIII. Western blotting and immunohistochemistry verified the expression of EGFRvIII. Tumour xenografts were produced by injecting U373 control and EGFRvIII positive cells subcutaneously into the lateral flank of recipient mice. Colony formation assays were performed after ionizing radiation at 4Gy and after exposure to anoxia for 1-4 days. RESULTS: EGFRvIII accelerated tumour growth leading to a 3.5-fold increase in tumour size compared to control tumours at 40 days after cell injection. EGFRvIII promoted clonogenic survival by almost 2-fold and 4-fold after 4Gy and 4 days of anoxia, respectively. EGFRvIII was also associated with a substantially bigger colony size after anoxic treatment. CONCLUSIONS: EGFRvIII expression stimulates the growth of tumour xenografts and strongly promotes survival after irradiation and under hypoxic stress.  相似文献   

12.
13.
We investigated whether EGFRvIII contributes to tumorigenicity and resistance to 5-FU in HCC cell lines. Our results show that several HCC cell lines have EGFRvIII expression. EGFRvIII-positive HCC cells grew more rapidly and had a lower sensitivity to 5-FU than EGFRvIII-negative HCC cells. For further analysis of the biological characteristics of EGFRvIII, an EGFRvIII or EGFR expression cassette was introduced into the HCC cell line, Huh-7. Compared with Huh-7 cells and Huh7-EGFR cells, Huh7-EGFRvIII not only exhibit significantly increase of cell growth in vitro and in vivo but also show enhanced migration in vitro. Furthermore, 5-FU has significantly lower inhibition effect on Huh7-EGFRvIII cells then on both Huh-7 and Huh7-EGFR cells in vitro and in vivo. Collectively, these results demonstrate that EGFRvIII plays a pivotal role in tumorigenicity and enhanced 5-FU resistance of HCC.  相似文献   

14.
The epidermal growth factor receptor (EGFR) gene is commonly amplified and rearranged in glioblastoma multiforme leading to overexpression of wild-type and mutant EGFRs. Expression of wild-type EGFR ligands, such as transforming growth factor-alpha (TGF-alpha) or heparin-binding EGF (HB-EGF), is also often increased in gliomas resulting in an autocrine loop that contributes to the growth autonomy of glioma cells. Glioblastoma multiformes express a characteristic EGFR mutant (EGFRvIII, de 2-7) that does not bind ligand, signals constitutively, and is more tumorigenic than the wild-type receptor. However, the downstream signals that mediate this increased tumorigenicity are not well understood. We hypothesized that signals induced specifically by EGFRvIII and not the wild-type receptor are more likely to mediate its increased tumorigenic activity and examined the gene expression profiles resulting from inducible expression of comparable levels of either wild-type EGFR or EGFRvIII in a U251-MG glioma cell line. Expression of EGFRvIII resulted in specific up-regulation of a small group of genes. Remarkably, all these genes, which include TGFA, HB-EGF, EPHA2, IL8, MAP4K4, FOSL1, EMP1, and DUSP6, influence signaling pathways known to play a key role in oncogenesis and function in interconnected networks. Increased expression of EGFRvIII-induced genes was validated by real-time PCR. The mutant receptor does not bind ligand, and EGFRvIII-induced expression of TGF-alpha and HB-EGF suggests that EGFRvIII plays a role in generating an autocrine loop using the wild-type EGFR in glioma. It also raises the possibility that EGFRvIII may signal, at least in part, through the wild-type receptor. Indeed, we show that inhibiting the activity of HB-EGF, a potent mitogen, with neutralizing antibodies reduces cell proliferation induced by expression of EGFRvIII. This suggests that the EGFRvIII-HB-EGF-wild-type EGFR autocrine loop plays an important role in signal transduction by EGFRvIII in glioma cells. We also show by immunohistochemistry that HB-EGF expression correlates with the presence of EGFRvIII in glioblastoma multiforme. Thus, our study provides a new insight into oncogenic signaling by EGFRvIII and improves our understanding of how autocrine loops are generated in glioma.  相似文献   

15.
Epidermal growth factor receptor vIII (EGFRvIII) is a tumor-specific, ligand-independent, constitutively active variant of the EGFR. Its expression has been detected in gliomas and various other human malignancies. To more fully characterize the function and potential biological role of EGFRvIII in regulating cell proliferation and in tumorigenesis, we transfected EGFRvIII cDNA into a nontumorigenic, interleukin 3 (IL-3)-dependent murine hematopoietic cell line (32D cells). We observed 32D cells expressing high levels of EGFRvIII (32D/EGFRvIII P5) to be capable of abrogating the IL-3-dependent pathway in the absence of ligands. In contrast, the parental cells, 32D/EGFR, 32D/ErbB-4, and 32D/ErbB-2+ErbB-3 cells, all depended on IL-3 or EGF-like ligands for growth. 32D/EGFRvIII P5 cells subjected to long-term culture conditions in the absence of IL-3 revealed further elevation of EGFRvIII expression levels. These results suggested that the IL-3-independent phenotype is mediated by EGFRvIII. The level of expression is a critical driving force for the IL-3-independent phenotype. Dose-response analysis revealed 32D/EGFRvIII cells to require 500-fold higher concentrations (50 ng/ml) of EGF to further stimulate the EGF-mediated proliferation than in the 32D/EGFR cells (100 pg/ml). Similar effects were also observed in beta-cellulin-mediated proliferation. Moreover, 32D cells expressing high levels of EGFRvIII formed large tumors in nude mice, even when no exogenous EGF ligand was administered. In contrast, no tumors grew in mice injected with 32D/EGFR, 32D/ErbB-4, and 32D/ErbB-2+ErbB-3 cells or low-expressing clone 32D/EGFRvIII C2 cells or the parental 32D cells. The changes of the ligand specificity support the notion for an altered conformation of EGFRvIII to reveal an activated ligand-independent oncoprotein with tumorigenic activity analogous to v-erbB. These studies clearly demonstrate that EGFRvIII is capable of transforming a nontumorigenic, IL-3-dependent murine hematopoietic cell line (32D cells) into an IL-3-independent and ligand-independent malignant phenotype in vitro and in vivo. To delineate the biological significance of EGFRvIII in human breast cancer, we expressed EGFRvIII in the MCF-7 human breast cancer cell line. Expression of EGFRvIII in MCF-7 cells produced a constitutively activated EGFRvIII receptor. Expression of EGFRvIII in MCF-7 cells also elevated ErbB-2 phosphorylation, presumably through heterodimerization and cross-talk. These MCF-7/EGFRvIII transfectants exhibited an approximately 3-fold increase in colony formation in 1% serum with no significant effect observed at higher percentages of serum. A similar result was also seen in anchorage-dependent assays. Furthermore, EGFRvIII expression significantly enhanced tumorigenicity of MCF-7 cells in athymic nude mice with P < 0.001. Collectively, these results provide the first evidence that EGFRvIII could play a pivotal role in human breast cancer progression.  相似文献   

16.
Alterations of the epidermal growth factor receptor (EGFR) occur frequently in malignant gliomas through gene amplification or rearrangement, especially in a large fraction of de novo type glioblastomas. The most common of these mutant EGFRs (variously named de2-7 EGFR, ΔEGFR or EGFRvIII) lacks a portion of the extracellular ligand-binding domain. Here, we review the evidence that shows that expression of ΔEGFR bestows in vivo growth advantages to human glioma cells through its constitutively active tyrosine kinase activity. Thus, ΔEGFR may provide a novel therapeutic target for the most aggressive type of glioblastoma.  相似文献   

17.
18.
Glioma is the most common malignant tumor of the nervous system. Studies have shown the microRNA-26b (miR-26b)/cyclooxygenase-2 (COX-2) axis in the development and progression in many tumor cells. Our study aims to investigate the effect and mechanism of the miR-26b/COX-2 axis in glioma. Decreased expression of miR-26b with increased levels of COX-2 was found in glioma tissues compared with matched normal tissues. A strong negative correlation was observed between the level of miR-26b and COX-2 in 30 glioma tissues. The miR-26b was then overexpressed by transfecting a miR-26b mimic into U-373 cells. The invasive cell number and wound closing rate were reduced in U-373 cells transfected with miR-26b mimic. In addition, COX-2 siRNA enhanced the effect of miR-26b mimic in suppressing the expression of p-ERK1 and p-JNK. Finally, the in vivo experiment revealed that miR-26b mimic transfection strongly reduced the tumor growth, tumor volume, and expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. Taken together, our research indicated a miR-26b/COX-2/ERK/JNK axis in regulating the motility of glioma in vitro and in vivo, providing a new sight for the treatment of glioma.  相似文献   

19.
Mutations of the epidermal growth factor receptor (EGFR) gene are found at a relatively high frequency in glioma, with the most common being the de2-7 EGFR (or EGFRvIII). This mutation arises from an in-frame deletion of exons 2-7, which removes 267 amino acids from the extracellular domain of the receptor. Despite being unable to bind ligand, the de2-7 EGFR is constitutively active and imparts a significant in vivo growth advantage to glioma cells. In order to examine the signalling pathways activated by the de2-7 EGFR and its biological effects in an in vitro system, the de2-7 EGFR gene was transfected into the murine IL-3-dependent pro-B-cell line BaF/3. Expression of the de2-7 EGFR enhanced the survival of BaF/3 cells in the absence of IL-3 by reducing apoptosis in a phosphatidylinositol 3-kinase (PI3-K)-dependent manner. Interestingly, while de2-7 EGFR also enhanced proliferation of BaF/3 cells in low levels of IL-3, this effect was independent of PI3-K. Survival and proliferation were further enhanced when BaF/3 cells were cotransfected with the de2-7 and wt EGFR. This was due to heterodimerization between the de2-7 and wt EGFR leading to trans-phosphorylation of the wt EGFR. This observation is directly relevant to glioma where de2-7 and wt EGFR appear to be coexpressed. Thus, expression of de2-7 EGFR in BaF/3 cells provides an in vitro model for evaluating the signalling pathways activated by this receptor.  相似文献   

20.
We hypothesized that immunoliposomes (ILs) that target epidermal growth factor receptor (EGFR) and/or its truncated variant EGFRvIII can be constructed to provide efficient intracellular drug delivery in tumor cells overexpressing these receptors. Monoclonal antibody fragments included Fab' fragments derived from C225, which binds both EGFR and EGFRvIII, or novel anti-EGFR scFv C10, which binds EGFR only. Monoclonal antibody fragments were covalently linked to liposomes containing various reporters or drugs. ILs were evaluated for specific binding, internalization, and cytotoxicity in EGFR/EGFRvIII-overexpressing cell lines in vitro. Flow cytometry and fluorescence microscopy showed that EGFR-targeted ILs, but not nontargeted liposomes or irrelevant ILs, were efficiently bound and internalized by EGFR-overexpressing cells, including glioma cells (U-87), carcinoma cells (A-431 and MDA-MB-468), and EGFRvIII stable transfectants (NR-6M). Furthermore, EGFR-targeted ILs did not bind to non-EGFR-overexpressing cells (MCF-7 and parental NR-6). ILs showed 3 orders of magnitude greater accumulation in NR-6-EGFRvIII stable transfectants versus parental NR-6 cells. Quantitative internalization studies indicated binding of EGFR-targeted ILs to target cells within 5 min, followed by intracellular accumulation beginning at 15 min; total uptake reached approximately 13,000 ILs/cell. ILs were used to deliver cytotoxic drugs doxorubicin, vinorelbine, or methotrexate to EGFR/EGFRvIII-overexpressing target cells in vitro. In each case, the IL agent was significantly more cytotoxic than the corresponding nontargeted liposomal drug in target cells, whereas it was equivalent in cells lacking EGFR/EGFRvIII overexpression. We conclude that EGFR-targeted ILs provide efficient and targeted delivery of anticancer drugs in cells overexpressing EGFR or EGFRvIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号