首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo differential pulse voltammetry was used for the detection of indoleamines during vertical electrode penetrations in rat first somatosensory cortex, for studying the laminar distribution of serotonin and/or its metabolites in that part of the cortex. The peak of current corresponding to 5-hydroxyindoles was maximum in the most superficial part of the cortex and diminished gradually in the deeper layers. These results suggest that the cortical serotonergic innervation is predominant in the superficial layers.  相似文献   

2.
Treatment with GM1 ganglioside increases rat spinal cord indole content   总被引:2,自引:0,他引:2  
Chronic treatment with GM1 ganglioside apparently increases serotonin metabolism in the spinal cord of control and hemitransected rats. Dopamine metabolism is stimulated below a hemitransection with GM1 treatment. These observations are consistent with reports that GM1 promotes regrowth of neurons after experimental lesions of brain.  相似文献   

3.
The partial lesion paradigm of the dorsal hippocampal afferents in the rat was used as a model to study the effect of GM1 ganglioside treatment on recovery of neurotransmitter markers of the cholinergic and serotoninergic activity in various hippocampal regions. It was found that the enhancement of recovery of acetylcholinesterase, choline acetyltransferase and serotonin uptake by GM1 treatment (30 mg/kg i.m., daily), as studied on the 6th and 21st postlesion day, was dependent on the degree of fiber degeneration. The results may be interpreted in terms of the relationship between the action of GM1 and that of neuronotrophic factors whose release also depends on the extent of the fiber degeneration. These data indicate that GM1 elicits the recovery of biochemical parameters, or fails to, depending on the specificity of the trauma. The result may explain why, after certain brain lesions, GM1 does not promote functional recovery.  相似文献   

4.
GM1 ganglioside, thyroxine and hydrocortisone were tested for their ability to improve the survival and growth of fetal focus coeruleus noradrenergic neurons in the transected, adult spinal cord. GM1 alone was also tested for its effect on fetal mesencephalic dopaminergic neurons implanted into a small dorsolateral cavity at the L2 region of the cord previously transected at the T9–T10 region. None of the substances tested had any measurable effect on either of the fetal implants. However, in the GM1- and thyroxine-treated animals the somatic dendrites of the axotomized, noradrenergic, coerulospinal neurons appeared more robust, and more intensely fluorescent, compared to their appropriate controls. GM1 also caused a pronounced sprouting of the axotomized monoaminergic (catecholaminergic and serotonergic) fibres in the rostral region of the cord adjacent to the transection site. All of the mesencephalic dopaminergic implants survived in both the GM1-treated animals and their saline-injected controls. However, their development was apparently not influenced by GM1. The results indicate that GM1 and thyroxine can enhance those aspects of the reactive mechanisms of mature, axotomized, noradrenergic coerulospinal neurons that promote their regeneration. As such, GM1 could become a useful tool in current attempts to foster the regeneration of damaged monoaminergic neurons in the mammalian CNS.  相似文献   

5.
Neurophysiological studies(EEG, ERG, VEP) have been carried out on 8 children with proven GM1 gangliosidosis (3 of Type I and 5 of Type II). All the EEGs were abnormal showing an increasing amount of irregular slow activity as the disease progressed. Around 2 to 3 years of age, Type II patients often showed a fluctuating 4–5 c/s rhythmic activity especially prominent in the temporal regions. Paroxysmal activity was not a conspicuous feature in any of the patients. The ERG was normal in all cases but the VEP was variably altered. The EEG / ERG/ VEP findings in GM1 gangliosidosis differ from those seen in most other neurometabolic disorders of childhood.
Sommario Sono stati condotti studi neurofisiologici(EEG, ERG, PEV) in 8 bambini con accertato GM1 gangliosidiosi (3 di tipo I e 5 di tipo II). Tutti gli EEG sono risultati anormali dimostrando un aumento di attività lenta e irregolare col procedere della malattia. I pazienti del gruppo II presentano, attorno ai 2–3 anni di età, un'attività fluttuante e ritmica a 4–5 c/s prevalente soprattutto nelle regioni temporali. L'attività parossistica non risultava continua in alcun caso. L'ERG era normale in tutti i casi e la PEV era variamente alterata. In sintesi i rilievi EEG, ERG, PEV nella GM1 gangliosidiosi differiscono da quelli che si riscontrano nella maggioranza delle malattie neurometaboliche infantili.
  相似文献   

6.
Anti-brain antisera are known to contain several interesting antibodies showing immunological cross-reactions between the nervous and hematopoietic systems, suggesting the existence of antigens common to the two systems (common antigens). One of these is the glycosphingolipid asialo GM1 (ganglio-N-tetraosylceramide, GgOse4Cer), but its location in the nervous system is unknown. Therefore, the location of the brain antigen that reacts with anti-asialo GM1 antibody was examined. On immunohistochemical treatment of sections of mouse brain with purified anti-asialo GM1 IgG, the white matter was stained specifically. Because myelin is a major component of the white matter, neutral glycosphingolipids were prepared from the myelin fraction. On thin-layer chromatography, myelin glycosphingolipids gave a band with the same mobility as asialo GM1. This band was also stained immunochemically by the peroxidase anti-peroxidase procedure using anti-asialo GM1 IgG. The glycosphingolipid of this band gave the molar ratio of sugars expected for asialo GM1. From these results it was concluded that the glycosphingolipid asialo GM1 exists in myelin.  相似文献   

7.
Monosialoganglioside GM1 and nerve growth factor (NGF) were administered alone or concomitantly to adult male rats with a unilateral ibotenic acid lesion of the nucleus basalis magnocellularis (NBM). High-affinity choline uptake (HACU) rate and choline acetyltransferase (ChAT) activity were measured, 4 and 21 days after surgery, respectively, in the frontal and parietal cortices of both hemispheres. A 33–34% decrease in HACU rate and a 43-39% decrease in ChAT activity was found in the ipsilateral cortices 4 and 21 days, respectively, after the lesion. If the lesioned rats received NGF (10 μg i.c.v.) twice a week or daily administrations of GM1 (30 mg/kg, i.p.), beginning immediately after surgery the decrease in HACU rate and ChAT activity was smaller. If NGF and GM, were given concomitantly no decrease in HACU rate and ChAT activity was detected in the lesioned hemisphere and a slight increase occurred in the contralateral hemisphere. However, after the concurrent administration of NGF (10 μg i.c.v.) and the inactive dose of GM1 10 mg/kg i.p. no decrease in HACU and ChAT activity was also found in the lesioned rats. The latter finding indicates a potentiation by GM1 of NGF effects on the cholinergic neurons of the IBM. The two drugs may either antagonize the neurotoxic effects of ibotenic acid or stimulate a compensatory activity in the remaining neurons.  相似文献   

8.
Dietary administration of ethanol to rats for 2 weeks was able to depress levels of glutathione (GSH) and Cu/Zn superoxide dismutase (SOD) in several brain regions. This was indicative of the generation of excess levels of reactive oxygen in treated animals. The potentially protective effect of both an NMDA receptor blocker (MK-801) and an internally esterified derivative of ganglioside GM1 (AGF2) upon ethanol-induced changes in these indices of oxidative stress, was studied. Both of these agents are reported to have neuroprotective properties, but neither was able to prevent ethanol-induced reduction of GSH and SOD levels in any brain area studied. In fact, both agents depressed SOD and GSH levels in midbrain independently of ethanol. MK-801 had a pronounced pro-oxidant potential, and when administered in combination with ethanol, GSH and SOD were reduced in midbrain and striatum to levels below those obtained with either agent alone. The pro-oxidant properties of ethanol may thus act independently of its actions upon the NMDA receptor. The protective properties of NMDA receptor inhibitors or gangliosides cannot be attributed to any antioxidant effect.  相似文献   

9.
In rats with extensive unilateral cortical damage, retrograde effects upon the cholinergic cells of the basal nucleus were observed. Cells of the basal nucleus stained immunocytochemically for choline acetyltransferase were shrunken and choline acetyltransferase enzymatic activity in that region was reduced. Both these effects could be prevented by the administration of the ganglioside GM1.  相似文献   

10.
The effects of GM1 ganglioside (30 mg/kg i.p.) administration for 22 days on choline acetyltransferase (ChAT) activity and noradrenaline (NA) levels in the cerebral cortex and on the acquisition of active and passive avoidance-conditioned responses were investigated in both sham-operated rats and in rats with a unilateral electrolytic lesion of the magnocellular forebrain nuclei (MFN). A statistically significant ChAT decrease in cortical areas ipsilateral to the lesion was found in saline-treated lesioned rats. In the lesioned GM1-treated rats, ChAT activity was only reduced in the frontoparietal areas and was significantly increased in the ipsilateral parietooccipital areas as well as in both contralateral regions. NA levels in the cortex were neither significantly affected by the lesion nor by GM1 treatment. The lesion impaired the acquisition of active and passive conditioned avoidance responses. GM1 treatment improved acquisition of the active avoidance response in the lesioned rats as indicated by a larger number of avoidances and a smaller number of escape failures during training in comparison with saline treatment. Ganglioside had no effect on the passive avoidance responses. These results demonstrate that GM1 administration facilitates the recovery of the cortical cholinergic system and of behavioral responses impaired by an electrolytic lesion of the cholinergic forebrain nuclei.  相似文献   

11.
The neurochemical factors involved in the maintenance and breakdown of dopamine D1/D2 receptor synergism were investigated by giving rats various pharmacological treatments that diminish the ability of dopamine to interact with its D1 and/or D2 receptors. Following these treatments, rats were observed for the expression of stereotyped motor behavior in response to independent stimulation of D1 or D2 receptors. Independent D2-mediated responses were observed: (a) 2 h after the last of three daily reserpine (1 mg/kg) injections, (b) 48 h after bilateral 6-hydroxydopamine (6-OHDA) lesions of the mesostriatal pathways, (c) 24 h after a concentrated 48-h regimen (one injection/6 h) of eticlopride (0.5 mg/kg) or eticlopride + SCH 23390 (0.5 mg each), and (d) 2 h after a concentrated 48-h regimen (one injection/6 h) of α-methyl-p-tyrosine (αMPT; 100 mg/kg), but not after control treatments or a concentrated regimen of SCH 23390 alone. By contrast, independent D1-mediated responses were observed only after three daily reserpine injections or 48 h after bilateral 6-OHDA lesions. Independent D1-mediated stereotypy was not observed under control conditions or following a concentrated 48-h regimen of (a) SCH 23390 or eticlopride (0.5 mg/kg each) alone or in combination, (b) a high dose of SCH 23390 (1.0 mg/kg), (c) αMPT (100 mg/kg), or (d) αMPT (100 mg/kg)+SCH 23390 (1.0 mg/kg). Reserpine, bilateral 6-OHDA, and αMPT treatments produced striatal dopamine depletions of 96%, 92%, and 71%, respectively. These data indicate that the breakdown in D1/D2 synergism consists of two components: (a) D1 independence from the controlling influence of D2 receptors, and (b) D2 independence from the controlling influence of D1 receptors. The interaction of synaptic DA with its D2 receptors plays a major role in determining whether these receptors can function independently of D1 receptors, whereas reduced DA-D1 activity alone appears insufficient to elicit D1 independence.  相似文献   

12.
13.
m1-Toxin1 is a trace component of the venom of the green mamba that antagonizes M1 muscarinic receptors specifically and irreversibly in vitro. It was injected into the right caudatoputamen of Wistar rats to occlude M1 receptors specifically for several days (‘M1 knockdown’), and to begin to establish the unknown effects of striatal M1-neurotransmission on movement. The extent and duration of M1-blockade were evaluated with receptor binding assays and light microscopic autoradiography, using 1–2 nM [3H]pirenzepine to assess unoccupied M1 receptors. An injection of 27 pmol m1-toxin1 blocked almost all of the M1 receptors in one caudatoputamen (4 pmol), followed by their slow recovery to supranormal levels (115%) during a week. During maximum M1-blockade, the binding of 1 nM [3H]N-methylscopolamine to striatal membranes was reduced by only half, indicating no blockade of M4 receptors, which comprise 51% of striatal muscarinic receptors. It is concluded that m1-toxin1 can produce acute, focal, selective, unilateral and long-lasting M1-blockade for investigations of the effects of M1-neurotransmission in vivo. Rats with extensive unilateral striatal M1-blockade appeared normal, and did not show unilateral deficits in spontaneous forearm use, in contrast to rats with unilateral 6-hydroxydopamine lesions of the substantia nigra. Since M1-blockade should decrease the activity of both striatonigral and striatopallidal projection neurons, and the relative activity of these neurons is believed to control movement, the results suggest that a balanced decrease in the activity of these neurons on one side of the brain does not produce a right/left imbalance in spontaneous movement.  相似文献   

14.
The antipsychotic effects of neuroleptic drugs are believed to be achieved by chronic blockade of dopaminergic transmission in the limbic system. Nevertheless, the effects of chronic (3-12 months) haloperidol administration on the dopaminergic transmission in the nucleus accumbens of rodents remains poorly understood. Studies of spontaneous locomotor activity (SLA), a behavioral measure related to limbic dopamine transmission, and of dopamine D2 receptor density in the nucleus accumbens after chronic oral haloperidol treatment have yielded conflicting results. We evaluated these indices after 8 months of parenteral administration of haloperidol decanoate. We report here that, after 8 months of parenteral treatment, SLA stays significantly decreased and D2 receptors in the nucleus accumbens exhibit the same up-regulation as in the striatum (about 50%). These results fail to support the notion of a different pattern of D2 receptor adaptation to neuroleptic treatment between the nucleus accumbens and the striatum. In contrast, dopamine D1 receptors were found to be unaffected in the nucleus accumbens but decreased in the striatum by 22% after 8 months of treatment. This observation could be relevant to the pathogenesis of tardive dyskinesia.  相似文献   

15.
The topographical distribution of a cAMP-regulated phosphoprotein of an apparent molecular weight (Mr) of 32,000 (32K) was examined in homogenates prepared from microdiscs punched out from serial frozen slices of the striatum. The amount of this phosphoprotein progressively diminished from the rostral to the caudal part of the striatum as did both the dopamine-innervation and the dopamine (D1)-sensitive adenylate cyclase. After kainic acid lesion of the rostral part of the striatum, the 32K phosphoprotein disappeared in this area and we observed a 48% decrease in the amount of 32K phosphoprotein found in the substantia nigra. 6-Hydroxydopamine lesions of the nigro-striatal dopaminergic pathway did not affect the 32K phosphoprotein either in striatum or substantia nigra. These results suggest that in the nigro-striatal pathway, the 32K phosphoprotein is closely associated with dopaminoceptive neurons containing D1 receptors. In the cerebral cortex the association of 32K phosphoprotein with dopaminoceptive neurons is more questionable since we did not find a higher density of this phosphoprotein in areas containing a high amount of D1 receptor (frontal cerebral cortex) than in areas containing a low amount of D1 receptor (parietal cerebral cortex). In the course of this study we found another cAMP-regulated phosphoprotein of an Mr of 48,000 (48K). The amount of this phosphoprotein increased progressively from the rostral to the caudal part of the striatum, a pattern of distribution close to that of serotonin terminals. This protein was also present in the substantia nigra. Kainic acid lesioning of the rostral part of the striatum did not affect the amount of the 48K phosphoprotein within the substantia nigra. 6-Hydroxydopamine lesions of the substantia nigra also did not alter the amount of 48K phosphoprotein in this brain region.  相似文献   

16.
The unilateral intrastriatal injection of the irreversible dopamine (DA) receptor blockerN-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) induces a marked decrease in the density of D1 (-48%) and D2 (-51%) DA receptors available for binding to [3H]SCH 23390 and [3H]raclopride, respectively. A challenge dose of the D2 agonist LY 171555 (1 mg/kg, i.p., 24 h after EEDQ) causes intensive ipsiversive circling behavior, whereas the selective D1 agonist SKF 38393 (20 mg/kg, i.p., 24 h after EEDQ) is unable to induce rotations. The density of D1 and D2 DA receptors returns to basal levels by 7 days after the intrastriatal infusion of EEDQ. This biochemical recovery is associated with a progressive decrease in the number of rotations elicited by a challenge dose of LY 171555, suggesting the EEDQ does not cause any relevant neuronal damage. A selective inactivation of striatal D1 or D2 DA receptors can be obtained by injecting EEDQ 30 min after the administration of the D2 antagonist raclopride (20 mg/kg, i.p.) or of the D1 antagonist SCH 23390 (2 mg/kg, s.c.), respectively. The intensity of the circling behavior induced by LY 171555 24 h after EEDQ in animals with a selective inactivation of D2 DA receptors is similar to that found in rats in which both D1 and D2 DA receptors have been inactivated. In contrast, LY 171555 does not cause rotations when the density of D1 DA receptors is selectively decreased by EEDQ in rats pretreated with raclopride. These results indicate that the imbalance in striatal D2 receptors, but not in D1 receptors, is a critical factor for the expression of the motor effects elicited by LY 171555 in EEDQ-treated rats.  相似文献   

17.
The effect of chronic treatment with antidepressants (ADs) on the behavioral responses to LY 171555, a selective D2 receptor agonist, SKF 38393, a selective D1 receptor agonist, and B-HT 920, a selective DA autoreceptor agonist, was studied in rats. In normal rats small, intermediate and high doses of LY 171555 produced hypomotility, hyperactivity and stereotypies, respectively. Chronic but not acute pretreatment with imipramine (IMI) greatly potentiated the motor stimulant effect of LY 171555, but failed to modify its stereotypic and sedative effect. The potentiation of the motor stimulant effect of LY 171555 was observed also after chronic, but not acute, treatment with desmethylimipramine (DMI), mianserin (MIA) or repeated electroconvulsive shock (ECS). Chronic treatment with IMI failed to modify the effect of SKF 38393 (motor stimulation, grooming and penile erection), but reversed the sedative effect of B-HT 920 into a motor stimulant response. The motor stimulant response to LY 171555 in IMI-pretreated animals was suppressed byl-sulpiride, a D2 antagonist, and by a combination of reserpine with α-methyltyrosine (α-MT), but it was only partially antagonized by high doses of SCH 23390, a selective D1 antagonist. The results indicate that chronic treatment with ADs potentiates the behavioural responses mediated by the stimulation of postsynaptic D2 receptors in the mesolimbic system and suggest that this behavioural supersensitivity is due to enhanced neurotransmission at the D1 receptor level.  相似文献   

18.
Systemic administration of the selective, full, D1 dopamine agonist A-77636 [(1R,3S)3-(1′-adamantyl)-1-aminomethyl-3,4-dihydro-5,6-dihydroxy-1H-2-benzopyranhydrochloride] (0.36–2.9 mg/kg) led to a dose-dependent induction of Fos-like immunoreactivity (FLI) in the striatum. Quantitative analysis of the sections indicated that immunoreactive cells were more numerous in the medial than the lateral striatum and, within these regions, appeared to be randomly distributed. The staining produced by A-77636 could be abolished by pretreatment with the selective D1 antagonist SCH-23390. The selective D2 dopamine agonist quinpirole (3 mg/kg) had no effect on striatal FLI when given by itself, but markedly potentiated the weak striatal staining produced by low doses of A-77636. When combined with the highest dose of A-77636, which produced substantial staining by itself, quinpirole produced an increase in the number of immunoreactive cells seen in the lateral striatum but actually decreased the number present in the medial striatum. Statistical analysis of the distribution of immunoreactive cells demonstrated that, in both regions, quinpirole converted the relatively homogeneous staining seen after A-77636 alone into a markedly patchy pattern. These findings indicate that stimulation of D2 receptors produces both stimulatory and inhibitory effects on the D1-mediated expression of Fos in the striatum and that the interaction between D1 and D2 receptor stimulation must, therefore, be more complex than the simple synergism suggested by previous studies.  相似文献   

19.
The substantia nigra pars reticulata (SNR) is involved in the control of movement disorders including seizures through its GABAergic neurons. Microinfusions of muscimol (a GABA(A) receptor agonist) produce specific effects on seizures depending on sex, infusion site (SNR(anterior) or SNR(posterior)) and age. To assess whether these effects are due to sex differences in GABAergic indices within the SNR we analyzed the expression of alpha(1) subunit mRNA of the GABA(A) receptor and the levels of GABA immunoreactivity (IR) of male and female rats at postnatal day 15 (PN15) and PN30. In each age, within the same SNR region, expression of alpha(1) subunit mRNA and intensity of GABA IR per neuron was higher in females compared to males. At PN15, in both sexes, there were no regional differences in expression of alpha(1) subunit mRNA and intensity of GABA IR. However, at PN30 in both sexes, expression of alpha(1) subunit mRNA and intensity of GABA IR per cell was higher in SNR(anterior) than in SNR(posterior). These results demonstrate that expression of alpha(1) subunit mRNA for GABA(A) receptor and levels of GABA IR in the SNR are sex- and site-specific, which may contribute to sex-, regional- and age-related differences in the expression of movement disorders and seizures.  相似文献   

20.
The effects of recently described selective dopamine D1 and D2 agonists and antagonists on brain glucose metabolism were studied using the 2-[14C]deoxyglucose autoradiographic technique. The administration of LY-141865 or YM-09151-2, which behave as a specific D2 agonist and antagonist respectively, modified brain glucose metabolism in a manner similar to that previously described for more classical dopaminergic agents, such as apomorphine and haloperidol. In contrast, the administration of SKF 38393 or SCH 23390, a specific D1 agonist and antagonist respectively, was not followed by significant modifications of brain glucose metabolism in any of the brain regions studied. These results indicate that D2 but not D1 dopamine receptors are involved in the regulation of local brain glucose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号