首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Allograft acceptance and tolerance can be achieved by different approaches including inhibition of effector T cell responses through CD28‐dependent costimulatory blockade and induction of peripheral regulatory T cells (Tregs). The observation that Tregs rely upon CD28‐dependent signals for development and peripheral expansion, raises the intriguing possibility of a counterproductive consequence of CTLA4‐Ig administration on tolerance induction. We have investigated the possible negative effect of CTLA4‐Ig on Treg‐mediated tolerance induction using a mouse model of single MHC class II‐mismatched skin grafts in which long‐term acceptance was achieved by short‐term administration of IL‐2/anti‐IL‐2 complex. CTLA4‐Ig treatment was found to abolish Treg‐dependent acceptance in this model, restoring skin allograft rejection and Th1 alloreactivity. CTLA4‐Ig inhibited IL‐2‐driven Treg expansion, and prevented in particular the occurrence of ICOS+ Tregs endowed with potent suppressive capacities. Restoring CD28 signaling was sufficient to counteract the deleterious effect of CTLA4‐Ig on Treg expansion and functionality, in keeping with the hypothesis that costimulatory blockade inhibits Treg expansion and function by limiting the delivery of essential CD28‐dependent signals. Inhibition of regulatory T cell function should therefore be taken into account when designing tolerance protocols based on costimulatory blockade.  相似文献   

2.
Regulatory T cells (Tregs) play a significant role in immune tolerance. Since Treg function deeply depends on Interleukin‐2 signaling, calcineurin inhibitors could affect their suppressive potentials, whereas mammalian target of rapamycin (mTOR) inhibitors may have less impact, as mTOR signaling is not fundamental to Treg proliferation. We previously reported a novel mixed hematopoietic chimerism induction regimen that promotes Treg proliferation by stimulating invariant natural killer T cells under CD40 blockade. Here, we use a mouse model to show the impact of tacrolimus (TAC) or everolimus (EVL) on the establishment of chimerism and Treg proliferation in the regimen. In the immunosuppressive drug‐dosing phase, peripheral blood chimerism was comparably enhanced by both TAC and EVL. After dosing was discontinued, TAC‐treated mice showed gradual graft rejection, whereas EVL‐treated mice sustained long‐term robust chimerism. Tregs of TAC‐treated mice showed lower expression of both Ki67 and cytotoxic T lymphocyte antigen‐4 (CTLA‐4), and lower suppressive activity in vitro than those of EVL‐treated mice, indicating that TAC negatively impacted the regimen by interfering with Treg proliferation and activation. Our results suggest that the usage of calcineurin inhibitors should be avoided if utilizing the regimen to induce Tregs in vivo for the establishment of mixed hematopoietic chimerism.  相似文献   

3.
IL‐2 is a known potent T cell growth factor that amplifies lymphocyte responses in vivo. This capacity has led to the use of high‐dose IL‐2 to enhance T cell immunity in patients with AIDS or cancer. However, more recent studies have indicated that IL‐2 is also critical for the development and peripheral expansion of regulatory T cells (Tregs). In the current study, low‐dose IL‐2 (1 million IU/m2 BSA/day) was administered to expand Tregs in vivo in naïve nonhuman primates. Our study demonstrated that low‐dose IL‐2 therapy significantly expanded peripheral blood CD4+ and CD8+ Tregs in vivo with limited expansion of non‐Treg cells. These expanded Tregs are mainly CD45RA? Foxp3 high activated Tregs and demonstrated potent immunosuppressive function in vitro. The results of this preclinical study can serve as a basis to develop Treg immunotherapy, which has significant therapeutic potential in organ/cellular transplantation.  相似文献   

4.
Recent work from our laboratory has shown that hyperlipidemia promotes accelerated rejection of vascularized cardiac allografts in mice by inducing anti‐donor Th17 reactivity and production of IL‐17. Here, we show that hyperlipidemia also affects FoxP3+ regulatory T cells (Tregs). Hyperlipidemia promotes the development of Tregs that express low levels of CD25. Hyperlipidemia also promotes a decrease in central Tregs and an increase in effector Tregs that appears to account for the increase in the frequency of CD25low Tregs. Alterations in Treg subsets also appear to lead to alterations in Treg function. The ability of FoxP3+, CD25high, CD4+ Tregs from hyperlipidemic mice to inhibit proliferation of effector T cells stimulated with anti‐CD3 and CD28 was reduced when compared with Tregs from control mice. Regulatory T cells isolated from hyperlipidemic recipients exhibit increased activation of Akt, and a reduction in Bim levels that permits the expansion of FoxP3+CD25lowCD4+ T cells. Hyperlipidemic mice were also resistant to tolerance induction using costimulatory molecule blockade consisting of anti‐CD154 and CTLA4Ig, a strategy that requires Tregs. Together, our data suggest that hyperlipidemia profoundly affects Treg subsets and function as well as the ability to induce tolerance.  相似文献   

5.
6.
The addition of low, nondepleting doses of rabbit antithymocyte globulin (ATG) to human peripheral blood mononuclear cells has been shown to expand functional CD4+CD25+FoxP3+ regulatory T cells (Tregs) in vitro. This report is the first to elucidate the exact cellular mechanisms of ATG‐mediated Treg expansion. CD4+ T cells require monocytes, but not other antigen presenting cell subsets, to be present in coculture to expand Tregs. However, T cells do not require direct cell–cell contact with monocytes, suggesting the importance of soluble factors. Moreover, ATG initially “reprograms” CD4+ T cells, but not monocytes, and induces STAT3 and STAT5 signaling in CD4+ cells. These reprogrammed CD4+ T cells subsequently secrete GM‐CSF and IL‐10 only in case of intact STAT3 signaling, which in turn promote the generation of tolerogenic CD14+CD11c+ dendritic cells characterized by enhanced IL‐10 and decreased IL‐12 production. Treg expansion following ATG treatment is accompanied by enhanced gene expression of both GM‐CSF and Bcl‐2, but not TGF‐β, in peripheral blood mononuclear cells. These results demonstrate that ex vivo expansion of human Tregs by ATG is due to its ability to reprogram CD4+ T cells in a STAT3‐dependent but TGF‐β‐independent manner, leading to the generation of monocyte‐derived dendritic cells with a tolerogenic cytokine profile.  相似文献   

7.
Donor pancreatic lymph node cells (PLNC) protect islet transplants in Non‐obese diabetic (NOD) mice. We hypothesized that induced FoxP3+ regulatory T cells (Tregs) were required for long‐term islet engraftment. NOD or NOD.NON mice were treated with ALS (antilymphocyte serum) and transplanted with NOR islets +/–PLNC (5 × 107). In vivo proliferation and expansion of FoxP3+ Tregs was monitored in spleen and PLN from ALS‐ and ALS/PLNC‐treated recipient mice. Anti‐CD25 depletion was used to determine the necessity of Tregs for tolerance. FoxP3+ numbers significantly increased in ALS/PLNC‐treated recipients compared to ALS‐treated mice. In ALS/PLNC‐treated mice, recipient‐derived Tregs localized to the transplanted islets, and this was associated with intact, insulin‐producing β cells. Proliferation and expansion of FoxP3+ Tregs was markedly increased in PLNC‐treated mice with accepted islet grafts, but not in diabetic mice not receiving PLNC. Deletion of Tregs with anti‐CD25 antibodies prevented islet graft tolerance and resulted in rejection. Adoptive transfer of Tregs to secondary NOD.scid recipients inhibited autoimmunity by cotransferred NOD effector T cells. Treg expansion induced by ALS/PLNC‐treatment promoted long term islet graft survival. Strategies leading to Treg proliferation and localization to the transplant site represent a therapeutic approach to controlling recurrent autoimmunity.  相似文献   

8.
CD4+CD25+ regulatory T cells (Tregs) play a crucial role in controlling immune responses. It is an appealing strategy to harness Tregs for adoptive cell therapy to induce tolerance to allografts. Several approaches have been developed to expand antigen-specific Tregs. Despite the large body of experimental data from murine studies demonstrating the great potential of these cells for clinical application, Treg adoptive transfer therapy was used in immunodeficient animals or in strain combinations with limited histiocompatibility. The aim of this study was to investigate whether Treg lines can protect from allograft rejection in a fully MHC-mismatched strain combination and whether the presence of Tregs with indirect allospecificity offered an advantage compared to self-reactive Tregs. Treg lines with self-specificity or with indirect allospecificity were generated by stimulating BL/6 CD4+CD25+ T cells with autologous immature DCs either unpulsed or pulsed with Kd peptide. The Treg lines were injected into recipient mice in combination with temporary depletion of CD8+ T cells and a short course of Rapamycin. The data demonstrate that Treg lines with indirect allospecificity can be generated and most importantly they can induce indefinite survival of BALB/c hearts transplanted into BL/6 recipients when combined with short term immunosuppression. However, the Treg lines with self-specificity were only slightly less effective. The data presented in this study demonstrate the potential of ex vivo expanded Treg lines for adoptive cell therapy to promote transplantation tolerance.  相似文献   

9.
10.
Regulatory CD4+CD25+Foxp3+ T cells (Tregs) play an important role in the induction of allospecific tolerance. However tolerance in solid organ transplantation by mere transfer of Tregs has been difficult. Besides this the stability of the differentiation phenotype of Tregs has recently been questioned. We therefore aimed in generating large numbers of stable allospecific Tregs from naïve T cells by retroviral transduction with Foxp3. These were tested in an immunogenic skin transplantation model (C57BL/6→BALB/c). We established a system of transduction of mouse T cells with ecotropic retroviruses expressing Foxp3 and Thy1.1 as a surface marker to follow up transduced T cells. Alloantigen‐specific Tregs were generated by stimulating naïve recipient CD4+ T cells with irradiated donor splenocytes. CD25+ and/or CD69+ allospecific recipient CD4+ T cells were isolated and transduced with Foxp3. Alloantigen‐specific Foxp3 T cells (iTregs) showed high expression for the Treg markers Foxp3, CTLA4 and GITR. They could suppress a MLR in an alloantigen‐specific manner. Furthermore, they could be expanded up to 18 fold in vitro while maintaining their Treg phenotype and expression of lymph node homing markers like CCR7 and CD62L. iTregs prevented skin graft rejection without the need for chronic immunosuppression and recipients showed systemic allospecific allotolerance. Alloantigen‐specific Tregs were far more potent than polyspecific Tregs. Mechanisms of tolerance were graft specific homing, expansion and long‐term persistence of Tregs within the graft (>100 days, 90% of intragraft Tregs were alloantigen‐specific). In fact, tolerance could be transferred with re‐transplantation of the tolerant graft onto secondary recipients. Third party grafts were readily rejected demonstrating specificity of tolerance. Due to the Foxp3 transduction, iTregs did not lose their Treg phenotype. The results prove that large numbers of stable alloantigen‐specific Tregs can be generated from a polyclonal repertoire of naïve T cells. This is the first time that allotolerance was achieved in a non‐lymphopenic transplant model using skin grafts in an immunogenic strain combination. Therefore, antigen‐specific Tregs might have a huge therapeutic potential after solid organ transplantation.  相似文献   

11.
《Transplant immunology》2010,22(4):203-209
CD4+CD25+ regulatory T cells (Tregs) play a crucial role in controlling immune responses. It is an appealing strategy to harness Tregs for adoptive cell therapy to induce tolerance to allografts. Several approaches have been developed to expand antigen-specific Tregs. Despite the large body of experimental data from murine studies demonstrating the great potential of these cells for clinical application, Treg adoptive transfer therapy was used in immunodeficient animals or in strain combinations with limited histiocompatibility. The aim of this study was to investigate whether Treg lines can protect from allograft rejection in a fully MHC-mismatched strain combination and whether the presence of Tregs with indirect allospecificity offered an advantage compared to self-reactive Tregs. Treg lines with self-specificity or with indirect allospecificity were generated by stimulating BL/6 CD4+CD25+ T cells with autologous immature DCs either unpulsed or pulsed with Kd peptide. The Treg lines were injected into recipient mice in combination with temporary depletion of CD8+ T cells and a short course of Rapamycin. The data demonstrate that Treg lines with indirect allospecificity can be generated and most importantly they can induce indefinite survival of BALB/c hearts transplanted into BL/6 recipients when combined with short term immunosuppression. However, the Treg lines with self-specificity were only slightly less effective. The data presented in this study demonstrate the potential of ex vivo expanded Treg lines for adoptive cell therapy to promote transplantation tolerance.  相似文献   

12.
Regulatory T cells (Treg) can regulate alloantigens and may counteract chronic lung allograft dysfunction (CLAD) in lung transplantation. We analyzed Treg in peripheral blood prospectively and correlated percentages of subpopulations with the incidence of CLAD at 2 years. Among lung‐transplanted patients between January 2009 and July 2011, only patients with sufficient Treg measurements were included into the study. Tregs were measured immediately before lung transplantation, at 3 weeks and 3, 6, 12, and 24 months after transplantation and were defined as CD4+CD25high T cells and further analyzed for CTLA4, CD127, FoxP3, and IL‐2 expressions. Between January 2009 and July 2011, 264 patients were transplanted at our institution. Among the 138 (52%) patients included into the study, 31 (22%) developed CLAD within 2 years after transplantation. As soon as 3 weeks after lung transplantation, a statistically significant positive association was detected between Treg frequencies and later absence of CLAD. At the multivariate analysis, increasing frequencies of CD4+CD25highCD127low, CD4+CD25highFoxP3+ and CD4+CD25highIL‐2+ T cells at 3 weeks after lung transplantation emerged as protective factors against development of CLAD at 2 years. In conclusion, higher frequencies of specific Treg subpopulations early after lung transplantation are protective against CLAD development.  相似文献   

13.
Experimental studies have shown that rabbit antithymocyte polyclonal globulin (ATG) can expand human CD4+CD25++Foxp3+ cells (Tregs). We investigated the major biological effects of a self‐manufactured rabbit polyclonal anti‐rat thymoglobulin (rATG) in vitro, as well as its effects on different peripheral T‐cell subsets. Moreover, we evaluated the allogeneic suppressive capacity of rATG‐induced Tregs in an experimental rat renal transplant model. Our results show that rATG has the capacity to induce apoptosis in T lymphocyte lymphocytes as a primary mechanism of T‐cell depletion. Our in vivo studies demonstrated a rapid but transient cellular depletion of the main T cell subsets, directly proportional to the rATG dose used, but not of the effector memory T cells, which required significantly higher rATG doses. After rATG administration, we observed a significant proliferation of Tregs in the peripheral blood of transplanted rats, leading to an increase in the Treg/T effector ratio. Importantly, rATG‐induced Tregs displayed a strong donor‐specific suppressive capacity when assessed in an antigen‐specific allogeneic co‐culture. All of these results were associated with better renal graft function in rats that received rATG. Our study shows that rATG has the biological capacity immunomodulatory to promote a regulatory alloimmune milieu during post‐transplant homeostatic proliferation.  相似文献   

14.
Adoptive immunotherapy with regulatory T cells (Treg) is a new option to promote immune tolerance following solid organ transplantation (SOT). However, Treg from elderly patients awaiting transplantation are dominated by the CD45RA?CD62L+ central memory type Treg subset (TregCM), and the yield of well‐characterized and stable naïve Treg (TregN) is low. It is, therefore, important to determine whether these TregCM are derived from the thymus and express high stability, suppressive capacity and a broad antigen repertoire like TregN. In this study, we showed that TregCM use a different T cell receptor (TCR) repertoire from conventional T cells (Tconv), using next‐generation sequencing of all 24 Vβ families, with an average depth of 534 677 sequences. This showed almost no contamination with induced Treg. Furthermore, TregCM showed enhanced suppressive activity on Tconv at early checkpoints of immune activation controlling activation markers expression and cytokine secretion, but comparable inhibition of proliferation. Following in vitro expansion under mTOR inhibition, TregCM expanded equally as well as TregN without losing their function. Despite relatively limited TCR repertoire, TregCM also showed specific alloresponse, although slightly reduced compared to TregN. These results support the therapeutic usefulness of manufacturing Treg products from CD45RA?CD62L+ Treg‐enriched starting material to be applied for adoptive Treg therapy.
  相似文献   

15.
Foxp3+ regulatory T cells (Tregs) express both ectoenzymes CD39 and CD73, which in tandem hydrolyze pericellular ATP into adenosine, an immunoinhibitory molecule that contributes to Treg suppressive function. Using Foxp3GFP knockin mice, we noted that the mouse CD4+CD39+ T‐cell pool contains two roughly equal size Foxp3+ and Foxp3? populations. While Foxp3+CD39+ cells are CD73bright and are the bone fide Tregs, Foxp3?CD39+ cells do not have suppressive activity and are CD44+CD62L?CD25?CD73dim/?, exhibiting memory cell phenotype. Functionally, CD39 expression on memory and Treg cells confers protection against ATP‐induced apoptosis. Compared with Foxp3?CD39? naïve T cells, Foxp3?CD39+ cells freshly isolated from non‐immunized mice express at rest significantly higher levels of mRNA for T‐helper lineage‐specific cytokines IFN‐γ (Th1), IL‐4/IL‐10 (Th2), IL‐17A/F (Th17), as well as pro‐inflammatory cytokines, and rapidly secrete these cytokines upon stimulation. Moreover, the presence of Foxp3?CD39+ cells inhibits TGF‐β induction of Foxp3 in Foxp3?CD39? cells. Furthermore, when transferred in vivo, Foxp3?CD39+ cells rejected MHC‐mismatched skin allografts in a much faster tempo than Foxp3?CD39? cells. Thus, besides Tregs, CD39 is also expressed on pre‐existing memory T cells of Th1‐, Th2‐ and Th17‐types with heightened alloreactivity.  相似文献   

16.
Recently, the immune‐regulating potential of invariant natural killer T (iNKT) cells has attracted considerable attention. We previously reported that a combination treatment with a liposomal ligand for iNKT cells and an anti‐CD154 antibody in a sublethally irradiated murine bone marrow transplant (BMT) model resulted in the establishment of mixed hematopoietic chimerism through in vivo expansion of regulatory T cells (Tregs). Herein, we show the lack of alloreactivity of CD8+T cells in chimeras and an early expansion of donor‐derived dendritic cells (DCs) in the recipient thymi accompanied by a sequential reduction in the donor‐reactive Vβ‐T cell receptor repertoire, suggesting a contribution of clonal deletion in this model. Since thymic expansion of donor DCs and the reduction in the donor‐reactive T cell repertoire were precluded with Treg depletion, we presumed that Tregs should preform before the establishment of clonal deletion. In contrast, the mice thymectomized before BMT failed to increase the number of Tregs and to establish CD8+T cell tolerance, suggesting the presence of mutual dependence between the thymic donor–DCs and Tregs. These results provide new insights into the regulatory mechanisms that actively promote clonal deletion.  相似文献   

17.
Regulatory T cells (Tregs) were shown to be involved into the pathogenesis of acute rejection after transplantation. The suppressive activity of the total regulatory T cell pool depends on its percentage of highly suppressive HLA‐DR+‐Treg cells. Therefore, both the suppressive activity of the total Treg pool and the extent of HLA‐DR expression of HLA‐DR+‐Tregs (MFI HLA‐DR) were estimated in non transplanted volunteers, patients with end‐stage renal failure (ESRF), healthy renal transplant patients with suspicion on rejection, due to sole histological Bord‐R or sole acute renal failure (ARF), and patients with clinically relevant borderline rejection (Bord‐R and ARF). Compared to patients with only Bord‐R or only ARF, the suppressive activity of the total Treg cell pool was exclusively reduced in patients with clinically relevant Bord‐R. In parallel, the HLA‐DR MFI of the DR+‐Treg subset was significantly decreased in these patients, due to a significantly lower proportion of DRhigh+‐Tregs, which were shown to have the highest suppressive capacity within the total Treg pool. Our findings clearly demonstrate that the determination of the HLA‐DR MFI of the HLA‐DR+‐Treg subset allows a highly sensitive, specific and non‐invasive discrimination between patients with clinically relevant Bord‐R (Bord and ARF) and patients with subclinical rejection or other causes of transplant failure.  相似文献   

18.
Regulatory T cell (Treg)–based therapy is a promising approach to treat many immune‐mediated disorders such as autoimmune diseases, organ transplant rejection, and graft‐versus‐host disease (GVHD). Challenges to successful clinical implementation of adoptive Treg therapy include difficulties isolating homogeneous cell populations and developing expansion protocols that result in adequate numbers of cells that remain stable, even under inflammatory conditions. We investigated the potential of discarded human thymuses, routinely removed during pediatric cardiac surgery, to be used as a novel source of therapeutic Tregs. Here, we show that large numbers of FOXP3+ Tregs can be isolated and expanded from a single thymus. Expanded thymic Tregs had stable FOXP3 expression and long telomeres, and suppressed proliferation and cytokine production of activated allogeneic T cells in vitro. Moreover, expanded thymic Tregs delayed development of xenogeneic GVHD in vivo more effectively than expanded Tregs isolated based on CD25 expression from peripheral blood. Importantly, in contrast to expanded blood Tregs, expanded thymic Tregs remained stable under inflammatory conditions. Our results demonstrate that discarded pediatric thymuses are an excellent source of therapeutic Tregs, having the potential to overcome limitations currently hindering the use of Tregs derived from peripheral or cord blood.  相似文献   

19.
The role of Foxp3+ regulatory T cells (Tregs) in operational tolerance remains elusive, as initial results revealed an increased frequency of this subset in tolerant patients but no functional differences compared with immunosuppressed recipients. In addition, recent studies of regulatory B cells strongly suggest that Tregs may not have a central role in kidney transplantation tolerance. However, recent investigations of the crucial role of Foxp3 demethylation in Treg function and the possibility of identifying distinct Foxp3 T cell subsets prompted us to more thoroughly characterize Tregs in operationally tolerant patients. Thus, we studied the level of demethylation of the Foxp3 Treg-specific demethylated region (TSDR) in circulating CD4+ T cells and analyzed Treg subset frequency in tolerant patients, healthy volunteers, patients with stable graft function under immunosuppression, and chronically rejecting recipients. We observed a higher proportion of CD4+ T cells with demethylated Foxp3 and a specific expansion of CD4+ CD45RA Foxp3hi memory Tregs exclusively in tolerant patients. The memory Tregs of tolerant recipients exhibited increased Foxp3 TSDR demethylation, expressed higher levels of CD39 and glucocorticoid-induced TNF-related receptor, and harbored greater suppressive properties than memory Tregs from patients with stable graft function. Taken together, our data demonstrate that operationally tolerant patients mobilize an array of potentially suppressive cells, including not only regulatory B cells but also Tregs. Our results also indicate that tolerant patients have potent CD4+CD45RA Foxp3hi memory Tregs with a specific Foxp3 TSDR demethylation pattern, which may contribute to the maintenance of graft tolerance.  相似文献   

20.
Regulatory T cells (Treg) are critical regulators of immune tolerance. Both IL‐2 and CD28‐CD80/CD86 signaling are critical for CD4+CD25+FOXP3+ Treg survival in mice. Yet, both belatacept (a second‐generation CTLA‐4Ig) and basiliximab (an anti‐CD25 monoclonal antibody) are among the arsenal of current immunotherapies being used in kidney transplant patients. In this study, we explored the direct effect of basiliximab and belatacept on the Tregs in peripheral blood both in the short term and long term and in kidney biopsies of patients with acute rejection. We report that the combined belatacept/basiliximab therapy has no long‐term effect on circulating Tregs when compared to a calcineurin inhibitor (CNI)‐treated group. Moreover, belatacept‐treated patients had a significantly greater number of FOXP3+ T cells in graft biopsies during acute rejection as compared to CNI‐treated patients. Finally, it appears that the basiliximab caused a transient loss of both FOXP3+ and FOXP3? CD25+ T cells in the circulation in both treatment groups raising important questions about the use of this therapy in tolerance promoting therapeutic protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号