首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
目的 研究EBT剂量胶片在临床电子线百分深度剂量(PDD)中的测量方法.方法 采用14.7 cm×5.1 cm的矩形射野,在同一张EBT胶片上进行5阶梯度的剂量刻度.应用上述刻度方法,针对4、6、8、10、12和15 MeV电子线,在小水箱中采用竖直和倾斜5°两种方式测量PDD,并与半导体探头的三维水箱扫描结果以及平行板电离室在小水箱中测量结果进行比较和分析°结果当剂量胶片上端与水面平齐时,EBT测量的PDD曲线与两种探头测量的结果具有较好一致性,并且倾斜和竖直测量两种方式无明显差异.当剂量胶片上端伸出水面时,在竖自测量方式下剂量建成区内测量结果明显低于其他测量结果,而倾斜测量方式下则无明显影响.结论 新的剂量刻度方式快捷可靠,可显著减少剂量胶片用量.在测量电子线PDD时建议将胶片倾斜一定角度进行,以便减小胶片上端与水面不平齐所引起的测量误差.  相似文献   

2.
目的 研究EBT剂量胶片在临床电子线百分深度剂量(PDD)中的测量方法.方法 采用14.7 cm×5.1 cm的矩形射野,在同一张EBT胶片上进行5阶梯度的剂量刻度.应用上述刻度方法,针对4、6、8、10、12和15 MeV电子线,在小水箱中采用竖直和倾斜5°两种方式测量PDD,并与半导体探头的三维水箱扫描结果以及平行板电离室在小水箱中测量结果进行比较和分析°结果当剂量胶片上端与水面平齐时,EBT测量的PDD曲线与两种探头测量的结果具有较好一致性,并且倾斜和竖直测量两种方式无明显差异.当剂量胶片上端伸出水面时,在竖自测量方式下剂量建成区内测量结果明显低于其他测量结果,而倾斜测量方式下则无明显影响.结论 新的剂量刻度方式快捷可靠,可显著减少剂量胶片用量.在测量电子线PDD时建议将胶片倾斜一定角度进行,以便减小胶片上端与水面不平齐所引起的测量误差.  相似文献   

3.
目的 :本文叙述我院利用半导体探头测量X射线立体定向治疗的剂量学参数 ,并对其结果给予评价 ,说明小野剂量分布的特点。材料与方法 :由于半导体探头具有体积小 ,灵敏度高等优点 ,我们选择P型半导体探头 ,以测量准直器 5m~ 5 0mm直径照射野的百分深度剂量 (PDD) ,离轴比 (OAR)及射野输出因子 (Sc ,p) ,所得结果与其他测量方法诸如电离室 ,胶片等 ,以及有关文献报导进行比较。结果 : 1 0和 3 0准直器的PDD值 ,在 5cm~ 2 0cm深度范围内 ,测量值与文献 7报道值的差别在± 0 .6以内。将PDD转换为TMR(组织最大剂量比 ) ,外推法计算 6MV -X线零野的有效线性衰减系数为 0 .0 5 1 0cm- 1。测量射野输出因子 ,在常规用照射野范围 ,半导体探头与NE2 5 71电离室所得数值 ,偏差为± 0 .4%以内 ,但当射野直径小于电离室直径的 2倍时 ,偏差增大。而用半导体测量准直器直径在 1 2 .5~ 2 7.5所得值 ,与报导用MonteCarlo方法计算值基本相吻合。对于射野离轴比 ,半导体和我们自行设计的胶片法组出的结果 ,差别在 1mm以内 ;半导体所测得的照射野半影区宽度 (90 %~ 1 0 % )与报导值极其接近。结论 :对于小野 ,由于照射野边缘剂量梯度过大和缺少侧向电平衡 ,选用探头的大小和测量位置 ,是影响精确测量极为重要的因素。  相似文献   

4.
目的评估Gafchromic HD-V2胶片在改造常规直线加速器超高剂量率电子线射束中剂量测量的适用性, 及其能量和剂量率响应特性。方法使用HD-V2胶片测定改造常规直线加速器电子线的平均剂量率, 测量的结果与改进型Markus平板电离室、丙氨酸剂量计进行比较, 并使用HD-V2胶片进行初步物理特性测量。利用直线加速器上不同能量射线(6 MV X线和9、16 MeV电子线), 剂量范围10~300 Gy, 研究HD-V2胶片的能量响应。同时利用直线加速器剂量率(0.03、0.06、0.1 Gy/s)及改造机超高剂量率(范围100~200 Gy/s)射束, 研究HD-V2胶片的剂量率响应。结果使用HD-V2胶片测量改造后电子线在源皮距(SSD)100 cm处平均剂量率约为121 Gy/s, 与改进型Markus平板电离室、丙氨酸剂量计测量结果一致。改造后超高剂量率射束百分深度剂量(PDD)曲线参数与常规9 MeV电子线相近, 离轴剂量分布总体呈现中心轴最高, 随离轴距离增加, 剂量逐渐下降的特点。对于不同能量6 MV X线和9、16 MeV电子线, 剂量范围20~300 Gy, HD-V...  相似文献   

5.
电子束照射野面积对中心轴剂量和输出因子的影响   总被引:10,自引:2,他引:8  
目的探讨电子束照射野挡块对中心轴剂量和输出因子的影响.方法用瑞典Scaditronix公司生产的RFA-300型三维水箱及P型硅半导体探头对瓦里安2100C和2300C/D直线加速器的多种能量电子束进行了中心轴百分深度剂量(PDD)扫描,并测量了照射野输出因子.结果测得的PDD数据表明,电子束深度剂量对照射野铅挡大小有某种程度的依赖性,一般倾向是当照射野减小时表面剂量增大,治疗深度减小,最大剂量深度(R100)向表面移.这些变化在高能时最为明显.输出因子的测量结果说明,对不同能量电子束在不同限光筒条件下,输出因子随照射野铅挡大小改变的情况不尽相同.结论临床治疗时使用的限光筒大小要尽量与实际照射野面积接近,在使用铅挡构成很小的照射野(如<6cm×6cm)时,应实际测量输出因子,以减少剂量误差.  相似文献   

6.
[目的]分析不同扫描光源下辐射自显影EBT2胶片的剂量响应特性及IMRT剂量验证系统的稳定性.[方法]使用6MV光子线照射EBT2胶片,分析不同扫描光源下胶片的剂量响应特性;然后通过对扫描仪的扫描不确定性和扫描方向对扫描仪读数的影响进行测试以评估由EBT2胶片、Uniscan C880平板扫描仪和FilmQA剂量分析软件组成的IMRT剂量验证系统的性能.[结果]EBT2胶片在红光扫描光源下的剂量响应敏感性最高且其响应曲线是非线性的,使用三次多项式可以满足该剂量响应曲线的拟合要求.扫描仪的单次扫描不确定性和多次扫描不确定性分别是0.22%和1.12%,胶片放置方位对扫描仪读数影响很大.[结论]基于辐射自显影胶片EBT2的剂量响应敏感性随剂量上升而下降,不同光源下剂量响应敏感性不同.基于EBT2的调强放疗剂量验证系统操作简单、稳定性好,值得在临床中推广应用.  相似文献   

7.
目的 研究EPID代替胶片对加速器MLC的质控方法并探讨其在任意机架角度下的可行性。方法 采用RIT113软件对EPID影像和EBT3胶片影像数据进行分析。以EBT3胶片射野边缘50%等剂量曲线位置定义MLC叶片实际位置,在同一射野条件下EPID影像数据中找到MLC叶片实际位置所对应百分剂量值,从而完成EPID到EBT3胶片的替代过程。结果 加速器机架角0°时,以EBT3胶片确定的MLC叶片位置处EPID影像对应的期望百分剂量值为44%,最大MLC位置误差为0.12 mm。任意机架角度时,EPID影像数据通过与0°结果做距离一致性分析比对,半径为0.5 mm时所有像素点均通过。结论 采用EPID代替胶片对加速器MLC叶片到位质控方法可行,且其精度满足临床要求并适用于任意机架角的测量,具有广泛推广和借鉴意义。  相似文献   

8.
加速器百分深度剂量蒙特卡罗模拟计算准确性研究   总被引:1,自引:0,他引:1  
目的 比较蒙特卡罗模拟计算与实际测量的百分深度剂量差异。
方法 利用模拟加速器机头的蒙特卡罗算法BEAMnrc软件模拟西门子PRIUMS直线加速器6 MV X线,利用DOSXYZnrc程序生成百分深度剂量。实际测量西门子加速器百分深度剂量由PTW公司生产的MP3三维水箱采集得到。计算两种方法不同深度下百分深度剂量偏差[(测量值-模拟计算值)/测量值×100%]。
结果 离水面距离<1.2 cm时偏差>2%,离水面距离>1.2 cm时偏差<2%。
结论 在建成区深度内由蒙特卡罗模拟计算的百分深度剂量更为准确。  相似文献   

9.
放射治疗临床所需要的一些基本物理数据,如射野中心轴上的百分深度剂量(PDD)、组织最大剂量比(TMR)等,受诸种因素的影响。特别是加速器的数据,需要经常的定期测量和校正更新。测量一般在水模中进行,并要具备一定的测量条件:如水箱尺寸要大(一般50cm×50cm×40cm)、带有数据扫描移动(两维、或三维)装置,特定的测量探头等,而且要根据测量探头的种类,对不同射线质和其它物理、几何因素进行数据的修  相似文献   

10.
目的 量化分析不同能量电子线在斜入射情况下对剂量分布的影响。方法 在水模体中 ,测量束流中心轴上不同相对剂量值的深度 ;并测量 80 %和 5 0 %等剂量线的倾斜角度 ;将电子线在不同斜入射角度时的这些测量数据与垂直入射时的测量数据进行比较。结果 ①电子线斜入射角度越大 ,最大剂量点深度和 90 %、80 %、5 0 %及 10 %的深度越小 ;②能量越高 ,斜入射对最大剂量点深度和 90 %、80 %、5 0 %及 10 %的深度影响越大 ;③斜入射对相对剂量分布的影响还与射野大小有关 ,射野越大 ,最大剂量点深度和 90 %、80 %、5 0 %及 10 %的深度变化越小 ;④在相同的斜入射条件下 ,电子线能量的改变比射野大小的改变对相对剂量分布的影响要大 ;⑤在斜入射时 ,80 %和 5 0 %等剂量线会向有空气隙的一侧倾斜 ,并且倾斜角度要比斜入射角度大。结论 斜入射不仅使最大电离深度值减小 ,而且使电子线穿透能力减弱 ;电子线穿透能力的减弱程度与电子线能量和射野大小有关 ;临床上要充分考虑在斜入射时 80 %和 5 0 %等剂量线的横向移动 ,否则很容易造成肿瘤靶区的漏照射 ,从而导致肿瘤的局部复发。  相似文献   

11.
12.
The determination of absorbed dose to water for high-energy photon and electron beams is performed in Germany according to the dosimetry protocol DIN 6800-2 (1997). At an international level, the main protocols used are the AAPM dosimetry protocol TG-51 (1999) and the IAEA Code of Practice TRS-398 (2000). The present paper systematically compares these three dosimetry protocols, and identifies similarities and differences. The investigations were performed using 4 and 10 MV photon beams, as well as 6, 8, 9, 10, 12 and 14 MeV electron beams. Two cylindrical and two plane-parallel type chambers were used for measurements. In general, the discrepancies among the three protocols were 1.0% for photon beams and 1.6% for electron beams. Comparative measurements in the context of measurement technical control (MTK) with TLD showed a deviation of less than 1.3% between the measurements obtained according to protocols DIN 6800-2 and MTK (exceptions: 4 MV photons with 2.9% and 6 MeV electrons with 2.4%). While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using both cylindrical and plane-parallel chambers (the latter used after a cross-calibration to a cylindrical chamber, as required by the respective dosimetry protocols). Notably, unlike recommended in the corresponding protocols, we found out that cylindrical chambers can be used also for energies from 6 to 10 MeV.  相似文献   

13.
When skin cancer near the eye is irradiated, a corneal shield is placed between the lids and globe to protect ocular structures. The effectiveness of the shield was evaluated with 250 kVp x-ray and 6-20 MeV electron beams. To simulate the clinical situation, a face phantom was constructed out of solid pieces of water-equivalent epoxy. In the region of the eye the phantom was milled to the exact contour of a human face. The phantom was used to reconstruct the setup that had been used to treat a patient with a 1-cm basal cell carcinoma of the mid portion of the lower lid. A medium-sized corneal shield (2-mm-thick lead plated with 0.1 mm gold) was placed on the eye portion of the phantom. A contoured lead (6 mm thick) face mask was placed on the surface of the phantom to define a 3-cm diameter radiation field that included only the inferior hemisphere of the shield. The doses that the cornea, lens, and retina would receive beneath the midpoint of the inferior hemisphere of the shield were measured using thermoluminescent and film dosimetry. With 6 to 8 MeV electrons, the corneal dose was 2 to 4 times higher than with 250 kVp x-rays. Corneal and lens doses rose rapidly with increasing electron beam energy such that with greater than 8 MeV the shield would provide relatively poor ocular protection. A scanning ion chamber and film dosimetry were used to determine the isodose profiles of 250 kVp x-ray and 6 MeV electron beams for a 3-cm diameter field collimated on the surface. With 250 kVp x-rays the 95% isodose area was 32% wider than with 6 MeV electrons. The ease of shielding and the ability to minimize field size argue in favor of kilovoltage x-rays for early-stage skin cancer near the eye.  相似文献   

14.
面罩对不同射线治疗剂量影响的探讨   总被引:13,自引:0,他引:13  
目的:测量在光子线及电子线照射下面罩对治疗剂量的影响。方法:采用PIW Marcus 23343型平行板电离室在专用的有机玻璃模体(PMMA)中测量光子线建成区别剂量的变化情况,采用Bruce等介绍的经验公式对测量结果进行修正,采用三维水箱测量电子线射野中心轴百分深度剂量,并利用平行板电离室对特定深度进行验证,结果:加上面罩后,8MV光子线建成区剂量有明显增加,近表面处相对增加约25%左右,8、12和15MeV的电子线的中心轴百分深度剂量曲线则普遍前移。结论:对于光子线主要考虑的是近表面建成区剂量的改变;对电子线则要考虑由于百分深度量前移而可能影响治疗靶区的最小剂量。三维适放射治疗中要注意治疗治疗计划系统(TPS)的计算结果是否考虑面罩对治疗剂量的影响。  相似文献   

15.
16.
Dosimetric changes caused by the positional uncertainty of centering a small electron cutout to the machine central axis (CAX) of the linear accelerator (linac) were investigated. Six circular cutouts with 4?cm diameter were made with their centres shifted off by 0, 2, 4, 6, 8 and 10?mm from the machine CAX. The 6?3?6?cm(2) electron applicator was used for the measurement. The percentage depth doses (PDDs) were measured at the Machine CAX and also with respect to cutout centre for 6, 9, 12, 16 and 20?MeV electron beams. The in-line and cross-line profiles were measured at the depth of maximum dose (R100). The relative output factor (ROF) was measured at the reference depth. All the measurements were made at nominal source to surface distance (100?cm SSD) as well as at extended SSDs (100, 102, 106 and110?cm). When the cutout centre was shifted away from the machine CAX for low energy beams the depth of 100% dose (R(100)), the depth of 90% dose (R(90)) and the depth of 80% dose (R(80)) had no significant change. For higher energies (>9?MeV) there was a reduction in these dosimetric parameters. The isodose coverage of the in-line and cross-line profile was reduced when the cutout centre was shifted away from the machine CAX. At extended SSDs the dosimetric changes are only because of geometric divergence of the beam and not by the positional uncertainty of the cutout. It is important for the radiation oncologist, dosimetrist, therapist and physicist to note such dosimetric changes while using the electron beam to the patients.  相似文献   

17.
Monte Carlo (MC) methods have the potential to predict radiation-therapy doses more accurately than any conventional technique, but normal MC simulations are very time consuming. Therefore, a fast MC code (Voxel Monte Carlo; VMC) was developed especially for radiation therapy purposes and experiments with the comparable precision were performed to demonstrate its accuracy. In the present study the dose distributions measured with film dosimetry in a cylindrical phantom were compared with calculations derived by VMC. The phantom consisted of 18 circular shaped PMMA slabs with a diameter of 20 cm and a thickness of approx. 1 cm. The films were placed between the slabs, and the whole phantom was irradiated with electron beams of different energies (6 MeV, 10 MeV, 18 MeV). The measured optical density distributions were then converted into dose distributions using characteristic curves of the film. Taking into account experimental uncertainties and statistical calculation fluctuations, agreement was found between measurements and VMC simulations with a maximal deviation of 3 mm on isodose curves for 18 MeV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号