首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A quantitative competitive PCR (QC-PCR) assay for Epstein-Barr virus (EBV) has been developed to provide accurate measurement of EBV genome load in pediatric transplant recipients at risk for developing posttransplant lymphoproliferative disorder (PTLD). The assay quantifies between 8 and 5,000 copies of the EBV genome in 10(5) lymphocytes after a 30-cycle amplification reaction. For 14 pediatric patients diagnosed with PTLD, the median EBV genome load was 4,000, and 13 of the 14 patients had values of >500 copies per 10(5) lymphocytes. Only 3 of 12 control transplant recipients not diagnosed with PTLD had detectable viral genome loads (median value, 40). This median was calculated by using the highest value obtained by PCR testing on each of these patients posttransplantation. PCR values of >500 copies per 10(5) lymphocytes appear to correlate with a diagnosis of PTLD. By a modified protocol, the EBV genome copy number in latently infected adults was estimated to be <0.1 copy per 10(5) lymphocytes.  相似文献   

2.
The measurement of the Epstein–Barr viral load in peripheral blood has been recognised as an important way of monitoring the response to treatment in patients with Epstein–Barr virus (EBV)-related malignancies. In particular, EBV load in transplant recipients can be used as a predictive parameter for Post-transplant Lymphoproliferative Disorder (PTLD). The aim was to develop a rapid and reliable PCR protocol for the quantification of the cell-associated EBV genome. Real-time PCR using TaqMan methodology was established. This technique was applied to determine the EBV load in various study groups including healthy controls, transplant recipients, patients on haemodialysis, and patients with infectious mononucleosis. The baseline level of EBV genomes in the immunosuppressed renal transplant recipients was significantly different from that in the healthy controls.  相似文献   

3.
Summary: Epstein-Barr virus (EBV) DNA measurement is being incorporated into routine medical practice to help diagnose, monitor, and predict posttransplant lymphoproliferative disorder (PTLD) in immunocompromised graft recipients. PTLD is an aggressive neoplasm that almost always harbors EBV DNA within the neoplastic lymphocytes, and it is often fatal if not recognized and treated promptly. Validated protocols, commercial reagents, and automated instruments facilitate implementation of EBV load assays by real-time PCR. When applied to either whole blood or plasma, EBV DNA levels reflect clinical status with respect to EBV-related neoplasia. While many healthy transplant recipients have low viral loads, high EBV loads are strongly associated with current or impending PTLD. Complementary laboratory assays as well as histopathologic examination of lesional tissue help in interpreting modest elevations in viral load. Circulating EBV levels in serial samples reflect changes in tumor burden and represent an effective, noninvasive tool for monitoring the efficacy of therapy. In high-risk patients, serial testing permits early clinical intervention to prevent progression toward frank PTLD. Restoring T cell immunity against EBV is a major strategy for overcoming PTLD, and novel EBV-directed therapies are being explored to thwart virus-driven neoplasia.  相似文献   

4.
Epstein-Barr virus (EBV), a ubiquitous human herpesvirus, normally causes an asymptomatic latent infection with very low levels of circulating virus in the peripheral blood of infected individuals. However, EBV does have pathogenic potential and has been linked to several diseases, including posttransplant lymphoproliferative disease (PTLD), which involves very high circulating viral loads. As a consequence of immunosuppression associated with transplantation, children in particular are at risk for PTLD. Even in the absence of symptoms of PTLD, very high viral loads are often observed in these patients. EBV-infected B cells in the circulations of 16 asymptomatic pediatric solid-organ transplant recipients from Children's Hospital of Pittsburgh were simultaneously characterized for their surface immunoglobulin (sIg) isotypes and EBV genome copy numbers. Patients were characterized as having high and low viral loads on the basis of their stable levels of circulating virus. Patients with high viral loads had both high- and low-copy-number cells. Cells with a high numbers of viral episomes (>20/cell) were predominantly Ig null, and cells with low numbers of episomes were predominantly sIgM positive. Patients with low viral loads carried the vast majority of their viral load in low-copy-number cells, which were predominantly IgM positive. The very rare high-copy-number cells detected in carriers with low viral loads were also predominantly Ig-null cells. This suggests that two distinct types of B-lineage cells contribute to the viral load in transplant recipients, with cells bearing high genome copy numbers having an aberrant Ig-null cellular phenotype.  相似文献   

5.
BACKGROUND: High Epstein-Barr virus load has been related to an increased risk of Posttransplant Lymphoproliferative Disorders (PTLD) in transplant recipients. OBJECTIVES: Development of a method to quantitate EBV DNA levels in peripheral blood mononuclear cells (PBMC) and evaluate its usefulness in transplant patients. STUDY DESIGN: We designed a semiquantitative nested PCR based on a limiting dilution analysis to detect high viral loads in PBMC. This method was applied to 25 healthy carriers, and 85 solid organ transplant recipients as follows: (A) 53 asymptomatic patients; (B) 24 symptomatic patients; (C) eight patients with PTLD. RESULTS: In healthy carriers the reciprocal of the limiting dilution (RLD) ranged between non-detected (ND) and 1, the median RLD was ND, which is equivalent to a viral load of <1 copy per 10(5) PBMC. In the transplant population the medians RLD (range) were: (A) asymptomatic group: ND (ND-64), median equivalent to a viral load of <1 copy per 10(5) PBMC; (B) symptomatic group: 4 (ND-256), median equivalent to a range of viral load of 4-64 copies per 10(5) PBMC. (C) PTLD group: 256 (16-16384), median equivalent to a range of viral load of 256-4096 copies per 10(5) PBMC. Statistically significant differences were found between all groups: A+B vs. C (P<0.0001); A vs. B (P<0.0001); A vs. C (P<0.0001), B vs. C (P<0.0001). We also observed a good correlation between viral loads and clinical findings in four follow-up patients. Considering the RLD=256 as a cutoff point to detect transplant patients with PTLD, resulted in sensitivity 75%, specificity 96.7%, positive predictive value 60%, negative predictive value 98.3%. CONCLUSION: This SQ-PCR method enables us to differentiate between transplant patients with and without PTLD; therefore, it could be applied as a marker for early detection of this pathology.  相似文献   

6.
Early diagnosis of Epstein-Barr Virus (EBV)-associated posttransplant lymphoproliferative disease (PTLD) is important because many patients respond to reduction in immunosuppression, especially if PTLD is detected at an early stage. Previous studies have found elevated EBV DNA levels in blood from patients with PTLD, but these assays required isolation of cellular blood fractions and quantitation. We evaluated the presence of cell-free EBV DNA in serum from solid-organ transplant recipients as a marker for PTLD. Five of 6 transplant recipients with histopathologically documented PTLD had EBV DNA detected in serum at the time of diagnosis (sensitivity = 83%), compared with 0 of 16 matched transplant recipients without PTLD (specificity = 100%) (P < 0.001 [Fisher's exact test]). Furthermore, EBV DNA was detected in serum 8 and 52 months prior to the diagnosis of PTLD in two of three patients for whom stored sera were analyzed. Detection of EBV DNA in serum appears to be a useful marker for the early detection of PTLD in solid-organ transplant recipients. Further studies to define the role of such assays in evaluating solid-organ transplant patients at risk for PTLD are warranted.  相似文献   

7.
AIMS: Post-transplant lymphoproliferative disease (PTLD) is an important and serious complication in transplant patients. Recent studies have suggested that quantitative assessment of Epstein-Barr virus (EBV) infection in transplant patients might help to identify those at risk of developing PTLD. Therefore, tonsils from paediatric liver transplant recipients were studied for evidence of EBV infection. METHODS: Tonsils were studied by in situ hybridisation for the detection of the small EBV encoded nuclear RNAs (EBERs). The phenotype of EBV infected cells was determined by double labelling in situ hybridisation and immunohistochemistry. The expression of viral latent and lytic antigens was determined by immunohistochemistry. Tonsils from patients without known immune defects were studied as controls. RESULTS: Tonsils from transplant patients showed pronounced follicular hyperplasia and minor paracortical hyperplasia. In situ hybridisation revealed variable numbers of EBV infected B cells in the tonsils from transplant patients (range, 2-1000/0.5 cm(2); mean, 434/0.5 cm(2); median, 105/0.5 cm(2)). Lower numbers were detected in the control tonsils (range, 1-200/0.5 cm(2); mean, 47/0.5 cm(2); median, 9/0.5 cm(2)). The latent membrane protein 1 (LMP1) of EBV was not detected and there were only rare cells in two cases showing expression of the EBV encoded nuclear antigen 2 (EBNA2). There was no evidence of lytic infection. None of the patients developed PTLD within a follow up period of up to five years. CONCLUSIONS: These data indicate that tonsillar enlargement in paediatric liver transplant patients does not necessarily imply a diagnosis of PTLD. Furthermore, the presence of increased numbers of EBV infected cells in tonsils from liver transplant recipients by itself does not indicate an increased risk of developing PTLD.  相似文献   

8.

Background

Epstein–Barr virus (EBV) is associated with post-transplant lymphoproliferative disorder (PTLD), which has significant morbidity and mortality in transplant recipients. To devise prophylactic measures, we need predictors of PTLD and a better understanding of the physiopathogenesis of the disease.

Objectives

To identify a molecular pattern of EBV gene products in blood that is specific to PTLD and can be used for the diagnosis of this disease.

Study design

We evaluated the ratio between latent and replicating EBV nucleic acids in individuals with PTLD by comparison with transplant recipients without PTLD and immunocompetent hosts with EBV DNA-emia. Subjects were prospectively identified between July 2009 and October 2010 at the University of Colorado Hospital. EBV DNA, LMP-2A Latency III and BZLF1 Lytic genes mRNA were quantified using real-time PCR.

Results

We found that PTLD subjects (N = 7) had significantly higher EBV DNA-emia compared with non-transplant immunocompetent subjects (N = 69; p < 0.0001), and transplant recipients without PTLD (N = 105; p < 0.0001). The ratios between LMP-2A and BZLF1 mRNA in transplant recipients were significantly lower than in non-transplant subjects (p = 0.04). However, PTLD and non-PTLD transplant recipients displayed similar ratios.

Conclusions

These results suggest that EBV replication makes a larger contribution to the circulating EBV DNA in transplant recipients compared with immunocompetent hosts. Transplant recipients seem to lose control over EBV replication, which may contribute to the development of PTLD.  相似文献   

9.
The laboratory diagnosis of primary and reactivated Epstein-Barr virus (EBV) infection is based on serologic methods in immunocompetent patients. However, in immunocompromised patients, serologic data are difficult to interpret and do not often correlate with clinical data. In order to find a useful and practical marker for diagnosis of EBV-related diseases, a polymerase chain reaction (PCR) assay was established for semiquantitative detection of EBV sequences. The method was based on a nested PCR, using primers of the virus capsid antigen p23 region and an endpoint dilution. This method was carried out on 68 plasma samples, 68 samples of peripheral blood mononuclear cells and 5 cerebrospinal fluid samples of 39 patients with various diseases to evaluate the EBV-genome copy number. Samples from patients suffering from infectious mononucleosis served as positive controls for active EBV infection. In 5 patients with infectious mononucleosis, high copy numbers of EBV genomes in peripheral blood mononuclear cells were detected within a range of 1,000-40,000 copies in 10(5) peripheral blood mononuclear cells. In contrast, samples from 19 latently infected persons either showed low copy numbers (10-100 in 10(5) peripheral blood mononuclear cells) or were EBV PCR negative. Comparable results were observed in seven renal transplant patients without any symptoms. The practical value of the semiquantitative detection of EBV DNA was demonstrated in three bone marrow transplant recipients. Two developed a lymphoproliferative disease associated with extremely high amounts of EBV DNA in plasma (16,000 and 50,000 copies/ml, respectively) and peripheral blood mononuclear cells (100,000 and 6.5 million copies in 10(5) peripheral blood mononuclear cells, respectively). The high EBV load in plasma and peripheral blood mononuclear cells was reduced dramatically after successful antiviral therapy in one case. The third bone marrow transplant recipient developed an EBV-induced transverse myelitis with an increased number of EBV-genome copies in peripheral blood mononuclear cells and EBV-positive cerebrospinal fluid samples. After combined antiviral and immune therapy, the EBV-genome copy numbers decreased and the patient recovered completely. These data demonstrate a good correlation between semiquantitative detection of EBV genomes and clinical findings. The method is recommended for the diagnosis of EBV-associated diseases in patients after transplantation, as well as for monitoring the response to therapy.  相似文献   

10.
BACKGROUND: Post-transplant lymphoproliferative disease (PTLD) is a frequent and severe Epstein-Barr virus (EBV)-associated complication in transplant recipients that is caused by suppression of T-cell function. OBJECTIVE: Evaluation of the diagnostic value of EBV DNA load in non-fractionated whole blood samples (n = 297) from 110 pediatric transplant patients by real-time PCR. RESULTS AND CONCLUSIONS: Patients with PTLD had a median viral load of 1.08 x 10(5) copies/ml blood (n = 24), which was significantly higher compared with patients without PTLD (median: 50 copies/ml blood, n = 273, P < 0.0001). From receiver operating characteristic (ROC) curve analysis we obtained a cut-off value of 6215 copies/ml blood with a sensitivity of 95.8%, specificity of 71.4%, negative predictive value (NPV) of 99.5% and positive predictive value (PPV) of 22.8%. Thus, real-time PCR proved to be more useful in ruling out than in indicating the presence of PTLD. Further analysis showed that patients without PTLD but developing a post-transplant EBV-primary infection had associated high viral loads that were indistinguishable from those of the PTLD group (statistically not significant). Similarly, the presence of clinical symptoms of disease in patients without PTLD was associated with higher viral loads than in patients that were asymptomatic (P < 0.0001), but the difference was much less significant when compared with the PTLD group of patients (P = 0.0391). These patients who had a high viral load may benefit from a close follow-up of the viral burden.  相似文献   

11.
The aim of this study was to develop a LightCycler-based real-time PCR assay for monitoring the Epstein-Barr virus (EBV) DNA load in unfractionated whole blood. This assay was compared with quantitative competitive PCR (Q-PCR) for EBV. The LightCycler-based assay was highly sensitive and reproducible when quantifying plasmid DNA in either the presence or absence of healthy donor blood DNA. Amplifying plasmid DNA in DNA backgrounds from different donors slightly increased the variation of quantification, indicating that clinical specimen DNA has an influence on quantification. In most transplant recipients, a good correlation was observed between EBV DNA load dynamics determined by LightCycler and Q-PCR in follow-up samples, although the correlation between absolute values of EBV DNA loads was weak and occasional samples were false negative in the LightCycler assay. In 253 cross-sectional blood samples from patients with Burkitt's lymphoma, infectious mononucleosis, or human immunodeficiency virus infection, a weak but significant correlation between the two methods was found (r(2) = 0.37, P < 0.001). Our results indicate that the clinical specimen DNA background may influence the absolute values of EBV DNA load in LightCycler analyses but that this effect is rare. LightCycler PCR is very well suited for monitoring of EBV DNA load dynamics, and its diagnostic value is comparable to that of Q-PCR. To avoid false negativity or underestimation of viral load, future internal calibration of the LightCycler is recommended. This would also enhance EBV load assay standardization and interinstitute comparisons.  相似文献   

12.
Post-transplant lymphoproliferative disease (PTLD) in Epstein-Barr virus (EBV) seronegative solid organ transplant recipients remains a significant problem, particularly in the first year post-transplant. Immune monitoring of a cohort of high-risk patients indicated that four EBV seronegative transplant recipients developed early-onset PTLD prior to evidence of an EBV humoral response. EBV status has been classically defined serologically, however these patients demonstrated multiple parameters of EBV infection, including the generation of EBV-specific CTL, outgrowth of spontaneous lymphoblastoid cell lines, and elevated EBV DNA levels, despite the absence of a classic EBV antibody response. As EBV serology is influenced by both immunosuppression and cytomegalovirus immunoglobulin treatment, both the EBV-specific CTL response and elevated EBV levels are more reliable indicators of EBV infection post-transplant.  相似文献   

13.
To measure the virus load in patients with symptomatic Epstein-Barr virus (EBV) infections, we used a real-time PCR assay to quantify the amount of EBV DNA in blood. The real-time PCR assay could detect from 2 to over 107 copies of EBV DNA with a wide linear range. We estimated the virus load in peripheral blood mononuclear cells (PBMNC) from patients with symptomatic EBV infections. The mean EBV-DNA copy number in the PBMNC was 103.7 copies/μg of DNA in patients with EBV-related lymphoproliferative disorders, 104.1 copies/μg of DNA in patients with chronic active EBV infections, and 102.2 copies/μg of DNA in patients with infectious mononucleosis. These numbers were significantly larger than those in either posttransplant patients or immunocompetent control patients without EBV-related diseases. In a patient with infectious mononucleosis, the virus load decreased as the symptoms resolved. The copy number of EBV DNA in PBMNC from symptomatic EBV infections was correlated with the EBV-positive cell number determined by the in situ hybridization assay (r = 0.842; P < 0.0001). These results indicate that the real-time PCR assay is useful for diagnosing symptomatic EBV infection and for monitoring the virus load.  相似文献   

14.
We developed a multiplex real-time PCR assay using 6-carboxyfluorescein, 6-carboxy-4',5'-dichloro-2',7'-dimethoxyfluorescein, and carbocyanine 5-labeled probes to simultaneously quantify Epstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpesvirus 6 (HHV-6) DNA. When previously tested and stored DNA samples were examined, results of the multiplex real-time PCR assay were as sensitive and specific as those of a single real-time PCR assay. The multiplex assay was used to quantify the EBV, CMV, and HHV-6 DNA in 46 transplant recipients. A total of 303 whole-blood and plasma specimens were collected and analyzed. According to the results of the multiplex assay, the detection rates for viral DNA in whole blood and plasma were 23.8% and 5.9% for EBV, 11.2% and 5.3% for CMV, and 12.5% and 2.0% for HHV-6, respectively. All forms of viral DNA were detected more frequently in whole blood than in plasma. During the symptomatic period, EBV DNA was detected in all whole-blood specimens but not in all plasma specimens. Furthermore, the EBV DNA load in whole blood was higher during the symptomatic period than during the asymptomatic period, whereas the EBV DNA load in plasma was similar for both periods. These results demonstrate that whole blood is more suitable for the quantification of EBV DNA in transplant patients. However, a cutoff value with clinical relevance still needs to be determined.  相似文献   

15.
BACKGROUND: Several studies have disclosed a correlation between polyomavirus BK (BKV) and interstitial nephritis in renal transplant recipients and its quantification in urine and serum is therefore required to assess the role of BKV infection in nephropathy. OBJECTIVE: This paper describes a urine and serum BKV-DNA quantification protocol devised to evaluate the viral load. STUDY DESIGN: Screening of samples containing > or =10(3)/ml viral genome copies by a semi-quantitative polymerase chain reaction (PCR) assay is followed by precise quantification of the samples containing a high number of viral genomes in a quantitative-competitive (QC)-PCR assay. Generation of the competitor construct relied on the different sizes of wild-type and competitor amplicons. RESULTS AND CONCLUSIONS: Screening by semi-quantitative PCR selects samples with a high number of viral genomes for use in the more labor-intensive and -expensive QC-PCR assay and thus provides a handy means for quantitative DNA analysis of large numbers of samples. The results obtained in BKV-DNA quantification in urine and serum samples from 51 renal transplant recipients (22 on treatment with tacrolimus (FK506) and 29 on cyclosporine A (Cy A)) are interesting: BKV-DNA findings (43.1%) in urine samples are in agreement with the BKV urinary shedding reported in literature (5-45%). With regard to immunosuppressive treatment, the percentage of activation of the infection (revealed by BKV-DNA detection in urine samples) in the two groups of therapy is similar (40.9% vs 44.8%). The observation that the viral load in urine is dissociated with that of serum suggests that both parameters should be investigated in evaluation of the pathogenetic role of BKV reactivation in renal transplant recipients. Moreover, our BKV-DNA quantification protocol could be used to monitor viral load in urine and serum samples from renal transplant recipients so as to detect those at risk of nephropathy and monitor their response to immunosuppression reduction therapy if it occurs.  相似文献   

16.
Epstein-Barr virus (EBV)-induced posttransplant lymphoproliferative disease (PTLD) continues to be a serious complication following transplantation. The aim of the present study was to evaluate the EBV load as a parameter for the prediction and monitoring of PTLD. The EBV load was analyzed by a quantitative competitive PCR with 417 whole-blood samples of 59 patients after allogeneic stem cell transplantation (SCT). The EBV load was positive for all 9 patients with PTLD and for 17 patients without PTLD. The viral loads of patients with manifest PTLD differed from the loads of those without PTLD (median loads, 1.4 x 10(6) versus 4 x 10(4) copies/microg of DNA; P < 0.0001). A threshold value of 10(5) copies/microg of DNA showed the best diagnostic efficacy (sensitivity, 87%; specificity, 91%). However, in patients with less than three major risk factors for PTLD, the positive predictive value of this threshold was rather low. One week prior to the manifestation of PTLD, the EBV load was as low in patients who developed PTLD as in patients without disease (median, 2.2 x 10(4) copies/microg of DNA; P was not significant). EBV DNA tested positive first at 20 to 71 days prior to the clinical manifestation of PTLD and occurred with the same delay after transplantation regardless of disease (median delay, 52 versus 63 days; P was not significant). EBV DNA was detected earlier in patients with primary infections than in those with reactivations (33 versus 79 days; P = 0.01), but the peak levels were similar in the two groups. EBV primary infection or EBV reactivation is frequent in patients after allogeneic SCT but results in PTLD only in a subgroup of patients. Although evaluation of the EBV load has limitations, the EBV load represents a valuable parameter to guide therapy.  相似文献   

17.
The soluble form of CD30 (sCD30), a member of tumor necrosis factor receptor superfamily, has been used as a marker of disease activity in various lymphomas. Epstein–Barr virus (EBV) is a potent stimulator of CD30 expression. The study aims to evaluate whether sCD30 can be used as a diagnostic marker for EBV‐associated infectious mononucleosis (IM) and post‐transplant lymphoproliferative disease (PTLD). Plasma from EBV seropositive healthy controls (N = 90), acute IM patients (n = 90), non‐PTLD heart/lung transplant recipients (N = 30) and EBV‐positive PTLD patients (N = 23) was tested for sCD30 using a commercially available ELISA kit. EBV DNA was tested by real time quantitative polymerase chain reaction assay. Significantly higher sCD30 levels were observed in acute IM patients (median 242.9 ng/ml) compared to EBV seropositive controls (median 15.7 ng/ml; P < 0.0001). These levels were highest in IM patients within 14 days of onset of illness. PTLD patients had significantly higher sCD30 levels (median 94 ng/ml) than healthy controls (P < 0.0001) and transplant patients (median 27 ng/ml; P = 0.0007). EBV DNA was detected mostly in acute IM and PTLD patients. In both cases there was a significant correlation between sCD30 and EBV DNA levels in plasma (P < 0.0001). This study demonstrates that sCD30 and EBV DNA levels can be used as potential markers for diagnosis of IM and PTLD. J. Med. Virol. 83:311–316, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
BACKGROUND: Adenovirus (AdV) infection is a life threatening condition in immunosuppressed patients. Quantitative AdV assays can improve the clinical management of these patients. OBJECTIVES: To evaluate quantitative measurement of AdV DNA with PCR in blood from hematopoietic stem cell transplant (HSCT) recipients. STUDY DESIGN: Quantitative PCR was used to measure viral DNA levels of AdV in consecutive blood samples from 40 HSCT recipients (27 adults and 13 children) during a 1-year post-engraftment period. All patients received grafts from unrelated donors and were given anti-T-cell antibodies in the conditioning regimen. RESULTS: In the group of 40 patients, six (15%) had detectable AdV DNA in blood for different lengths of time. None of these six patients suffered from severe graft-versus-host disease. In three of the patients a high AdV viral load (>10,000copies/mL) was detected, one of whom also had high viral load of EBV and CMV and one of EBV only. These three patients died within 2 months after detection of ADV viremia. A low AdV viral load (<500copies/mL) was detected in three surviving patients and they did not have concomitant high viral load of neither CMV nor EBV. CONCLUSIONS: AdV viremia was present in 15% of the HSCT recipients and a high AdV viral load was associated with fatal outcome. Screening for AdV DNA with quantitative PCR in blood may be of clinical importance in allogeneic HSCT recipients in order to prevent severe clinical virological complications.  相似文献   

19.
A competitive quantitative PCR (Q-PCR) assay combined with simple silica-based DNA extraction was developed for monitoring of Epstein-Barr virus (EBV) DNA load in unfractionated peripheral blood. The Q-PCR is based on competitive coamplification of a highly conserved 213-bp region of the EBNA-1 open reading frame with an internal standard (IS), added in a known concentration. The IS has the same amplicon length and base composition as the wild-type (WT) EBNA-1 amplicon but differs in 23 internally randomized bases. Competitive coamplification yields two PCR products that are quantified by enzyme immunoassay or by electrochemiluminescence detection, with probes specific for the 23 differing internal nucleotides. The Q-PCR has a sensitivity of 10 copies of either WT or IS plasmid DNA. The Q-PCR was validated by quantification of known amounts of plasmid containing the WT EBNA-1 target. Furthermore, we determined EBV genome copy numbers in different cell lines. For EBV quantification in clinical samples, DNA was isolated from lysed whole blood by silica-affinity purification. Forty-six percent of healthy donor peripheral blood samples were positive by Q-PCR. In most of these samples, viral load was less than 2,000 EBV copies/ml of blood. In peripheral blood samples from two AIDS-related non-Hodgkin's lymphoma patients, elevated EBV loads (up to 120,000 copies/ml) were observed, which decreased upon therapy. In Burkitt's lymphoma patients, up to 4,592,000 EBV genome copies/ml of blood were detected. In conclusion, the EBNA-1-based Q-PCR assay provides a reproducible, accurate, and easy method for studying the relationship between EBV load and clinical parameters.  相似文献   

20.
Epstein‐Barr virus associated post‐transplant lymphoproliferative disorders (EBV PTLD) are recognized as a significant cause of morbidity and mortality in patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT). The number of patients at risk of developing EBV PTLD is increasing, partly as a result of highly immunosuppressive regimens, including the use of anti‐thymocyte globulin (ATG). Importantly, there is heterogeneity in PTLD management strategies between alloHSCT centers worldwide. This review summarizes the different EBV PTLD prevention strategies being utilized including the alloHSCT and T‐cell depletion regimes and the risk they confer; monitoring programs, including the timing and analytes used for EBV virus detection, as well as pre‐emptive thresholds and therapy with rituximab. In the absence of an institution‐specific policy, it is suggested that the optimal pre‐emptive strategy in HSCT recipients with T‐cell depleting treatments, acute graft vs host disease (GVHD) and a mismatched donor for PTLD prevention is (a) monitoring of EBV DNA post‐transplant weekly using plasma or WB as analyte and (b) pre‐emptively reducing immune suppression (if possible) at an EBV DNA threshold of >1000 copies/mL (plasma or WB), and treating with rituximab at a threshold of >1000 copies/mL (plasma) or >5000 copies/mL (WB). There is emerging evidence for prophylactic rituximab as a feasible and safe strategy for PTLD, particularly if pre‐emptive monitoring is problematic. Future management strategies such as prophylactic EBV specific CTLs have shown promising results and as this procedure becomes less expensive and more accessible, it may become the strategy of choice for EBV PTLD prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号