首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Responses of relay cells in the A-laminae of the dorsal lateral geniculate nucleus (LGNd) during spontaneous saccades and saccade-like visual stimulation were extracellularly recorded in awake cats. Ninety-six out of 137 cells recorded (42 X and 54 Y cells) were responsive during spontaneous saccadic eye movements. All Y cells and 67% of the X cells responded with burst activity, i.e. with either one or two activity peaks during and after saccades. Thirty-three percent of the X cells were inhibited during saccades. Excitatory peaks occurred at mean latencies of 33 ms and 31 ms for X and Y cells, respectively. Comparable burst responses were obtained when retinal image shifts similar to those during saccades were induced by external saccade-like stimulus movements. However, the latencies of excitatory peak activity were significantly longer to external stimuli than to the onsets of saccades. This indicates the existence of an eye movement-related input which activates LGNd relay cells in addition to the visual input. We propose that the pretectogeniculate projection may contribute to the responses of LGNd relay cells following saccadic eye movements via a disinhibitory input and that this input could be involved in intra- and postsaccadic modulations of the transfer of visual signals to visual cortex.  相似文献   

2.
1. We studied the activity of single neurons in the monkey frontal eye fields during oculomotor tasks designed to assess the activity of these neurons when there was a dissonance between the spatial location of a target and its position on the retina. 2. Neurons with presaccadic activity were first studied to determine their receptive or movement fields and to classify them as visual, visuomovement, or movement cells with the use of the criteria described previously (Bruce and Goldberg 1985). The neurons were then studied by the use of double-step tasks that dissociated the retinal coordinates of visual targets from the dimensions of saccadic eye movements necessary to acquire those targets. These tasks required that the monkeys make two successive saccades to follow two sequentially flashed targets. Because the second target disappeared before the first saccade occurred, the dimensions of the second saccade could not be based solely on the retinal coordinates of the target but also depended on the dimensions of the first saccade. We used two versions of the double-step task. In one version neither target appeared in the cell's receptive or movement field, but the second eye movement was the optimum amplitude and direction for the cell (right-EM/wrong-RF task). In the other the second stimulus appeared in the cell's receptive field, but neither eye movement was appropriate for the cell (wrong-EM/right-RF task). 3. Most frontal-eye-field cells discharged in the right-EM/wrong-RF version of the double-step task. Their discharge began after the first saccade and continued until the second saccade was made. They usually discharged even on occasional trials in which the monkey failed to make the second saccade. They discharged much less, or not at all, in the wrong-EM/right-RF version of the double-step paradigm. Thus most presaccadic cells in the frontal eye fields were tuned to the dimensions of saccadic eye movements rather than to the coordinates of retinal stimulation. 4. Eleven movement cells (including 1 which also had independent postsaccadic activity for saccades opposite its presaccadic movement field) were studied, and all had significant activity in the right-EM/wrong-RF task. 5. Almost all (28/32) visuomovement cells, including 12 with independent postsaccadic activity, discharged in the right-EM/wrong-RF task. None of the four that failed had independent postsaccadic activity. 6. The majority (26/40) of visual cells were responsive in the right-EM/wrong-RF task.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The ocular following responses elicited by brief unexpected movements of the visual scene were studied in eight rhesus monkeys. Test patterns were random dots except in one experiment when sine-wave gratings were used. Test stimuli were velocity steps of 100-ms duration applied after spontaneous saccades. Two response measures were used: the initial peak in the eye velocity profile (ei), and the average final eye velocity over the period of 110-140 ms measured from stimulus onset (ef). Responses were best when the test ramps began soon after saccades and attenuated progressively as the postsaccadic delay interval was increased: postsaccadic enhancement of ocular following. The decline in ei was roughly exponential: average time constant, 60 ms; average asymptote, 22%. Later measures (ef) were generally less affected. We suggest that this transient enhancement aids the visual suppression of postsaccadic ocular drifts (glissades) and the tracking of moving images newly acquired with a saccade. The magnitude of the postsaccadic enhancement was dependent on the amount of retinal stimulation during the antecedent saccade; when this stimulation was compromised, as when a vertical saccade was made while viewing a grating pattern with vertically oriented stripes, subsequent enhancement of ocular following was much reduced. Further, saccade-like conditioning movements of the visual scene resulted in an enhancement of the ocular following, elicited by subsequent test ramps, that was similar in magnitude and time course to that in the wake of real saccades. We conclude that the postsaccadic enhancement of ocular following is largely due to the visual stimulation produced by the saccade sweeping the scene across the retina. Data obtained with the visual field partitioned into central and peripheral regions (center 20-60 degrees diam) and with gaze centered suggested that the short-latency ocular following system and the enhancement mechanism that modulates it both receive their major inputs from the central 40 degrees of the retina. Further, when this central region was partitioned, enhancement was obtained only when the conditioning and test stimuli were presented to the same region of retina. Visual enhancement showed only weak interocular transfer: the conditioning and test stimuli had to be seen by the same eye to produce appreciable enhancement. These data suggest that the enhancement involves local spatial interactions at an "early" point in the visual pathway before the inputs from the two eyes have converged. When the conditioning and test stimuli impinged on different regions of the retina, brief powerful suppression of ocular following was obtained.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The cortical area V6A, located in the dorsal part of the anterior bank of the parieto-occipital sulcus, contains retino- and craniocentric visual neurones together with neurones sensitive to gaze direction and/or saccadic eye movements, somatosensory stimulation and arm movements. The aim of this work was to study the dynamic characteristics of V6A saccade-related activity. Extracellular recordings were carried out in six macaque monkeys performing a visually guided saccade task with the head restrained. The task was performed in the dark, in both the dark and light, and sometimes in the light only. The discharge of certain neurones during saccades is due to their responsiveness to visual stimuli. We used a statistical method to distinguish responses due to visual stimulation from those responsible for saccadic control. Out of 597 V6A neurones tested, 66 (11%) showed responses correlated with saccades; 26 of 66 responded also to visual stimulation and 31 of 66 did not; the remaining 9 were not visually tested. We calculated the response latency to saccade onset and its inter-trial variance in 24 of 66 neurones. Saccade neurones could respond before, during or after the saccade. Neurones responding before saccade-onset or during saccades had much higher latency variance than neurones responding after saccades. The early-responding cells had a mean latency (±SD) of –64±62 ms, while the late-responding cells a mean latency of +89±20 ms. The responses to saccadic eye movements were directionally sensitive and varied with the amplitude of the saccade. Responses of late-responding cells disappeared in complete darkness. We suggest that the activity of early-responding cells represents the intended saccadic eye movement or the shift of attention towards another part of the visual space, whereas that of late-responding cells is a visual response due to retinal stimulation during saccades. Electronic Publication  相似文献   

5.
Saccade-related activity in the parietal reach region   总被引:6,自引:0,他引:6  
In previous experiments, we showed that cells in the parietal reach region (PRR) in monkey posterior parietal cortex code intended reaching movements in an eye-centered frame of reference. These cells are more active when an arm compared with an eye movement is being planned. Despite this clear preference for arm movements, we now report that PRR neurons also fire around the time of a saccade. Of 206 cells tested, 29% had perisaccadic activity in a delayed-saccade task. Two findings indicate that saccade-related activity does not reflect saccade planning or execution. First, activity is often peri- or postsaccadic but seldom presaccadic. Second, cells with saccade-related activity were no more likely to show strong saccadic delay period activity than cells without saccade-related activity. These findings indicate that PRR cells do not take part in saccade planning. Instead, the saccade-related activity in PRR may reflect cross-coupling between reach and saccade pathways that may be used to facilitate eye-hand coordination. Alternatively, saccade-related activity may reflect eye position information that could be used to maintain an eye-centered representation of intended reach targets across eye movements.  相似文献   

6.
Neurons in the lateral intraparietal area of the monkey (LIP) have visual receptive fields in retinotopic coordinates when studied in a fixation task. However, in the period immediately surrounding a saccade these receptive fields often shift, so that a briefly flashed stimulus outside the receptive field will drive the neurons if the eye movement will bring the spatial location of that vanished stimulus into the receptive field. This is equivalent to a transient shift of the retinal receptive field. The process enables the monkey brain to process a stimulus in a spatially accurate manner after a saccade, even though the stimulus appeared only before the saccade. We studied the time course of this receptive field shift by flashing a task-irrelevant stimulus for 100 ms before, during, or after a saccade. The stimulus could appear in receptive field as defined by the fixation before the saccade (the current receptive field) or the receptive field as defined by the fixation after the saccade (the future receptive field). We recorded the activity of 48 visually responsive neurons in LIP of three hemispheres of two rhesus monkeys. We studied 45 neurons in the current receptive field task, in which the saccade removed the stimulus from the receptive field. Of these neurons 29/45 (64%) showed a significant decrement of response when the stimulus appeared 250 ms or less before the saccade, as compared with their activity during fixation. The average response decrement was 38% for those cells showing a significant (P < 0.05 by t-test) decrement. We studied 39 neurons in the future receptive field task, in which the saccade brought the spatial location of a recently vanished stimulus into the receptive field. Of these 32/39 (82%) had a significant response to stimuli flashed for 100 ms in the future receptive field, even 400 ms before the saccade. Neurons never responded to stimuli moved by the saccade from a point outside the receptive field to another point outside the receptive field. Neurons did not necessarily show any saccadic suppression for stimuli moved from one part of the receptive field to another by the saccade. Stimuli flashed <250 ms before the saccade-evoked responses in both the presaccadic and the postsaccadic receptive fields, resulting in an increase in the effective receptive field size, an effect that we suggest is responsible for perisaccadic perceptual inaccuracies.  相似文献   

7.
Summary 1. Single unit activity was recorded in the Substantia Nigra pars reticulata (SNpr) of cats trained to orient their gaze toward visual and/or auditory targets. 2. Cells in the SNpr have a steady high rate of spontaneous activity ranging from 35 to 120 spikes per second. The neurons respond to sensory stimuli or in relation to saccadic eye movements with a decrease or a cut-off of the spontaneous discharge. 3. Among 109 cells recorded in the SNPR 60 were responsive to visual stimuli (mean latency = 118 ms). Most of the receptive fields which were plotted were large encompassing part of the ipsilateral field. 4. Thirty nine (39) cells were responsive to auditory stimuli (mean latency = 81 ms). A majority of these cells showed a better response for stimuli located in the contralateral hemifield. 5. In a few cells, the sensory responses were modulated by the subsequent orienting behavior of the animals. 6. Thirty one (31) cells showed a response in relation to saccades. These units typically stopped discharging between 50 and 300 ms prior to the onset of the saccade. 39% of these units also responded in relation to spontaneous saccades in the dark. 61% of the saccadic cells also responded to sensory stimuli in the absence of saccades. Six (6) cells were found to respond to active head movements. 7. These results are discussed in the framework of the role that the basal ganglia might have in the selection of the sensory stimuli that trigger orienting behaviors.  相似文献   

8.
Neurons in the rostral superior colliculus (SC) of alert cats exhibit quasi-sustained discharge patterns related to the fixation of visual targets. Because some SC neurons also respond to auditory stimuli, we investigated whether there is a population of neurons in the rostral SC which is active in relation to fixation of both auditory and visual targets. We identified cells which were active with visual fixation and which continued to discharge if the fixation stimulus was briefly extinguished. The population of neurons exhibited similar discharge characteristics when the fixation stimulus was auditory. Few neurons were significantly more active during fixation of visual targets than during fixation of auditory targets. Most fixation neurons showed a diminished discharge rate during spontaneous (self-generated) saccadic eye movements away from a visual fixation stimulus, regardless of the direction of the saccade. this diminished discharge rate (or pause) typically began, on average, 12.2 ms before saccade onset and the duration of the pause was Ionger than the duration of the saccade. These observations are consistent with the hypothesis that increased discharge of these neurons is related to active fixation and that reductions in their activity are important for the generation of saccades. However, the lack of a precise relationship between pause duration and saccade duration implies that these neurons would be unlikely to project directly to the saccadic burst generator. The mean interval from the beginning of the pauses of fixation neurons to be beginning of the saccades away from fixation targets is also shorter than has been found in brainstem omnipause neurons. By analogy with the concept of a receptive field, agaze position error field depicts the range of gaze position error for which a cell is active. Although fixation neurons appear to encode the magnitude and direction of the error between visual targets and the visual axis, visual error fields at the end of fixating eye movements were significantly larger than those at stimulus onset. For auditory stimuli, this difference was not significant. These observations are compatible with a number of recent experiments indicating that neural signals of eye position are damped or delayed with respect to current eye position.  相似文献   

9.
During fast, saccadic eye movements visual perception is suppressed. This saccadic suppression prevents erroneous and distracting motion percepts resulting from saccade induced retinal slip. Although saccadic suppression occurs over a substantial time interval around the saccade, there is no “perceptual gap” during saccades. The mechanisms underlying this temporal perceptual filling-in are unknown. When subjects are asked to perform temporal interval judgements of stimuli presented at the time of saccades, the time interval following the termination of the saccade appears longer than subsequent intervals of identical length. This illusion is known as “chronostasis”, because a clock presented at the saccade target seemingly stops for a moment. We test whether chronostasis is a global mechanism that may compensate for the temporal gap associated with saccadic suppression. We show that a clock positioned halfway between the initial fixation point and the saccade target does not exhibit prolongation of the interval following the saccade. The characteristical distortion of temporal perception occurred only in the case of a clock being located at the saccade target. This result suggests a local, object-specific mechanism underlying the stopped clock illusion that might originate from a shift in attention immediately preceding the eye movement.  相似文献   

10.
Summary The activity of 249 neurons in the dorsomedial frontal cortex was studied in two macaque monkeys. The animals were trained to release a bar when a visual stimulus changed color in order to receive reward. An acoustic cue signaled the start of a series of trials to the animal, which was then free to begin each trial at will. The monkeys tended to fixate the visual stimuli and to make saccades when the stimuli moved. The monkeys were neither rewarded for making proper eye movements nor punished for making extraneous ones. We found neurons whose discharge was related to various movements including those of the eye, neck, and arm. In this report, we describe the properties of neurons that showed activity related to visual fixation and saccadic eye movement. Fixation neurons discharged during active fixation with the eye in a given position in the orbit, but did not discharge when the eye occupied the same orbital positions during nonactive fixation. These neurons showed neither a classic nor a complex visual receptive field, nor a foveal receptive visual field. Electrical stimulation at the site of the fixation neurons often drove the eye to the orbital position associated with maximal activity of the cell. Several different kinds of neurons were found to discharge before saccades: 1) checking-saccade neurons, which discharged when the monkeys made self-generated saccades to extinguish LED's; 2) novelty-detection saccade neurons, which discharged before the first saccade made to a new visual target but whose activity waned with successive presentations of the same target. These results suggest that the dorsomedial frontal cortex is involved in attentive fixation. We hypothesize that the fixation neurons may be involved in codifying the saccade toward a target. We propose that their involvement in arm-eye-head motor-planning rests primarily in targeting the goal of the movement. The fact that saccaderelated neurons discharge when the saccades are self initiated, implies that this area of the cortex may share the control of voluntary saccades with the frontal eye fields and that the activation is involved in intentional motor processes.  相似文献   

11.
The anatomical connections of the pregeniculate complex (PrGC) with components of the visual-ocular motor system suggested its contribution to ocular motor behavior. Subsequent studies reported saccade-related activity in the primate PrGC. To determine its contribution, we characterized pregeniculate units (n = 128) in alert macaques during ocular motor tasks and visual stimulation. We found that 36/109 saccade-related units exhibited postsaccadic bursts or pauses in tonic discharge for saccades of any amplitude or direction. In contrast to previous results, 46/109 responses preceded or coincided with the saccade, while 47/109 responses were directionally tuned. Pregeniculate units were modulated not only in association with saccades (109/128) but also with smooth eye movements and visual motion (20/128) or eye position (23/128). Multiple ocular motor signals were recorded from 19% of the units, indicating signal convergence on individual neurons. Visual responses were demonstrated in 51% of PrGC units: visual field illumination modulated the resting discharge of 33 units; the responses of 37 saccade-related units and all 23 position-dependent units were modulated by visual stimulation. Early saccadic activity in the PrGC suggests that it contributes more to gaze than postsaccadic modulation of visual or ocular motor activity. The patterns of saccadic responses and the modulation of PrGC activity in association with a variety of visual-ocular motor behaviors suggest its potential role as a relay between the parietal cortex and elements of the brain stem ocular motor pathways, such as the superior colliculus and pretectal nucleus of the optic tract.  相似文献   

12.
The oculomotor system coordinates different types of eye movements in order to orient the visual axis, including saccade and smooth pursuit,. It was traditionally thought that the premotor pathways for these different eye movements are largely separate. In particular, a group of midline cells in the pons called omnipause neurons were considered to be part of only the saccadic system. Recent experimental findings have shown activity modulation of these brainstem premotor neurons during both kinds of eye movements. In this study, we propose a new computational model of the brainstem circuitry underlying the generation of saccades and smooth pursuit eye movements. Similar models have been developed earlier, but mainly looking at pure saccades. Here, we integrated recent neurophysiological findings on omnipause neuron activity during smooth pursuit. Our computational model can mimic some new experimental findings as the similarity of "eye velocity profile" with "omnipause neuron pattern of activity" in pursuit movement. We showed that pursuit neuron activity is augmented during catch-up saccades; this increment depends on the initial pursuit velocity in catch-up saccade onset. We conclude that saccadic and pursuit components of catch-up saccades are added to each other nonlinearly.  相似文献   

13.
Orienting movements of the eyes and head are made to both auditory and visual stimuli even though in the primary sensory pathways the locations of auditory and visual stimuli are encoded in different coordinates. This study was designed to differentiate between two possible mechanisms for sensory-to-motor transformation. Auditory and visual signals could be translated into common coordinates in order to share a single motor pathway or they could maintain anatomically separate sensory and motor routes for the initiation and guidance of orienting eye movements. The primary purpose of the study was to determine whether neurons in the superior colliculus (SC) that discharge before saccades to visual targets also discharge before saccades directed toward auditory targets. If they do, this would indicate that auditory and visual signals, originally encoded in different coordinates, have been converted into a single coordinate system and are sharing a motor circuit. Trained monkeys made saccadic eye movements to auditory or visual targets while the activity of visual-motor (V-M) cells and saccade-related burst (SRB) cells was monitored. The pattern of spike activity observed during trials in which saccades were made to visual targets was compared with that observed when comparable saccades were made to auditory targets. For most (57 of 59) V-M cells, sensory responses were observed only on visual trials. Auditory stimuli originating from the same region of space did not activate these cells. Yet, of the 72 V-M and SRB cells studied, 79% showed motor bursts prior to saccades to either auditory or visual targets. This finding indicates that visual and auditory signals, originally encoded in retinal and head-centered coordinates, respectively, have undergone a transformation that allows them to share a common efferent pathway for the generation of saccadic eye movements. Saccades to auditory targets usually have lower velocities than saccades of the same amplitude and direction made to acquire visual targets. Since fewer collicular cells are active prior to saccades to auditory targets, one determinant of saccadic velocity may be the number of collicular neurons discharging before a particular saccade.  相似文献   

14.
15.
1. In the rostral pole of the monkey superior colliculus (SC) a subset of neurons (fixation cells) discharge tonically when a monkey actively fixates a target spot and pause during the execution of saccadic eye movements. 2. To test whether these fixation cells are necessary for the control of visual fixation and saccade suppression, we artificially inhibited them with a local injection of muscimol, an agonist of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). After injection of muscimol into the rostral pole of one SC, the monkey was less able to suppress the initiation of saccades. Many unwanted visually guided saccades were initiated less than 100 ms after onset of a peripheral visual stimulus and therefore fell into the range of express saccades. 3. We propose that fixation cells in the rostral SC form part of a fixation system that facilitates active visual fixation and suppresses the initiation of unwanted saccadic eye movements. Express saccades can only occur when activity in this fixation system is reduced.  相似文献   

16.
We studied single neurons in the frontal eye fields of awake macaque monkeys and compared their activity with the saccadic eye movements elicited by microstimulation at the sites of these neurons. Saccades could be elicited from electrical stimulation in the cortical gray matter of the frontal eye fields with currents as small as 10 microA. Low thresholds for eliciting saccades were found at the sites of cells with presaccadic activity. Presaccadic neurons classified as visuomovement or movement were most associated with low (less than 50 microA) thresholds. High thresholds (greater than 100 microA) or no elicited saccades were associated with other classes of frontal eye field neurons, including neurons responding only after saccades and presaccadic neurons, classified as purely visual. Throughout the frontal eye fields, the optimal saccade for eliciting presaccadic neural activity at a given recording site predicted both the direction and amplitude of the saccades that were evoked by microstimulation at that site. In contrast, the movement fields of postsaccadic cells were usually different from the saccades evoked by stimulation at the sites of such cells. We defined the low-threshold frontal eye fields as cortex yielding saccades with stimulation currents less than or equal to 50 microA. It lies along the posterior portion of the arcuate sulcus and is largely contained in the anterior bank of that sulcus. It is smaller than Brodmann's area 8 but corresponds with the union of Walker's cytoarchitectonic areas 8A and 45. Saccade amplitude was topographically organized across the frontal eye fields. Amplitudes of elicited saccades ranged from less than 1 degree to greater than 30 degrees. Smaller saccades were evoked from the ventrolateral portion, and larger saccades were evoked from the dorsomedial portion. Within the arcuate sulcus, evoked saccades were usually larger near the lip and smaller near the fundus. Saccade direction had no global organization across the frontal eye fields; however, saccade direction changed in systematic progressions with small advances of the microelectrode, and all contralateral saccadic directions were often represented in a single electrode penetration down the bank of the arcuate sulcus. Furthermore, the direction of change in these progressions periodically reversed, allowing particular saccade directions to be multiply represented in nearby regions of cortex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
There is now considerable evidence that space is compressed when stimuli are flashed shortly before or after the onset of a saccadic eye movement. Here we report that short intervals of time between two successive perisaccadic visual (but not auditory) stimuli are also underestimated, indicating a compression of perceived time. We were even more surprised that in a critical interval before saccades, perceived temporal order is consistently reversed. The very similar time courses of spatial and temporal compression suggest that both are mediated by a common neural mechanism, probably related to the predictive shifts that occur in receptive fields of many visual areas at the time of saccades.  相似文献   

18.
When tracking moving visual stimuli, primates orient their visual axis by combining two kinds of eye movements, smooth pursuit and saccades, that have very different dynamics. Yet, the mechanisms that govern the decision to switch from one type of eye movement to the other are still poorly understood, even though they could bring a significant contribution to the understanding of how the CNS combines different kinds of control strategies to achieve a common motor and sensory goal. In this study, we investigated the oculomotor responses to a large range of different combinations of position error and velocity error during visual tracking of moving stimuli in humans. We found that the oculomotor system uses a prediction of the time at which the eye trajectory will cross the target, defined as the "eye crossing time" (T(XE)). The eye crossing time, which depends on both position error and velocity error, is the criterion used to switch between smooth and saccadic pursuit, i.e., to trigger catch-up saccades. On average, for T(XE) between 40 and 180 ms, no saccade is triggered and target tracking remains purely smooth. Conversely, when T(XE) becomes smaller than 40 ms or larger than 180 ms, a saccade is triggered after a short latency (around 125 ms).  相似文献   

19.
When saccadic eye movements are made in a search task that requires selecting a target from distractors, the movements show greater curvature in their trajectories than similar saccades made to single stimuli. To test the hypothesis that this increase in curvature arises from competitive interactions between saccade goals occurring near the time of movement onset, we performed single-unit recording and microstimulation experiments in the superior colliculus (SC). We found that saccades that ended near the target but curved toward a distractor were accompanied by increased presaccadic activity of SC neurons coding the distractor site. This increased activity occurred approximately 30 ms before saccade onset and was abruptly quenched on saccade initiation. The magnitude of increased activity at the distractor site was correlated with the amount of curvature toward the distractor. In contrast, neurons coding the target location did not show any significant difference in discharge for curved versus straight saccades. To determine whether this pattern of SC discharge is causally related to saccade curvature, we performed a second series of experiments using electrical microstimulation. Monkeys made saccades to single visual stimuli presented without distractors, and we stimulated sites in the SC that would have corresponded to distractor sites in the search task. The stimulation was subthreshold for evoking saccades, but when its temporal structure mimicked the activity recorded for curved saccades in search, the subsequent saccades to the visual target showed curvature toward the location coded by the stimulation site. The effect was larger for higher stimulation frequencies and when the stimulation site was in the same colliculus as the representation of the visual target. These results support the hypothesis that the increased saccade curvature observed in search arises from rivalry between target and distractor goals and are consistent with the idea that the SC is involved in the competitive neural interactions underlying saccade target selection.  相似文献   

20.
Despite frequent saccadic gaze shifts we perceive the surrounding visual world as stable. It has been proposed that the brain uses extraretinal eye position signals to cancel out saccade-induced retinal image motion. Nevertheless, stimuli flashed briefly around the onset of a saccade are grossly mislocalized, resulting in a shift and, under certain conditions, an additional compression of visual space. Perisaccadic mislocalization has been related to a spatio-temporal misalignment of an extraretinal eye position signal with the corresponding saccade. Here, we investigated perceptual mislocalization of human observers both in saccade and fixation conditions. In the latter conditions, the retinal stimulation during saccadic eye movements was simulated by a fast saccade-like shift of the stimulus display. We show that the spatio-temporal pattern of both the shift and compression components of perceptual mislocalization can be surprisingly similar before real and simulated saccades. Our findings suggest that the full pattern of perisaccadic mislocalization can also occur in conditions which are unlikely to involve changes of an extraretinal eye position signal. Instead, we suggest that, under the conditions of our experiments, the arising difficulty to establish a stable percept of a briefly flashed stimulus within a given visual reference frame yields mislocalizations before fast retinal image motion. The availability of visual references appears to exert a major influence on the relative contributions of shift and compression components to mislocalization across the visual field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号