首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The verification of intensity-modulated radiation therapy (IMRT) is necessary for adequate quality control of the treatment. Pretreatment verification may trace the possible differences between the planned dose and the actual dose delivered to the patient. To estimate the impact of differences between planned and delivered photon beams, a three-dimensional (3-D) dose verification method has been developed that reconstructs the dose inside a phantom. The pretreatment procedure is based on portal dose images measured with an electronic portal imaging device (EPID) of the separate beams, without the phantom in the beam and a 3-D dose calculation engine based on the Monte Carlo calculation. Measured gray scale portal images are converted into portal dose images. From these images the lateral scattered dose in the EPID is subtracted and the image is converted into energy fluence. Subsequently, a phase-space distribution is sampled from the energy fluence and a 3-D dose calculation in a phantom is started based on a Monte Carlo dose engine. The reconstruction model is compared to film and ionization chamber measurements for various field sizes. The reconstruction algorithm is also tested for an IMRT plan using 10 MV photons delivered to a phantom and measured using films at several depths in the phantom. Depth dose curves for both 6 and 10 MV photons are reconstructed with a maximum error generally smaller than 1% at depths larger than the buildup region, and smaller than 2% for the off-axis profiles, excluding the penumbra region. The absolute dose values are reconstructed to within 1.5% for square field sizes ranging from 5 to 20 cm width. For the IMRT plan, the dose was reconstructed and compared to the dose distribution with film using the gamma evaluation, with a 3% and 3 mm criterion. 99% of the pixels inside the irradiated field had a gamma value smaller than one. The absolute dose at the isocenter agreed to within 1% with the dose measured with an ionization chamber. It can be concluded that our new dose reconstruction algorithm is able to reconstruct the 3-D dose distribution in phantoms with a high accuracy. This result is obtained by combining portal dose images measured prior to treatment with an accurate dose calculation engine.  相似文献   

2.
3.
An analytical dose calculation algorithm was developed and commissioned to calculate dose delivered with both static and dynamic multileaf collimator (MLC) in a homogenous phantom. The algorithm is general; however, it was designed specifically to accurately model dose for large and complex IMRT fields. For such fields the delivered dose may have a considerable contribution from MLC transmission, which is dependent upon spatial considerations. Specifically, the algorithm models different MLC effects, such as interleaf transmission, the tongue-and-groove effect, rounded leaf ends, MLC scatter, beam hardening and divergence of the beam, which results in a gradual MLC transmission fall-off with increasing off-axis distance. The calculated dose distributions were compared to measured dose using different methods (film, ionization chamber array, single ionization chamber), and the differences among the treatment planning system, the measurements and the developed algorithm were analysed for static MLC and dynamic IMRT fields. It was found that the calculated dose from the developed algorithm agrees very well with the measurements (mostly within 1.5%) and that a constant value for MLC transmission is insufficient to accurately predict dose for large targets and complex IMRT plans with many monitor units.  相似文献   

4.
Megavoltage x-ray beams exhibit the well-known phenomena of dose buildup within the first few millimeters of the incident phantom surface, or the skin. Results of the surface dose measurements, however, depend vastly on the measurement technique employed. Our goal in this study was to determine a correction procedure in order to obtain an accurate skin dose estimate at the clinically relevant depth based on radiochromic film measurements. To illustrate this correction, we have used as a reference point a depth of 70 micron. We used the new GAFCHROMIC dosimetry films (HS, XR-T, and EBT) that have effective points of measurement at depths slightly larger than 70 micron. In addition to films, we also used an Attix parallel-plate chamber and a home-built extrapolation chamber to cover tissue-equivalent depths in the range from 4 micron to 1 mm of water-equivalent depth. Our measurements suggest that within the first millimeter of the skin region, the PDD for a 6 MV photon beam and field size of 10 x 10 cm2 increases from 14% to 43%. For the three GAFCHROMIC dosimetry film models, the 6 MV beam entrance skin dose measurement corrections due to their effective point of measurement are as follows: 15% for the EBT, 15% for the HS, and 16% for the XR-T model GAFCHROMIC films. The correction factors for the exit skin dose due to the build-down region are negligible. There is a small field size dependence for the entrance skin dose correction factor when using the EBT GAFCHROMIC film model. Finally, a procedure that uses EBT model GAFCHROMIC film for an accurate measurement of the skin dose in a parallel-opposed pair 6 MV photon beam arrangement is described.  相似文献   

5.
J Chang  G S Mageras  C C Ling  W Lutz 《Medical physics》2001,28(11):2247-2257
There has been an increasing interest in the application of electronic portal imaging devices (EPIDs) to dosimetric verification, particularly for intensity modulated radiotherapy. Although not water equivalent, the phantom scatter factor of an EPID, Spe, is generally assumed to be that of a full phantom, Sp, a slab phantom, Sps, or a mini phantom. This assumption may introduce errors in absolute dosimetry using EPIDs. A calibration procedure that iteratively updates Spe and the calibration curve (pixel value to dose rate) is presented. The EPID (Varian Portal Vision) is irradiated using a 20 x 20 cm2 field with different beam intensities. The initial guess of dose rates in the EPID is calculated from ionization chamber measurements in air, multiplied by Sp or Sps. The calibration curve is obtained by fitting EPID readings from pixels near the beam central axis and dose rates in EPID to a quadratic equation. The Spe is obtained from EPID measurements in 10 X 10 cm2 and 20 x 20 cm2 field and from the calibration curve, and is in turn used to adjust the dose rate measurements and hence the calibration curve. The above procedure is repeated until it converges. The final calibration curve is used to convert portal dose to dose in the slab phantom, using the calibrated Spe, or assuming Spe = Sp or Spe=Sps . The converted doses are then compared with the dose measured using an ionization chamber. We also apply this procedure to off-axis points and study its dependence on the energy spectrum. The hypothesis testing results (on the 95% significance level) indicate that systematic errors are introduced when assuming Spe = Sp or Spe=Sps and the dose calculated using Spe is more consistent with ionization chamber measurements. Differences between Spe and Sps are as large as 2% for large field sizes. The measured relative dose profile at dmax using the EPID agrees well with the measured profile at dmax of the isocentric plane using film in a polystyrene phantom with full buildup and full backup, for open and wedged fields, and for a broad range of field sizes of interest. The dependence of the EPID response on the energy spectrum is removed once the calibration is performed under the same conditions as the actual measurements.  相似文献   

6.
The aim of this study was to demonstrate how dosimetry with an amorphous silicon electronic portal imaging device (a-Si EPID) replaced film and ionization chamber measurements for routine pre-treatment dosimetry in our clinic. Furthermore, we described how EPID dosimetry was used to solve a clinical problem. IMRT prostate plans were delivered to a homogeneous slab phantom. EPID transit images were acquired for each segment. A previously developed in-house back-projection algorithm was used to reconstruct the dose distribution in the phantom mid-plane (intersecting the isocenter). Segment dose images were summed to obtain an EPID mid-plane dose image for each field. Fields were compared using profiles and in two dimensions with the y evaluation (criteria: 3%/3 mm). To quantify results, the average gamma (gamma avg), maximum gamma (gamma max), and the percentage of points with gamma < 1(P gamma < 1) were calculated within the 20% isodose line of each field. For 10 patient plans, all fields were measured with EPID and film at gantry set to 0 degrees. The film was located in the phantom coronal mid-plane (10 cm depth), and compared with the back-projected EPID mid-plane absolute dose. EPID and film measurements agreed well for all 50 fields, with (gamma avg) =0.16, (gamma max)=1.00, and (P gamma < 1)= 100%. Based on these results, film measurements were discontinued for verification of prostate IMRT plans. For 20 patient plans, the dose distribution was re-calculated with the phantom CT scan and delivered to the phantom with the original gantry angles. The planned isocenter dose (plan(iso)) was verified with the EPID (EPID(iso)) and an ionization chamber (IC(iso)). The average ratio, (EPID(iso)/IC(iso)), was 1.00 (0.01 SD). Both measurements were systematically lower than planned, with (EPID(iso)/plan(iso)) and (IC(iso)/plan(iso))=0.99 (0.01 SD). EPID mid-plane dose images for each field were also compared with the corresponding plane derived from the three dimensional (3D) dose grid calculated with the phantom CT scan. Comparisons of 100 fields yielded (gamma avg)=0.39, gamma max=2.52, and (P gamma < 1)=98.7%. Seven plans revealed under-dosage in individual fields ranging from 5% to 16%, occurring at small regions of overlapping segments or along the junction of abutting segments (tongue-and-groove side). Test fields were designed to simulate errors and gave similar results. The agreement was improved after adjusting an incorrectly set tongue-and-groove width parameter in the treatment planning system (TPS), reducing (gamma max) from 2.19 to 0.80 for the test field. Mid-plane dose distributions determined with the EPID were consistent with film measurements in a slab phantom for all IMRT fields. Isocenter doses of the total plan measured with an EPID and an ionization chamber also agreed. The EPID can therefore replace these dosimetry devices for field-by-field and isocenter IMRT pre-treatment verification. Systematic errors were detected using EPID dosimetry, resulting in the adjustment of a TPS parameter and alteration of two clinical patient plans. One set of EPID measurements (i.e., one open and transit image acquired for each segment of the plan) is sufficient to check each IMRT plan field-by-field and at the isocenter, making it a useful, efficient, and accurate dosimetric tool.  相似文献   

7.
J A Purdy 《Medical physics》1986,13(2):259-262
The central axis dose distribution in the buildup region for the Varian Clinac 6/100 6-MV x-ray beam was measured in a polystyrene phantom using a fixed volume (0.5 cm3) parallel-plate ionization chamber (2.4-mm plate separation). Results for the surface dose measurements ranged from approximately 8% of the maximum dose for a 5 X 5 cm field, up to 36% for a 40 X 40 cm field, 100-cm source-skin distance. The effect of a 0.6-cm-thick polycarbonate blocking tray and metal filters on the surface and buildup dose is also reported. In addition, ionization measurements were made to document the dose perturbations caused by the absence of backscattering material at the exit surface of a polystyrene phantom. Exit dose measurements showed a 15% reduction in dose with essentially no scattering material beyond the measurement point. Near full scatter condition could be restored by placing 5-10 mm (depending on field size) of unit density material directly behind the ion chamber's distal surface.  相似文献   

8.
Treatment verification is a prerequisite for the verification of complex treatments, checking both the treatment planning process and the actual beam delivery. Pretreatment verification can detect errors introduced by the treatment planning system (TPS) or differences between planned and delivered dose distributions. In a previous paper we described the reconstruction of three-dimensional (3-D) dose distributions in homogeneous phantoms using an in-house developed model based on the beams delivered by the linear accelerator measured with an amorphous silicon electronic portal imaging device (EPID), and a dose calculation engine using the Monte Carlo code XVMC. The aim of the present study is to extend the method to situations in which tissue inhomogeneities are present and to make a comparison with the dose distributions calculated by the TPS. Dose distributions in inhomogeneous phantoms, calculated using the fast-Fourier transform convolution (FFTC) and multigrid superposition (MGS) algorithms present in the TPS, were verified using the EPID-based dose reconstruction method and compared to film and ionization chamber measurements. Differences between dose distributions were evaluated using the gamma-evaluation method (3%/3 mm) and expressed as a mean gamma and the percentage of points with gamma> 1 (P(gamma>1)). For rectangular inhomogeneous phantoms containing a low-density region, the differences between film and reconstructed dose distributions were smaller than 3%. In low-density regions there was an overestimation of the planned dose using the FFTC and MGS algorithms of the TPS up to 20% and 8%, respectively, for a 10 MV photon beam and a 3 x 3 cm2 field. For lower energies and larger fields (6 MV, 5 x 5 cm2), these differences reduced to 6% and 3%, respectively. Dose reconstruction performed in an anthropomorphic thoracic phantom for a 3-D conformal and an IMRT plan, showed good agreement between film data and reconstructed dose values (P(gamma>1) <6%). The algorithms of the TPS underestimated the dose in the low-dose regions outside the treatment field, due to an implementation error of the jaws and multileaf collimator of the linac in the TPS. The FFTC algorithm of the TPS showed differences up to 6% or 6 mm at the interface between lung and breast. Two intensity-modulated radiation therapy head and neck plans, reconstructed in a commercial phantom having a bone-equivalent insert and an air cavity, showed good agreement between film measurement, reconstructed and planned dose distributions using the FFTC and MGS algorithm, except in the bone-equivalent regions where both TPS algorithms underestimated the dose with 4%. Absolute dose verification was performed at the isocenter where both planned and reconstructed dose were within 2% of the measured dose. Reproducibility for the EPID measurements was assessed and found to be of negligible influence on the reconstructed dose distribution. Our 3-D dose verification approach is based on the actual dose measured with an EPID in combination with a Monte Carlo dose engine, and therefore independent of a TPS. Because dose values are reconstructed in 3-D, isodose surfaces and dose-volume histograms can be used to detect dose differences in target volume and normal tissues. Using our method, the combined planning and treatment delivery process is verified, offering an easy to use tool for the verification of complex treatments.  相似文献   

9.
Ansbacher W 《Medical physics》2006,33(9):3369-3382
A new method for rapid evaluation of intensity modulated radiation therapy (IMRT) plans has been developed, using portal images for reconstruction of the dose delivered to a virtual three-dimensional (3D) phantom. This technique can replace an array of less complete but more time-consuming measurements. A reference dose calculation is first created by transferring an IMRT plan to a cylindrical phantom, retaining the treatment gantry angles. The isocenter of the fields is placed on or near the phantom axis. This geometry preserves the relative locations of high and low dose regions and has the required symmetry for the dose reconstruction. An electronic portal image (EPI) is acquired for each field, representing the dose in the midplane of a virtual phantom. The image is convolved with a kernel to correct for the lack of scatter, replicating the effect of the cylindrical phantom surrounding the dose plane. This avoids the need to calculate fluence. Images are calibrated to a reference field that delivers a known dose to the isocenter of this phantom. The 3D dose matrix is reconstructed by attenuation and divergence corrections and summed to create a dose matrix (PI-dose) on the same grid spacing as the reference calculation. Comparison of the two distributions is performed with a gradient-weighted 3D dose difference based on dose and position tolerances. Because of its inherent simplicity, the technique is optimally suited for detecting clinically significant variances from a planned dose distribution, rather than for use in the validation of IMRT algorithms. An analysis of differences between PI-dose and calculation, delta PI, compared to differences between conventional quality assurance (QA) and calculation, delta CQ, was performed retrospectively for 20 clinical IMRT cases. PI-dose differences at the isocenter were in good agreement with ionization chamber differences (mean delta PI = -0.8%, standard deviation sigma = 1.5%, against delta CQ = 0.3%, sigma = 1.0%, respectively). PI-dose plane differences had significantly less variance than film plane differences (sigma = 1.1 and 2.1%, respectively). Twenty-two further cases were evaluated using 3D EPI-dosimetry alone. The mean difference delta over volumes with doses above 80% of the isocenter value was delta = -0.3%, sigma(delta) = 0.7%, and standard deviations of the distributions ranged from 1.0 to 2.0%. Verification time per plan, from initial calculation, delivery, dose reconstruction to evaluation, takes less than 1.5 h and is more than four times faster than conventional QA.  相似文献   

10.
11.
A method of reconstructing three-dimensional, in vivo dose distributions delivered by intensity-modulated radiotherapy (IMRT) is presented. A proof-of-principle experiment is described where an inverse-planned IMRT treatment is delivered to an anthropomorphic phantom. The exact position of the phantom at the time of treatment is measured by acquiring megavoltage CT data with the treatment beam and a research prototype, flat-panel, electronic portal imaging device. Immediately following CT imaging, the planned IMRT beams are delivered using the multiple-static field technique. The delivered fluence is sampled using the same detector as for the CT data. The signal measured by the portal imaging device is converted to primary fluence using an iterative phantom-scatter estimation technique. This primary fluence is back-projected through the previously acquired megavoltage CT model of the phantom, with inverse attenuation correction, to yield an input fluence map. The input fluence maps are used to calculate a "reconstructed" dose distribution using the same convolution/superposition algorithm as for the original planning dose calculation. Both relative and absolute dose reconstructions are shown. For the relative measurements, individual beam weights are taken from measurements but the total dose is normalized at the reference point. The absolute dose reconstructions do not use any dosimetric information from the original plan. Planned and reconstructed dose distributions are compared, with the reconstructed relative dose distribution also being compared to film measurements.  相似文献   

12.
Computed tomography dose index (CTDI) is a conventional indicator of the patient dose in CT studies. It is measured as the integration of the longitudinal single scan dose profile (SSDP) by using a 100-mm-long pencil ionization chamber and a single axial scan. However, the assumption that most of the SSDP is contained within the chamber length may not be valid even for thin slices. We have measured the SSDPs for several slice widths on two CT scanners using a PTW diamond detector placed in a 300 mm x 200 mm x 300 mm water-equivalent plastic phantom. One SSDP was also measured using lithium fluoride (LiF) TLDs and an IC-10 small volume ion chamber, verifying the general shape of the SSDP measured using the diamond detector. Standard cylindrical PMMA CT phantoms (140 mm length) were also used to qualitatively study the effects of phantom shape, length, and composition on the measured SSDP. The SSDPs measured with the diamond detector in the water-equivalent phantom were numerically integrated to calculate the relative accumulated dose D(L)(0)calc at the center of various scan lengths L. D(L)(0)calc reached an equilibrium value for L > 300 mm, suggesting the need for phantoms longer than standard CT dose phantoms. We have also measured the absolute accumulated dose using an IC-10 small volume ion chamber, D(L)(0)SV, at three points in the phantom cross section for several beamwidths and scan lengths. For one CT system, these measurements were made in both axial and helical scanning modes. The absolute CTDI100, measured with a 102 mm active length pencil chamber, were within 4% of D(L)(0)SV measured with the small volume ion chamber for L approximately 100 mm suggesting that nonpencil chambers can be successfully used for CT dosimetry. For nominal beam widths ranging from 3 to 20 mm and for L approximately 250 mm, D(L)(0)SV values at the center of the water-equivalent phantom's elliptic cross section were approximately 25%-30% higher than the measured CTDI100. For small beamwidths, the difference in D(L)(0)SV for L approximately 250 mm and L approximately 14 x beamwidth (CTDI14nT) reached up to 50%. Peripheral point doses at 70 mm depth along the major axis of the phantom for L approximately 250 mm were up to 22% higher than for L approximately 100 mm. The differences between CTDI100 and D(L)(0)SV for L approximately 250 mm were in good agreement with the predictions made from the numerical integration of the measured SSDPs. Due to the considerable dose measured beyond the length of standard CT phantoms, CT dosimetry for longer body scan series should be performed in longer phantoms. Measurements could be made as we have shown, using a small volume chamber translating through the beam using multiple scans.  相似文献   

13.
We have benchmarked photon beam simulations with the EGS4 user code BEAM [Rogers et al., Med. Phys. 22, 503-524 (1995)] by comparing calculated and measured relative ionization distributions in water from the 10 and 20 MV photon beams of the NRC linac. Unlike previous calculations, the incident electron energy is known independently to 1%, the entire extra-focal radiation is simulated, and electron contamination is accounted for. The full Monte Carlo simulation of the linac includes the electron exit window, target, flattening filter, monitor chambers, collimators, as well as the PMMA walls of the water phantom. Dose distributions are calculated using a modified version of the EGS4 user code DOSXYZ which additionally allows scoring of average energy and energy fluence in the phantom. Dose is converted to ionization by accounting for the (L/rho)water(air) variation in the phantom, calculated in an identical geometry for the realistic beams using a new EGS4 user code, SPRXYZ. The variation of (L/rho)water(air) with depth is a 1.25% correction at 10 MV and a 2% correction at 20 MV. At both energies, the calculated and the measured values of ionization on the central axis in the buildup region agree within 1% of maximum ionization relative to the ionization at 10 cm depth. The agreement is well within statistics elsewhere. The electron contamination contributes 0.35(+/- 0.02) to 1.37(+/- 0.03)% of the maximum dose in the buildup region at 10 MV and 0.26(+/- 0.03) to 3.14(+/- 0.07)% of the maximum dose at 20 MV. The penumbrae at 3 depths in each beam (in g/cm2), 1.99 (dmax, 10 MV only), 3.29 (dmax, 20 MV only), 9.79 and 19.79, agree with ionization chamber measurements to better than 1 mm. Possible causes for the discrepancy between calculations and measurements are analyzed and discussed in detail.  相似文献   

14.
This work is intended to investigate the application and accuracy of micro-MOSFET for superficial dose measurement under clinically used MV x-ray beams. Dose response of micro-MOSFET in the build-up region and on surface under MV x-ray beams were measured and compared to Monte Carlo calculations. First, percentage-depth-doses were measured with micro-MOSFET under 6 and 10 MV beams of normal incidence onto a flat solid water phantom. Micro-MOSFET data were compared with the measurements from a parallel plate ionization chamber and Monte Carlo dose calculation in the build-up region. Then, percentage-depth-doses were measured for oblique beams at 0 degrees-80 degrees onto the flat solid water phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm below the surface. Measurements were compared to Monte Carlo calculations under these settings. Finally, measurements were performed with micro-MOSFET embedded in the first 1 mm layer of bolus placed on a flat phantom and a curved phantom of semi-cylindrical shape. Results were compared to superficial dose calculated from Monte Carlo for a 2 mm thin layer that extends from the surface to a depth of 2 mm. Results were (1) Comparison of measurements with MC calculation in the build-up region showed that micro-MOSFET has a water-equivalence thickness (WET) of 0.87 mm for 6 MV beam and 0.99 mm for 10 MV beam from the flat side, and a WET of 0.72 mm for 6 MV beam and 0.76 mm for 10 MV beam from the epoxy side. (2) For normal beam incidences, percentage depth dose agree within 3%-5% among micro-MOSFET measurements, parallel-plate ionization chamber measurements, and MC calculations. (3) For oblique incidence on the flat phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm, measurements were consistent with MC calculations within a typical uncertainty of 3%-5%. (4) For oblique incidence on the flat phantom and a curved-surface phantom, measurements with micro-MOSFET placed at 1.0 mm agrees with the MC calculation within 6%, including uncertainties of micro-MOSFET measurements of 2%-3% (1 standard deviation), MOSFET angular dependence of 3.0%-3.5%, and 1%-2% systematical error due to phantom setup geometry asymmetry. Micro-MOSFET can be used for skin dose measurements in 6 and 10 MV beams with an estimated accuracy of +/- 6%.  相似文献   

15.
A commercial amorphous silicon electronic portal imaging device (EPID) has been studied to investigate its potential in the field of pretreatment verifications of step and shoot, intensity modulated radiation therapy (IMRT), 6 MV photon beams. The EPID was calibrated to measure absolute exit dose in a water-equivalent phantom at patient level, following an experimental approach, which does not require sophisticated calculation algorithms. The procedure presented was specifically intended to replace the time-consuming in-phantom film dosimetry. The dosimetric response was characterized on the central axis in terms of stability, linearity, and pulse repetition frequency dependence. The a-Si EPID demonstrated a good linearity with dose (within 2% from 1 monitor unit), which represent a prerequisite for the application in IMRT. A series of measurements, in which phantom thickness, air gap between the phantom and the EPID, field size and position of measurement of dose in the phantom (entrance or exit) varied, was performed to find the optimal calibration conditions, for which the field size dependence is minimized. In these conditions (20 cm phantom thickness, 56 cm air gap, exit dose measured at the isocenter), the introduction of a filter for the low-energy scattered radiation allowed us to define a universal calibration factor, independent of field size. The off-axis extension of the dose calibration was performed by applying a radial correction for the beam profile, distorted due to the standard flood field calibration of the device. For the acquisition of IMRT fields, it was necessary to employ home-made software and a specific procedure. This method was applied for the measurement of the dose distributions for 15 clinical IMRT fields. The agreement between the dose distributions, quantified by the gamma index, was found, on average, in 97.6% and 98.3% of the analyzed points for EPID versus TPS and for EPID versus FILM, respectively, thus suggesting a great potential of this EPID for IMRT dosimetric applications.  相似文献   

16.
An apparatus capable of measuring small fractional changes in ionization current has been used to study the effect of small inhomogeneities on photon dose in water. Small ring-shaped inhomogeneities were introduced into a water phantom and measurements have been made for 4-, 6-, and 18-MV x-rays. The results show beyond the range of secondary electrons, the dose perturbation is basically a photon transport phenomenon which becomes less important as the beam energy increases; within the range of secondary electrons, dose perturbation also involves electron transport, which has a strong dependence on atomic number and could result in a substantially large effect on dose deposition.  相似文献   

17.
Chibani O  Ma CM 《Medical physics》2007,34(4):1206-1216
Significant discrepancies between Monte Carlo dose calculations and measurements for the Varian 18 MV photon beam with a large field size (40 x 40 cm2) were reported by different investigators. In this work, we investigated these discrepancies based on a new geometry model ("New Model") of the Varian 21EX linac using the GEPTS Monte Carlo code. Some geometric parameters used in previous investigations (Old Model) were inaccurate, as suggested by Chibani in his AAPM presentation (2004) and later confirmed by the manufacturer. The entrance and exit radii of the primary collimator of the New Model are 2 mm larger than previously thought. In addition to the corrected dimensions of the primary collimator, the New Model includes approximate models for the lead shield and the mirror frame between the monitor chamber and the Y jaws. A detailed analysis of the phase space data shows the effects of these corrections on the beam characteristics. The individual contributions from the linac component to the photon and electron fluences are calculated. The main source of discrepancy between measurements and calculations based on the Old Model is the underestimated electron contamination. The photon and electron fluences at the isocenter are 5.3% and 36% larger in the New Model in comparison with the Old Model. The flattening filter and the lead shield (plus the mirror frame) contribute 48.7% and 13% of the total electron contamination at the isocenter, respectively. For both open and filtered (2 mm Pb) fields, the calculated (New Model) and measured dose distributions are within 1% for depths larger than 1 cm. To solve the residual problem of large differences at shallow depths (8% at 0.25 cm depth), the detailed geometry of an IC-10 ionization chamber was simulated and the dose in the air cavity was calculated for different positions on the central axis including at the surface, where half of the chamber is outside the phantom. The calculated and measured chamber responses are within 3% even at the zero depth.  相似文献   

18.
The feasibility of using film dosimetry data as the input data for patient treatment planning was evaluated. The central-axis depth dose and the off-axis ratios obtained from film measurements in a solid phantom were compared with those of ion-chamber measurements in water. Two techniques were used to generate isodose distributions. The first technique used only the film data, i.e., the central-axis depth dose and the off-axis ratios used for the reconstruction were determined from the film optical density (corrected for film nonlinearity). In the second technique, the central-axis depth dose measured by an ion chamber in a water phantom was combined with the off-axis ratios measured using film in the "solid water" phantom. The resulting isodose distributions from both techniques were compared with the ion-chamber measurements in water for 7-, 12-, and 18-MeV electrons, and the second technique showed better agreement with the ion-chamber measurements than did the first technique. The differences were within a clinically acceptable range.  相似文献   

19.
The authors study the acceptance of a Capintec parallel-plate ionization chamber. The Capintec chamber is used for dose measurements in a lead and polystyrene slab phantom irradiated with cobalt-60 gamma rays. The authors define an enhancement ratio to quantify the dose measurements. The enhancement ratio equals the ratio of dose measured with the lead slab present to dose measured under equilibrium conditions in polystyrene at equal primary beam attenuation. The measured enhancement ratio at the exit side of the lead/polystyrene interface is 25% lower than the Monte Carlo predicted enhancement ratio. The authors propose that geometric acceptance limitations of the Capintec chamber to large-angle, low-energy electrons are the cause for this difference. A Monte Carlo simulation of the Capintec chamber acceptance confirms the hypothesis.  相似文献   

20.
Respiratory motion can introduce substantial dose errors during IMRT delivery. These errors are difficult to predict because of the nonsynchronous interplay between radiation beams and tissues. The present study investigates the impact of dose fractionation on respiratory motion induced dosimetric errors during IMRT delivery and their radiobiological implications by using measured 3D dose. We focused on IMRT delivery with dynamic multileaf collimation (DMLC-IMRT). IMRT plans using several beam arrangements were optimized for and delivered to a polystyrene phantom containing a simulated target and critical organs. The phantom was set in linear sinusoidal motion at a frequency of 15 cycles/min (0.25 Hz). The amplitude of the motion was +/- 0.75 cm in the longitudinal direction and +/- 0.25 cm in the lateral direction. Absolute doses were measured with a 0.125 cc ionization chamber while dose distributions were measured with transverse films spaced 6 mm apart. Measurements were performed for varying number of fractions with motion, with respiratory-gated motion, and without motion. A tumor control probability (TCP) model for an inhomogeneously irradiated tumor was used to calculate and compare TCPs for the measurements and the treatment plans. Equivalent uniform doses (EUD) were also computed. For individual fields, point measurements using an ionization chamber showed substantial dose deviations (-11.7% to 47.8%) for the moving phantom as compared to the stationary phantom. However, much smaller deviations (-1.7% to 3.5%) were observed for the composite dose of all fields. The dose distributions and DVHs of stationary and gated deliveries were in good agreement with those of treatment plans, while those of the nongated moving phantom showed substantial differences. Compared to the stationary phantom, the largest differences observed for the minimum and maximum target doses were -18.8% and +19.7%, respectively. Due to their random nature, these dose errors tended to average out over fractionated treatments. The results of five-fraction measurements showed significantly improved agreement between the moving and stationary phantom. The changes in TCP were less than 4.3% for a single fraction, and less than 2.3% for two or more fractions. Variation of average EUD per fraction was small (< 3.1 cGy for a fraction size of 200 cGy), even when the DVHs were noticeably different from that of the stationary tumor. In conclusion, IMRT treatment of sites affected by respiratory motion can introduce significant dose errors in individual field doses; however, these errors tend to cancel out between fields and average out over dose fractionation. 3D dose distributions, DVHs, TCPs, and EUDs for stationary and moving cases showed good agreement after two or more fractions, suggesting that tumors affected by respiration motion may be treated using IMRT without significant dosimetric and biological consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号