首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of the study was to measure the fluoride release from glass ionomer based liners/bases after storing the specimens for 24 h and for 6 months in running water. The fluoride release was greater in the beginning than after half a year. From most liner materials the initial and the long-term release was greater than from the glass ionomer filling material studied for comparison. From two liners the release was minimal, just at the detection limit.  相似文献   

2.
This study aimed to compare the fluoride release from a flouride-containing amalgam, a silicate cement and a glass ionomer cement in artificial saliva. After storing specimens in an artificial saliva for 7 weeks, the fluoride content in the solvent was measured by a spectrophotometric method. The fluoride release from silicate cement was about 5 times greater than from glass ionomer cement, which again showed a release 4 times greater than the fluoride-containing amalgam. The fluoride release relative to fluoride content in test specimens was greater from fluoride-containing amalgam and silicate cement than from glass ionomer cement.  相似文献   

3.
Abstract – Test specimens of seven different glass ionomer filling materials and one fissure sealant were exposed to running water for 2 yr. One amalgam and one composite, both containing fluoride, were included for comparison. The fluoride release from the specimens was measured periodically after storing the specimens for 24 h or 1 wk in a small amount of water. The fluoride release From the glass ionomers decreased with time and a constant level was reached for most products during the 2-yr period. The release was increased by lowering the pH of the storage solution. The release from the glass ionomers was clearly greater than from the amalgam and the composite.  相似文献   

4.
The release of fluoride from 1) discs made from five glass ionomer cements and two composites, and 2) the same discs after exposure to different NaF solutions, were studied. The specimens were placed in distilled water for 10 wk. After 24 h and then once a week, the specimens were transferred to fresh distilled water. After 5 wk, the specimens were divided into four groups and exposed to 0, 0.02, 0.2 and 2% NaF solutions for 5 min. The fluoride release was highest during the first week after preparation, after which it decreased sharply and then more slowly. The amount of fluoride released was ordered: liner/base>restorative glass ionomer>composites. The composites released significantly less fluoride than the glass ionomer cements. After exposure to NaF, the fluoride release was significantly higher for the silver cermet material than for the other glass ionomers tested. From a clinical point of view, the results from this study imply that glass ionomer restorations may act as intraoral devices for the controlled slow release of fluoride at sites at risk for recurrent caries.  相似文献   

5.
Test specimens of seven different glass ionomer filling materials and one fissure sealant were exposed to running water for 2 yr. One amalgam and one composite, both containing fluoride, were included for comparison. The fluoride release from the specimens was measured periodically after storing the specimens for 24 h or 1 wk in a small amount of water. The fluoride release from the glass ionomers decreased with time and a constant level was reached for most products during the 2-yr period. The release was increased by lowering the pH of the storage solution. The release from the glass ionomers was clearly greater than from the amalgam and the composite.  相似文献   

6.
目的 比较4种玻璃离子充填材料短期内氟离子释放能力和溶解性,为临床选择充填材料提供依据.方法 实验选取1种传统型玻璃离子水门汀(SC),2种高强度玻璃离子水门汀FujiⅨ(F9)和Ketac Moler(KM),1种树脂改良型玻璃离子水门汀FujiIILC (F2LC),和1种复合树脂Z100( CR,3M)共5种材...  相似文献   

7.
Abstract – The aim was to study the fluoride release 1) from 7 and 15-month-old glass ionomer specimens after treating them with fluoride; 2) from fresh compared with matured material; and 3) from specimens stored for 29 months in running water. Glass ionomer test specimens which had been in running water for first 7 then 15 months were treated with a 50 ppm fluoride solution after which the specimens were again exposed to running water for first 24 h and then 1 wk. The fluoride release was measured after each of the two periods of time. The fluoride treated specimens released more fluoride than the nontreated ones. This effect was not observed with composite resin specimens which were studied for comparison. Fluoride release from fresh glass ionomer specimens was observed to be 3–10 fold compared to specimens that had matured for 3 days. The release of fluoride from specimens that had been in running water for 29 months was measured and the results were compared with those of earlier measurements. It was found that the release reached a constant level for all tested glass ionomers during the second year.  相似文献   

8.
Fluoride release and uptake by glass ionomers   总被引:4,自引:0,他引:4  
The aim was to study the fluoride release 1) from 7 and 15-month-old glass ionomer specimens after treating them with fluoride; 2) from fresh compared with matured material; and 3) from specimens stored for 29 months in running water. Glass ionomer test specimens which had been in running water for first 7 then 15 months were treated with a 50 ppm fluoride solution after which the specimens were again exposed to running water for first 24 h and then 1 wk. The fluoride release was measured after each of the two periods of time. The fluoride treated specimens released more fluoride than the nontreated ones. This effect was not observed with composite resin specimens which were studied for comparison. Fluoride release from fresh glass ionomer specimens was observed to be 3-10 fold compared to specimens that had matured for 3 days. The release of fluoride from specimens that had been in running water for 29 months was measured and the results were compared with those of earlier measurements. It was found that the release reached a constant level for all tested glass ionomers during the second year.  相似文献   

9.
This study investigated the effects of environmental temperature on the fluoride release and recharging ability of glass ionomers. Five disk specimens (15 mm in diameter and 1 mm thick) were made of each of the following materials: a conventional luting glass ionomer, two high viscosity restorative glass ionomers and a restorative resin-modified glass ionomer. The fluoride release of each material was measured at 4 degrees C, 37 degrees C and 55 degrees C. An additional three groups, which were made of the same materials, were stored in distilled and deionized water for 30 days and recharged in 250 ppm fluoride solution at 4 degrees C, 37 degrees C and 55 degrees C for five minutes. The fluoride re-release was measured daily from two days prior to two days after the recharging process. At all temperatures, the luting glass ionomers showed the greatest fluoride release and recharging ability, followed by the resin-modified glass ionomer, then the high viscosity glass ionomers. For each material, the fluoride release increased with increasing temperature and all glass ionomers showed greater recharging ability at higher temperatures. An increase in environmental temperature increased both the fluoride release and recharging of the glass ionomers. This may be important in developing regimes for improving the delivery of topical fluoride products.  相似文献   

10.
Fluoride release from three commercial glass ionomer filling cements and three glass ionomer luting cements was measured in the laboratory over a 12-month period. Fluoride release from these glass ionomer cements was compared with that released from a silicate, silicophosphate, and a fluoride-containing polycarboxylate cement. The fluoride released from the glass ionomer cements throughout the one-year period was similar, both in quantity and pattern, to that released by the silicate cement. The silicophosphate cement tended to release fluoride in somewhat lesser amounts, while the amount of fluoride released by the polycarboxylate was negligible after the first few days. Analysis of these data indicates that these glass ionomer cements probably possess anticariogenic properties similar to those of silicate cement.  相似文献   

11.
Fluoride release from glass ionomer cement in vivo and in vitro   总被引:1,自引:0,他引:1  
The aims of this study were to investigate in vivo the release of fluoride from three glass ionomer cements (GICs) Vitrebond, Ketac-Fil and ChemFil II into the saliva of preschool children for a 1-year period and also to study in vitro the release-absorption-release of fluoride from the same GICs for 16 weeks. In the first part of the study, glass ionomer restorations were placed in primary teeth in preschool children. Unstimulated saliva was collected and the fluoride in the saliva was measured before placement of the restorations, immediately after, after 3 weeks, after 6 weeks, and after 1 year. In the second part of the study, test specimens of GICs were placed in deionized water and the release of fluoride was measured weekly for 16 weeks. At week 12, samples were exposed to fluoride toothpaste. The concentration of fluoride in saliva was 0.04 ppm before placement of the restorations. After three weeks it had increased to 0.8 ppm and the level remained as high as 0.3 ppm even after 1 year. In the laboratory study the tested glass ionomer cements showed a capacity to absorb fluoride from the fluoride toothpaste and then release it. It is concluded that glass ionomer cement can act as a rechargeable slow release fluoride device.  相似文献   

12.
The aqueous phase of glass ionomer cements enables fluoride ions to diffuse and to be released from the material. The matrix of resin composites is much less hydrophilic, and fluoride incorporated in the material is only released in small amounts. It was the purpose of the present work to study the influence of resin matrix formulation on the fluoride release from experimental, fluoride-containing resin composites. The resin composites were based on methacrylate monomers and the adduct of maleic anhydride and HEMA (2-hydroxyethyl methacrylate). The resin composites contained 1 w% or 5 w% of AlF3*3H2O. A glass ionomer cement and a compomer were used as controls. Five disks of each material were stored in distilled water at room temperature. By means of a fluoride sensitive electrode, the fluoride release from disk-shaped specimens was determined periodically over 3 years. The glass ionomer cement released the most fluoride (1.54 +/- 4 microg/cm2 after 1 year and 248 +/- 7 microg/cm2 after 3 years). The compomer released relatively little fluoride during the 1st year (30 +/- 1 microg/cm2) but after this time the rate of fluoride release became equal to that of the glass ionomer cement, resulting in a release of 122 +/- 8 microg/cm2 after 3 years. Regarding the resin composites, the fluoride release increased with the hydrophilicity and the acid character of the polymer matrix. The release, however, was significantly lower than that from the glass ionomer cement and the compomer and ranged from 1.2 +/- 0.07 to 42 +/- 3.9 microg/cm2 at 1 year and from 2.3 +/- 0.16 to 79 +/- 6 microg/cm2 at 3 years.  相似文献   

13.
A new 2-paste resin-reinforced glass ionomer cement, Fuji Ortho Band Paste Pak (GC Corporation, Tokyo, Japan), for the placement of orthodontic bands, has been developed for easier handling. The aim of this study was to compare the fluoride release and uptake characteristics of this cement with that of 3 others commonly used to cement orthodontic bands: a conventional resin-reinforced glass ionomer cement, a polyacid-modified composite resin, and a conventional glass ionomer cement. Fluoride release was measured during a 28-day period. After the measurement on day 28, experimental samples were exposed to 1000 ppm sodium fluoride solution for 5 minutes, and fluoride release was then measured for 7 days. Initially, the new 2-paste resin-reinforced glass ionomer cement released the greatest amount of fluoride; the polyacid-modified composite resin released the least initially, and it continued to show the lowest values throughout the study. The fluoride uptake and release values of the new 2-paste resin-reinforced glass ionomer cement were statistically significantly higher than those of the conventional resin-reinforced glass ionomer cement or the conventional glass ionomer cement. The new 2-paste resin-reinforced glass ionomer cement might be a good alternative to conventional products for cementing orthodontic bands.  相似文献   

14.
STATEMENT OF PROBLEM: There is considerable variation in generic formulation and in reported fluoride release from resin-modified glass ionomer luting cements. PURPOSE: This study compared fluoride release from 2 generically similar resin-modified glass ionomer luting cements (Vitremer and Advance) with release from 2 conventional glass ionomer luting cements (Ketac-Cem and Fuji I). MATERIAL AND METHODS: Ten specimen disks of each of the 4 luting cements were fabricated and immersed in deionized water in individual polystyrene jars. The jars were stored in a humidor at 37 degrees C between test periods. At the same time each day, for 28 days, fluoride release from each specimen disk was measured in parts per million by testing the storage water. RESULTS: The 4 luting cements tested showed an initial high concentration of fluoride release during the first week, followed by a gradual decrease over the study period. Vitremer luting cement demonstrated the greatest mean cumulative fluoride release in parts per million over the study period (198), followed by Fuji I (140), Ketac-Cem (110), and Advance (99) luting cements. CONCLUSIONS: Resin-modified glass ionomer luting cements showed fluoride release comparable to the conventional glass ionomer luting cements. Vitremer luting cement released more fluoride over the 28-day period than the other cements.  相似文献   

15.
abstract – The release of fluoride from a glass ionomer cement (ASPA®) was. compared with that from a silicate cement. Test specimens were shaken in a solution with hydroxyapadte for 7 weeks. The solution was changed every week and the fluoride taken up by the hydroxyapatite measured. The specimens released considerably more fluoride during each of the first 2 weeks than during each of the subsequent 5 weeks. The continued release did not decrease very much with time. Slightly more fluoride was released from the glass ionomer cement than from the silicate.  相似文献   

16.
The release of fluoride from a glass ionomer cement (ASPA) was compared with that from a silicate cement. Test specimens were shaken in a solution with hydroxyapatite for 7 weeks. The solution was changed every week and the fluoride taken up by the hydroxyapatite measured. The specimens released considerably more fluoride during each of the first 2 weeks than during each of the subsequent 5 weeks. The continued release did not decrease very much with time. Slightly more fluoride was released from the glass ionomer cement than from the silicate.  相似文献   

17.
The aim of the present study was to study the effect of fluoride gel treatment on fluoride release and inhibition of acid production of Streptococcus mutans by different glass ionomer cements. Test slabs of four glass ionomer materials were fitted into the bottom of a test tube. A layer of S. mutans cells was centrifuged onto the test slabs, and the specimens were incubated for 4 h in 1.7% sucrose solution. Incubations were made using fresh, aged (29 d), aged and F-treated (1.25% F-gel), and aged, F-treated and aged samples ( n = 15 per group). After each incubation, pH and F contents of the fluid phase were determined. The freshly mixed glass ionomer samples released large amounts of fluoride, and the pH fall in the fluid phase was significantly inhibited. For aged samples, the fluoride release decreased strongly and no inhibitory effect on acid production by S. mutans was seen. After application of fluoride gel, fluoride release and inhibitory effect were significantly higher than initially for all glass ionomer cements. In conclusion, all glass ionomer cements were able to take up fluoride and subsequently release it, which resulted in reestablishment of their antibacterial effect. The patterns of fluoride release and antibacterial action were virtually the same for conventional and resin-reinforced glass ionomer cements.  相似文献   

18.
Two commercial orthodontic adhesives containing fluoride were evaluated in vitro for fluoride release. Fluoride release is critical in preventing both decalcification around orthodontic brackets and the formation of white spot lesions. A paste-type adhesive composite resin and a glass ionomer luting agent were compared to a glass ionomer restorative material to determine fluoride release. The composite resin adhesive released minimal fluoride for only three days and then ceased. The glass ionomer adhesive released fluoride at a similar rate to the glass ionomer restorative material with fluoride release still evident at three months.  相似文献   

19.
STATEMENT OF PROBLEM: In addition to conventional glass ionomers, a considerable number of different types of materials have been formulated to release fluoride. Variation in composition results in quantitative differences in the amount of fluoride release by these materials. PURPOSE: This study evaluated and compared fluoride release in distilled water from different types of restorative materials and a luting cement. MATERIAL AND METHODS: Fluoride release from 4 glass ionomer formulation restorative materials (Miracle-Mix, Fuji ionomer type III, Fuji II LC improved, and Ketac-Silver), a luting cement (Ketac Cem), a compomer (Compoglass Flow), 2 sealants (Fissurit F, Helioseal F), and a composite resin (Tetric) was evaluated at time intervals of 4, 8, 12, and 24 hours and 2, 3, 7, 14, 28, 56, and 112 days. Seven disks of each material were made and stored for equilibration in double distilled water at 37 degrees C for the time of each measurement. The equilibrated solution was analyzed for fluoride with a TISAB and an ion-specific combination electrode (ORION 960900) connected to an expandable ion analyzer (Crison micropH 2002). Data were analyzed by means of univariate analysis of variance, the Dunnett C post hoc test, and repeated measures analysis. RESULTS: Fluoride was released from all the evaluated materials, with considerable variation in the rate of release but a similar pattern. Among the materials tested, fluoride release from glass ionomer formulations was greater than that from composite resin formulations; the rank of decreasing order was as follows: Miracle Mix > Fuji III, Ketac Cem > Fuji II LC > Ketac Silver, Compoglass F > Fissurit F, Helioseal F > Tetric (> indicates statistical significance; P< .05). CONCLUSION: Under the conditions of this study, glass ionomer formulations and the compomer released more fluoride than the sealants and the composite resin tested.  相似文献   

20.
OBJECTIVES: This laboratory study compared the effect of surface coatings on patterns and amounts of fluoride released from four glass ionomer cements and two fluoride-containing resin composites. METHODS: Twelve cylinders of each material were prepared in a polyethylene mold. The experimental groups (n = 6) were coated with one layer of an adhesive resin (3M Scotchbond Multipurpose Adhesive), while the control groups (n = 6) remained uncoated. Cumulative fluoride release into deionized water was measured on days 1, 2, 3, 7, 14, 21 and 28 using an ion analyzer. Total fluoride release after 28 days was analyzed for significant differences among materials using one-way ANOVA and Student-Newman-Keuls test (p < 0.05). RESULTS: The total amounts of fluoride release from the coated samples were found to be significantly less than the uncoated samples for all materials, except Solitaire. The uncoated samples released a total amount of fluoride of between 2.3 and 85.4 ppm, while the coated samples released a total amount of fluoride of between < 0.2 and 24.1 ppm. Similar patterns of fluoride release were found in coated and uncoated samples. SIGNIFICANCE: The results indicated that the application of a dentin adhesive coating did not completely prevent fluoride release from glass ionomer cements and fluoridated resin composites, although the amounts were significantly less. Clinically, it suggests that a continued release of fluoride from glass ionomer cements and fluoridated resin composites is possible after placing a thin layer of resin adhesive. The clinical significance of these findings is not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号