首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Using results from our previously reported cyclic opioid peptide series and reliable models for μ‐, δ‐, and κ‐opioid receptors (MOR, DOR, and KOR, respectively) and their complexes with peptide ligands, we have designed and synthesized a series of cyclic pentapeptides of structure Tyr‐c[d ‐Cys‐Phe‐Phe‐X]‐NH2, cyclized via disulfide, methylene, or ethylene dithioethers, and where X = d ‐ or l ‐Cys; or d ‐ or l ‐penicillamine (Pen; β,β‐dimethylcysteine). Determination of binding affinities to MOR, DOR, and KOR revealed that members of this series with X = d ‐ or l ‐Cys display KOR affinities in the low nanomolar range, demonstrating that a ‘DPDPE‐like’ tetrapeptide scaffold is suitable not only for DOR and MOR ligands, but also for KOR ligands. The cyclic pentapeptides reported here are not, however, selective for KOR, rather they display significant selectivity and high affinity for MOR. Indeed, peptide 8 , Tyr‐c[d ‐Cys‐Phe‐Phe‐Cys]‐NH2‐cyclized via a methylene dithioether, shows picomolar binding affinity for MOR ( = 16 pm ) with more than 100‐fold selectivity for MOR vs. DOR or KOR, and may be of interest as a high affinity, high selectivity MOR ligand. Nonetheless, the high affinity KOR peptides in this series represent excellent leads for the development of structurally related, selective KOR ligands designed to exploit structurally specific features of KOR, MOR, and DOR.  相似文献   

2.
Abstract: The previously described cyclic mu opioid receptor‐selective tetrapeptide Tyr‐c[d ‐Cys‐Phe‐d ‐Pen]NH2 (Et) (JOM‐6) was modified at residues 1 and 3 by substitution with various natural and synthetic amino acids, and/or by alteration of the cyclic system. Effects on mu and delta opioid receptor binding affinities, and on potencies and efficacies as measured by the [35S]‐GTPγS assay, were evaluated. Affinities at mu and delta receptors were not influenced dramatically by substitution of Tyr1 with conformationally restricted phenolic amino acids. In the [35S]‐GTPγS assay, all of the peptides tested exhibited a maximal response comparable with that of fentanyl at the mu opioid receptor, and all showed high potency, in the range0.4–9 nm . However, potency changes did not always correlate with affinity, suggesting that the conformation required for binding and the conformation required for activation of the opioid receptors are different. At the delta opioid receptor, none of the peptides were able to produce a response equivalent to that of the full delta agonist BW 373,U86 and only one had an EC50 value of less than 100 nm . Lastly, we have identified a peptide, d ‐Hat‐c[d ‐Cys‐Phe‐d ‐Pen]NH2 (Et), with high potency and > 1000‐fold functional selectivity for the mu over delta opioid receptor as measured by the [35S]‐GTPγS assay.  相似文献   

3.
Abstract: We previously reported that the novel dynorphin A (Dyn A, Tyr‐Gly‐Gly‐Phe‐Leu‐Arg‐Arg‐Ile‐Arg‐Pro‐Lys‐Leu‐Lys‐Trp‐Asp‐Asn‐Gln) analog arodyn (Ac[Phe1,2,3,Arg4,d ‐Ala8]Dyn A‐(1–11)NH2, Bennett, M.A., Murray, T.F. & Aldrich, J.V. (2002) J. Med. Chem. vol. 45, pp. 5617–5619) is a κ opioid receptor‐selective peptide [Ki(κ) = 10 nm , Ki ratio (κ/μ/δ) = 1/174/583] which exhibits antagonist activity at κ opioid receptors. In this study, a series of arodyn analogs was prepared and evaluated to explore the structure–activity relationships (SAR) of this peptide; this included an alanine scan of the entire arodyn sequence, sequential isomeric d ‐amino acid substitution in the N‐terminal ‘message’ sequence, NMePhe substitution individually in positions 1–3, and modifications in position 1. The results for the Ala‐substituted derivatives indicated that Arg6 and Arg7 are the most important residues for arodyn's nanomolar binding affinity for κ opioid receptors. Ala substitution of the other basic residues (Arg4, Arg9 and Lys11) resulted in lower decreases in affinity for κ opioid receptors (three‐ to fivefold compared with arodyn). Of particular interest, while [Ala10]arodyn exhibits similar κ opioid receptor binding as arodyn, it displays higher κ vs. μ opioid receptor selectivity [Ki ratio (κ/μ) = 1/350] than arodyn because of a twofold loss in affinity at μ opioid receptors. Surprisingly, the Tyr1 analog exhibits a sevenfold decrease in κ opioid receptor affinity, indicating that arodyn displays significantly different SAR than Dyn A; [Tyr1]arodyn also unexpectedly exhibits inverse agonist activity in the adenylyl cyclase assay using Chinese hamster ovary cells stably expressing κ opioid receptors. Substitution of NMePhe in position 1 gave [NMePhe1]arodyn which exhibits high affinity [Ki(κ) = 4.56 nm ] and exceptional selectivity for κ opioid receptors [Ki ratio (κ/μ/δ) = 1/1100/>2170]. This peptide exhibits antagonistic activity in the adenylyl cyclase assay, reversing the agonism of 10 nm Dyn A‐(1–13)NH2. Thus [NMePhe1]arodyn is a highly κ opioid receptor‐selective antagonist that could be a useful pharmacological tool to study κ opioid receptor‐mediated activities.  相似文献   

4.
Abstract: A series of potential affinity label derivatives of the amphibian opioid peptide [d ‐Ala2]deltorphin I were prepared by incorporation at the para position of Phe3 (in the ‘message’ sequence) or Phe5 (in the ‘address’ sequence) of an electrophilic group (i.e. isothiocyanate or bromoacetamide). The introduction of the electrophile was accomplished by incorporating Fmoc‐Phe(p‐NHAlloc) into the peptide, followed later in the synthesis by selective deprotection of the Alloc group and modification of the resulting amine. While para substitution decreased the δ‐opioid receptor affinity, selected analogs retained nanomolar affinity for δ receptors. [d ‐Ala2,Phe(p‐NCS)3]deltorphin I exhibited moderate affinity (IC50 = 83 nm ) and high selectivity for δ receptors, while the corresponding amine and bromoacetamide derivatives showed pronounced decreases in δ‐receptor affinity (80‐ and >1200‐fold, respectively, compared with [d ‐Ala2]deltorphin I). In the ‘address’ sequence, the Phe(p‐NH2)5 derivative showed the highest δ‐receptor affinity (IC50 = 32 nm ), while the Phe(p‐NHCOCH2Br)5 and Phe(p‐NCS)5 peptides displayed four‐ and tenfold lower δ‐receptor affinities, respectively. [d ‐Ala2,Phe(p‐NCS)3]deltorphin I exhibited wash‐resistant inhibition of [3H][d ‐Pen2,D‐Pen5]enkephalin (DPDPE) binding to δ receptors at a concentration of 80 nm . [d ‐Ala2, Phe(p‐NCS)3]deltorphin I represents the first affinity label derivative of one of the potent and selective amphibian opioid peptides, and the first electrophilic affinity label derivative of an agonist containing the reactive functionality in the ‘message’ sequence of the peptide.  相似文献   

5.
Abstract: The cyclic enkephalin analog H‐Tyr‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 is a highly potent opioid agonist with IC50s of 35 pm and 19 pm in the guinea‐pig ileum (GPI) and mouse vas deferens (MVD) assays, respectively. The Phe1‐analog of this peptide showed 370‐fold and 6790‐fold lower agonist potency in the GPI and MVD assays, respectively, indicating the importance of the Tyr1 hydroxyl‐group in the interaction with μ and δ opioid receptors. In the present study, the effect of various substituents (‐NH2, ‐NO2, ‐CN, ‐CH3, ‐COOH, ‐COCH3, ‐CONH2) introduced in the para‐position of the Phe1‐residue of H‐Phe‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 on the in vitro opioid activity profile was examined. Most analogs showed enhanced μ and δ agonist potencies in the two bioassays, except for the Phe(pCOOH)1‐analog, which was weakly active, probably as a consequence of the negative charge. The most potent compounds were the Phe(pCOH3)1‐ and the Phe(pCONH2)1‐analogs. The latter compound showed subnanomolar μ and δ agonist potencies and represents the most potent enkephalin analog lacking the Tyr1 hydroxyl‐group reported to date. Taken together, these results indicate that various substituents introduced in the para‐position of Phe1 enhance opioid activity via hydrogen bonding or hydrophobic interactions with the receptor. Comparison with existing structure‐activity relationship on phenolic hydroxyl replacements in morphinans indicates that these nonpeptide opiates and some of the cyclic enkephalin analogs described here may have different modes of binding to the receptor.  相似文献   

6.
Abstract: Endomorphin‐2 (Tyr‐Pro‐Phe‐Phe‐NH2) binds with high affinity and selectivity to the μ‐opioid receptor. In the present study, [125I]endomorphin‐2 has been used to characterize μ‐opioid‐binding sites on transplantable mouse mammary adenocarcinoma cells. Cold saturation experiments performed with [125I]endomorphin‐2 (1 nm ) show biphasic binding curves in Scatchard coordinates. One component represents high affinity and low capacity (Kd = 18.79 ± 1.13 nm , Bmax = 635 ± 24 fmol/mg protein) and the other shows low affinity and higher capacity (Kd = 7.67 ± 0.81 μm , Bmax = 157 ± 13 pmol/mg protein) binding sites. The rank order of agonists competing for the [125I]endomorphin‐2 binding site was [d ‐1‐Nal3]morphiceptin > endomorphin‐2 ? [d ‐Phe3]morphiceptin > morphiceptin > [d ‐1‐Nal3]endomorphin‐2, indicating binding of these peptides to μ‐opioid receptors. The uptake of 131I‐labeled peptides administered intraperitoneally to tumor‐bearing mice was also investigated. The highest accumulation in the tumor was observed for [d ‐1‐Nal3]morphiceptin, which reached the value of 8.19 ± 1.14% dose/g tissue.  相似文献   

7.
Analogues of the opioid peptides H‐Tyr‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 (non‐selective), H‐Tyr‐d ‐Arg‐Phe‐Lys‐NH2 (μ‐selective) and dynorphin A(1‐11)‐NH2 (κ‐selective) containing 4′‐[N‐((4′‐phenyl)‐phenethyl)carboxamido]phenylanine (Bcp) in place of Tyr1 were synthesized. All three Bcp1‐opioid peptides retained high μ opioid receptor binding affinity, but showed very significant differences in the opioid receptor selectivity profiles as compared with the corresponding Tyr1‐containing parent peptides. The cyclic peptide H‐Bcp‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 turned out to be an extraordinarily potent, μ‐selective opioid agonist, whereas the Bcp1‐analogue of dynorphin A(1‐11)‐NH2 displayed partial agonism at the μ receptor. The obtained results suggest that the large biphenylethyl substituent contained in these compounds may engage in a hydrophobic interaction with a receptor subsite and thereby may play a role in the ligand’s ability to induce a specific receptor conformation or to bind to a distinct receptor conformation in a situation of conformational receptor heterogeneity.  相似文献   

8.
Abstract: The dermorphin‐derived tetrapeptide H‐Dmt‐d ‐Arg‐Phe‐Lys‐NH2 (Dmt = 2′,6′‐dimethyltyrosine) ([Dmt1]DALDA) is a highly potent and selective μ‐opioid agonist capable of crossing the blood–brain barrier and producing a potent, centrally mediated analgesic effect when given systemically. For the purpose of biodistribution studies by fluorescence techniques, [Dmt1]DALDA analogues containing various fluorescent labels [dansyl, anthraniloyl (atn), fluorescein, or 6‐dimethylamino‐2′‐naphthoyl] in several different locations of the peptide were synthesized and characterized in vitro in the guinea‐pig ileum and mouse vas deferens assays, and in μ‐, δ‐ and κ‐opioid receptor‐binding assays. The analogues showed various degrees of μ receptor‐binding selectivity, but all of them were less μ‐selective than the [Dmt1]DALDA parent peptide. Most analogues retained potent, full μ‐agonist activity, except for one with fluorescein attached at the C‐terminus ( 3a ) (partial μ‐agonist) and one containing β‐(6′‐dimethylamino‐2′‐naphthoyl)alanine (aladan) in place of Phe3 ( 4 ) (μ‐ and κ‐antagonist). The obtained data indicate that the receptor‐binding affinity, receptor selectivity and intrinsic efficacy of the prepared analogues vary very significantly, depending on the type of fluorescent label used and on its location in the peptide. The results suggest that the biological activity profile of fluorescence‐labeled peptide analogues should always be carefully determined prior to their use in biodistribution studies or other studies. One of the analogues containing the atn group ( 2a ) proved highly useful in a study of cellular uptake and intracellular distribution by confocal laser scanning microscopy.  相似文献   

9.
This article describes new deltorphin I analogs in which phenylalanine residues were replaced by the corresponding (R) or (S)‐α‐benzyl‐β‐azidoalanine, α‐benzyl‐β‐(1‐pyrrolidinyl)alanine, α‐benzyl‐β‐(1‐piperidinyl)alanine, and α‐benzyl‐β‐(4‐morpholinyl)‐alanine residues. The potency and selectivity of the new analogs were evaluated by a competitive receptor binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). The affinity of analogs containing (R) or (S)‐α‐benzyl‐β‐azidoalanine in position 3 to δ‐receptors strongly depended on the chirality of the α,α‐disubstituted residue. The conformational behavior of peptides modified with (R) or (S)‐α‐benzyl‐β‐(1‐piperidinyl)Ala, which displays the opposite selectivity, was analyzed by 1H and 13C NMR. The μ‐selective Tyr‐d ‐Ala‐(R)‐α‐benzyl‐β‐(1‐piperidinyl)Ala‐Asp‐Val‐Val‐Gly‐NH2 lacks the helical conformation observed in the δ‐selective Tyr‐d ‐Ala‐(S)‐α‐benzyl‐β‐(1‐piperidinyl)Ala‐Asp‐Val‐Val‐Gly‐NH2. Our results support the proposal that differences between δ‐ and μ‐selective opioid peptides are attributable to the presence or absence of a spatial overlap between the N‐terminal message domain and the C‐terminal address domain.  相似文献   

10.
Abstract: Dynorphin A (Dyn A), a 17 amino acid peptide H‐Tyr‐Gly‐Gly‐Phe‐Leu‐Arg‐Arg‐Ile‐Arg‐Pro‐Lys‐Leu‐Lys‐Trp‐Asp‐Asn‐Gln‐OH, is a potent opioid peptide which interacts preferentially with κ‐opioid receptors. Research in the development of selective and potent opioid peptide ligands for the κ‐receptor is important in mediating analgesia. Several cyclic disulphide bridge‐containing peptide analogues of Dyn A, which were conformationally constrained in the putative message or address segment of the opioid ligand, were designed, synthesized and assayed. To further investigate the conformational and topographical requirements for the residues in positions 5 and 11 of these analogues, a systematic series of Dyn A1?11‐NH2 cyclic analogues incorporating the sulphydryl‐containing amino acids l ‐ and d ‐Cys and l ‐ and d ‐Pen in positions 5 and 11 were synthesized and assayed. Cyclic lactam peptide analogues were also synthesized and assayed. Several of these cyclic analogues, retained the same affinity and selectivity (vs. the μ‐ and δ‐receptors) as the parent Dyn A1?11‐NH2 peptide in the guinea‐pig brain (GPB), but exhibited a much lower activity in the guinea‐pig ileum (GPI), thus leading to centrally vs. peripherally selective peptides. Studies of the structure–activity relationship of Dyn A peptide provide new insights into the importance of each amino acid residue (and their configurations) in Dyn A analogues for high potency and good selectivity at κ‐opioid receptors. We report herein the progress towards the development of Dyn A peptide ligands, which can act as agonists or antagonists at cell surface receptors that modulate cell function and animal behaviour using various approaches to rational peptide ligand‐based drug design.  相似文献   

11.
Abstract: The synthesis of conformationally restricted dipeptidic moieties 4‐amino‐1,2,4,5‐tetrahydro‐2‐benzazepin‐3‐one (Aba)‐Gly ([(4S)‐amino‐3‐oxo‐1,2,4,5‐tetrahydro‐1H‐2‐benzazepin‐2‐yl]‐acetic acid) and 8‐hydroxy‐4‐amino‐1,2,4,5‐tetrahydro‐2‐benzazepin‐3‐one (Hba)‐d ‐Ala ([(4S)‐amino‐8‐hydroxy‐3‐oxo‐1,2,4,5‐tetrahydro‐benzo[c]azepin‐2‐yl]‐propionic acid) was based on a synthetic strategy that uses an oxazolidinone as an N‐acyliminium precursor. Introducing these Aba scaffolds into the N‐terminal tetrapeptide of dermorphin (H‐Tyr‐d ‐Ala‐Phe‐Gly‐Tyr‐Pro‐Ser‐NH2)‐induced remarkable shifts in affinity and selectivity towards the opioid μ‐ and δ‐receptors. This paper provides the synthesis and biological in vitro and in vivo evaluation of constricted analogues of the N‐terminal tetrapeptide H‐Tyr‐d ‐Ala‐Phe‐Gly‐NH2, which is the minimal subunit of dermorphin needed for dermorphin‐like opiate activity.  相似文献   

12.
Abstract: The glycopeptide hormone catfish somatostatin (somatostatin‐22) has the amino acid sequence H‐Asp‐Asn‐Thr‐Val‐Thr‐Ser‐Lys‐Pro‐Leu‐Asn‐Cys‐Met‐Asn‐Tyr‐Phe‐Trp‐Lys‐Ser‐Arg‐Thr‐Ala‐Cys‐OH; it includes a cyclic disulfide connecting the two Cys residues, and the major naturally occurring glycoform contains d ‐GalNAc and d ‐Gal O‐glycosidically linked to Thr5. The linear sequence was assembled smoothly starting with an Fmoc‐Cys(Trt)‐PAC‐PEG‐PS support, using stepwise Fmoc solid‐phase chemistry. In addition to the nonglycosylated peptide, two glycosylated forms of somatostatin‐22 were accessed by incorporating as building blocks, respectively, NαFmoc‐Thr(Ac3‐α‐D‐GalNAc)‐OH and Nα‐Fmoc‐Thr(Ac4‐β‐D‐Gal‐(1→3)‐Ac2‐α‐D‐GalNAc)‐OH. Acidolytic deprotection/cleavage of these peptidyl‐resins with trifluoroacetic acid/scavenger cocktails gave the corresponding acetyl‐protected glycopeptides with free sulfhydryl functions. Deacetylation, by methanolysis in the presence of catalytic sodium methoxide, was followed by mild oxidation at pH 7, mediated by Nαdithiasuccinoyl (Dts)‐glycine, to provide the desired monomeric cyclic disulfides. The purified peptides were tested for binding affinities to a panel of cloned human somatostatin receptor subtypes; in several cases, presence of the disaccharide moiety resulted in 2‐fold tighter binding.  相似文献   

13.
The previously described cyclic, delta opioid receptor-selective tetrapeptide H-Tyr-d -Cys-Phe-d -Pen-OH, where Pen, penicillamine, is β,β-dimethylcysteine, was modified at residues 2 and 4 by varying combinations of d - and l -Cys and d - and l -Pen, and effects on mu and delta opioid receptor binding affinities and on potency in the mouse vas deferens (MVD) smooth muscle assay were evaluated. A comparison was drawn between consequences of alterations in this series of analogs and those of analogous modifications in the related cyclic pentapeptide series which includes the highly delta receptor-selective [d -Pen2,d -Pen5]enke-phalin, DPDPE. Unlike effects observed in the cyclic pentapeptide series, the mu receptor binding affinities of the cyclic tetrapeptides are not dramatically influenced by substitution of Pen for Cys at residue 2. Conversely, while binding of the pentapeptides is only slightly affected by alteration of the chirality of the carboxy-terminal residue, modification of stereochemistry at the carboxy terminus in the tetrapeptides critically alters binding behavior at both mu and delta sites. In contrast with the pentapeptide series, the tetrapeptides appear to be highly dependent upon primary sequence for binding and activity, as only the lead compound binds with high affinity to the delta site. Results suggest that the less flexible cyclic tetrapeptides, lacking the Gly3 residue, display more stringent structural requirements for binding and activity than do the corresponding cyclic pentapeptides.  相似文献   

14.
Abstract: A series of position 4‐substituted endomorphin‐2 (Tyr‐Pro‐Phe‐Phe‐NH2) analogs containing 3‐(1‐naphthyl)‐alanine (1‐Nal) or 3‐(2‐naphthyl)‐alanine (2‐Nal) in l ‐ or d ‐configuration, was synthesized. The opioid activity profiles of these peptides were determined in the μ‐opioid receptor representative binding assay and in the Guinea‐Pig Ileum assay/Mouse Vas Deferens assay (GPI/MVD) bioassays in vitro, as well as in the mouse hot‐plate test of analgesia in vivo. In the binding assay the affinity of all new analogs for the μ‐opioid receptor was reduced compared with endomorphin‐2. The two most potent analogs were [d ‐1‐Nal4]‐ and [d ‐2‐Nal4]endomorphin‐2, with IC50 values 14 ± 1.25 and 19 ± 2.1 nm , respectively, compared with 1.9 ± 0.21 nm for endomorphin‐2. In the GPI assay these analogs were found to be weak antagonists and they were inactive in the MVD assay. The in vitro GPI assay results were in agreement with those obtained in the in vivo hot‐plate test. Antinociception induced by endomorphin‐2 was reversed by concomitant intracerebroventricula (i.c.v.) administration of [d ‐1‐Nal4]‐ and [d ‐2‐Nal4]‐endomorphin‐2, indicating that these analogs were μ‐opioid antagonists. Their antagonist activity was compared with that of naloxone. At a dose 5 μg per animal naloxone almost completely inhibited antinociceptive action of endomorphin‐2, while [d ‐1‐Nal4]endomorphin‐2 in about 46%.  相似文献   

15.
Abstract: To investigate the molecular basis for the interaction of the χ‐constrained conformation of melanotropin peptide with the human melanocortin receptors, a series of β‐substituted proline analogs were synthesized and incorporated into the Ac‐Nle‐c[Asp‐His‐d ‐Phe‐Arg‐Trp‐Lys]‐NH2 (MT‐II) template at the His6 and d ‐Phe7 positions. It was found that the binding affinities generally diminished as the steric bulk of the p‐substituents of the 3‐phenylproline residues increased. From (2S, 3R)‐3‐phenyl‐Pro6 to (2S, 3R)‐3‐(p‐methoxyphenyl)‐Pro6 analogs the binding affinity decreased 23‐fold at the human melanocortin‐3 receptor (hMC3R), 17‐fold at the hMC4R, and eight‐fold at the hMC5R, but selectivity for the hMC5R increased. In addition, the substitution of the d ‐Phe7 residue with a (2R, 3S)‐3‐phenyl‐Pro resulted in greatly reduced binding affinity (103–105) at these melanocortin receptors. Macromodel's Large Scale Low Mode (LLMOD) with OPLS‐AA force field simulations revealed that both MT‐II and SHU‐9119 share a similar backbone conformation and topography with the exception of the orientation of the side chains of d ‐Phe7/d ‐Nal (2′)7 in χ space. Introduction of the dihedrally constrained phenylproline analogs into the His6 position (analogs 2 – 6 ) caused topographical changes that might be responsible for the lower binding affinities. Our findings indicate that hMC3 and hMC4 receptors are more sensitive to steric effects and conformational constraints than the hMC5 receptor. This is the first example for melanocortin receptor selectivity where the propensity of steric interactions in χ space of β‐modified Pro6 analogs of MT‐II has been shown to play a critical role for binding as well as bioefficacy of melanotropins at hMC3 and hMC4 receptors, but not at the hMC5 receptor.  相似文献   

16.
Abstract: There is evidence to indicate that opioid compounds with mixed μ agonist/δ antagonist properties are analgesics with low propensity to produce tolerance and physical dependence. A chimeric peptide containing the potent and selective μ agonist H‐Dmt‐D‐Arg‐Phe‐Lys‐NH2 ([Dmt1]DALDA) (Dmt = 2′,6′‐dimethyltyrosine) and the potent and selective δ antagonist H‐Tyr‐TicΨ[CH2‐NH]Cha‐Phe‐OH (TICP[Ψ]) (Cha = cyclohexylalanine), connected ‘tail‐to‐tail’ via a short linker, was synthesized using a combination of solid‐phase and solution techniques. The resulting peptide, H‐Dmt→D‐Arg→Phe→Lys‐NH‐CH2‐CH2‐NH‐Phe←Cha[NH‐CH2]ΨTic←Tyr‐H, showed the expected μ agonist/δ antagonist profile in the guinea‐pig ileum and mouse vas deferens assays. Its μ and δ receptor binding affinities were in the low nanomolar range, as determined in rat brain membrane binding assays.  相似文献   

17.
Abstract: In an attempt to identify potential peptide‐based affinity labels for opioid receptors, endomorphin‐2 (Tyr‐Pro‐Phe‐PheNH2), a potent and selective endogenous ligand for µ‐opioid receptors, was chosen as the parent peptide for modification. The tetrapeptide analogs were prepared using standard Fmoc‐solid phase peptide synthesis in conjunction with incorporation of Fmoc‐Phe(p‐NHAlloc) and modification of the p‐amino group. The electrophilic groups isothiocyanate and bromoacetamide were introduced into the para position on either Phe3 or Phe4; the corresponding free amine‐containing peptides were also prepared for comparison. The peptides bearing an affinity label group and their free amine analogs were evaluated in a radioligand‐binding assay using Chinese hamster ovary (CHO) cells expressing µ‐ and δ‐opioid receptors. Modification on Phe4 was better tolerated than on Phe3 for µ‐receptor binding. Among the analogs tested, [Phe(p‐NH2)4]endomorphin‐2 showed the highest affinity (IC50 = 37 nm ) for µ‐receptors. The Phe(p‐NHCOCH2Br)4 analog displayed the highest µ‐receptor affinity (IC50 = 158 nm ) among the peptides containing an affinity label group. Most of the compounds exhibited negligible binding affinity for δ‐receptors, similar to the parent peptide.  相似文献   

18.
Biphalin, a synthetic opioid peptide with a broad affinity for all opioid receptors (δ, μ, and κ) and high antinociceptive activity, has been under extensive study as a potential analgesic drug. This study presents the synthesis and biological properties of four new analogues of biphalin containing amphiphilic α‐alkylserines in position 2 and 2′. The incorporation of bulky α,α‐disubstituted amino acids in the peptide chain using standard peptide chemistry is often unsuccessful. We synthesized depsipeptides, and then, the desired peptides were obtained by internal O,N‐migration of the acyl residue from the hydroxyl to the amino group under mild basic conditions. The potency and selectivity of the new analogues were evaluated by a competitive receptor‐binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). Their binding affinity is strongly dependent on the chirality of α‐alkylserine, as analogues containing (R)‐α‐alkylserines displayed higher μ receptor affinity and selectivity than those incorporating the (S)‐isomers.  相似文献   

19.
Abstract: Replacement of Phe3 in the endogenous δ‐opioid selective peptide deltorphin I with four optically pure stereoisomers of the topographically constrained, highly hydrophobic novel amino acid β‐isopropylphenylalanine (β‐iPrPhe) produced four pharmacologically different deltorphin I peptidomimetics. Radiolabeled ligand‐binding assays and in vitro biological evaluation indicate that the stereoconfiguration of the iPrPhe residue plays a crucial role in determining the binding affinity, bioactivity and selectivity of [β‐iPrPhe3]deltorphin I analogs: a (2S,3R) configuration of the iPrPhe3 residue in [β‐iPrPhe3]deltorphin I provided the most desirable biological properties with binding affinity (IC50 = 2 n m ), bioassay potency (IC50 = 1.23 n m in MVD assay) and exceptional selectivity for the δ‐opioid receptor over the µ‐opioid receptor (30 000). Further conformational studies based on two‐dimensional NMR and computer‐assisted molecular modeling suggested a model for the possible bioactive conformation in which the Tyr1 and (2S,3R)‐β‐iPrPhe3 residues adopt trans side‐chain conformations, and the linear peptide backbone favors a distorted β‐turn conformation.  相似文献   

20.
Hydrogen sulphide (H2S) is generated endogenously from l ‐cysteine (l ‐Cys) by the enzymes cystathionine‐β‐synthase (CBS) and cystathionine‐γ‐lyase (CSE). In addition, l ‐Cys is commonly used as a precursor in the food and pharmaceutical industries. The aim of the present study is to determine whether l ‐Cys regulates intestinal nutrient transport. To that end, the presence of CBS and CSE in the jejunum epithelium was assessed by immunohistochemistry, Western blotting and the methylene blue assay. In addition, in vivo l ‐Cys (100 mg/kg, administered immediately after the glucose load) significantly increased blood glucose levels 30 min after the oral administration of glucose to mice. This effect of l ‐Cys was completely blocked by amino‐oxyacetic acid (AOA; 50 mg/kg; administered at the same time as l ‐Cys) an inhibitor of CBS. Measurements of the short‐circuit current (Isc) in the rat jejunum epithelium revealed that l ‐Cys (1 mmol/L; 6 min before the administration of l ‐alanine) enhances Na+‐coupled l ‐alanine or glucose transport, and that this effect is inhibited by AOA (1 mmol/L;10 min before the administration of l ‐Cys), but not d ,l ‐propargylglycine (PAG;1 mmol/L; 10 min before the administration of l ‐Cys), a CSE inhibitor. Notably, l ‐Cys‐evoked enhancement of nutrient transport was alleviated by glibenclamide (Gli;0.1 mmol/L; 10 min before the administration of l ‐Cys), a K+ channel blocker. Together, the data indicate that l ‐Cys enhances jejunal nutrient transport, suggesting a new approach to future treatment of nutrition‐related maladies, including a range of serious health consequences linked to undernutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号