首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Endomorphin‐2 (Tyr‐Pro‐Phe‐Phe‐NH2) binds with high affinity and selectivity to the μ‐opioid receptor. In the present study, [125I]endomorphin‐2 has been used to characterize μ‐opioid‐binding sites on transplantable mouse mammary adenocarcinoma cells. Cold saturation experiments performed with [125I]endomorphin‐2 (1 nm ) show biphasic binding curves in Scatchard coordinates. One component represents high affinity and low capacity (Kd = 18.79 ± 1.13 nm , Bmax = 635 ± 24 fmol/mg protein) and the other shows low affinity and higher capacity (Kd = 7.67 ± 0.81 μm , Bmax = 157 ± 13 pmol/mg protein) binding sites. The rank order of agonists competing for the [125I]endomorphin‐2 binding site was [d ‐1‐Nal3]morphiceptin > endomorphin‐2 ? [d ‐Phe3]morphiceptin > morphiceptin > [d ‐1‐Nal3]endomorphin‐2, indicating binding of these peptides to μ‐opioid receptors. The uptake of 131I‐labeled peptides administered intraperitoneally to tumor‐bearing mice was also investigated. The highest accumulation in the tumor was observed for [d ‐1‐Nal3]morphiceptin, which reached the value of 8.19 ± 1.14% dose/g tissue.  相似文献   

2.
Abstract: The cyclic enkephalin analog H‐Tyr‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 is a highly potent opioid agonist with IC50s of 35 pm and 19 pm in the guinea‐pig ileum (GPI) and mouse vas deferens (MVD) assays, respectively. The Phe1‐analog of this peptide showed 370‐fold and 6790‐fold lower agonist potency in the GPI and MVD assays, respectively, indicating the importance of the Tyr1 hydroxyl‐group in the interaction with μ and δ opioid receptors. In the present study, the effect of various substituents (‐NH2, ‐NO2, ‐CN, ‐CH3, ‐COOH, ‐COCH3, ‐CONH2) introduced in the para‐position of the Phe1‐residue of H‐Phe‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 on the in vitro opioid activity profile was examined. Most analogs showed enhanced μ and δ agonist potencies in the two bioassays, except for the Phe(pCOOH)1‐analog, which was weakly active, probably as a consequence of the negative charge. The most potent compounds were the Phe(pCOH3)1‐ and the Phe(pCONH2)1‐analogs. The latter compound showed subnanomolar μ and δ agonist potencies and represents the most potent enkephalin analog lacking the Tyr1 hydroxyl‐group reported to date. Taken together, these results indicate that various substituents introduced in the para‐position of Phe1 enhance opioid activity via hydrogen bonding or hydrophobic interactions with the receptor. Comparison with existing structure‐activity relationship on phenolic hydroxyl replacements in morphinans indicates that these nonpeptide opiates and some of the cyclic enkephalin analogs described here may have different modes of binding to the receptor.  相似文献   

3.
Abstract: Introduction of the naphthylalanine residue into either position 3 of arginine vasopressin (AVP), or its analogs results in peptides with interesting pharmacological properties. The single substituted analog of AVP with l ‐2‐Nal in position 3 causes moderate antiduretic activity, whereas [Mpa1, (l ‐1‐Nal)3, (d ‐Arg)8] VP and [Mpa1, (l ‐2‐Nal)3, (d ‐Arg)8] VP are potent and selective V2 agonists. Moreover [(l ‐2‐Nal)3, (d ‐Arg)8] VP is among the most potent and selective antagonists of V1a receptors. In this study we carried out conformational calculations on [(l ‐1‐Nal)3] AVP, [(l ‐2‐Nal)3] AVP, [(l ‐1‐Nal)3, (d ‐Arg)8] VP, [(l ‐2‐Nal)3, (d ‐Arg)8] VP, [Mpa1, (l ‐1‐Nal)3, (d ‐Arg)8] VP, [Mpa1, (l ‐2‐Nal)3, (d ‐Arg)8] VP, using the ECEPP/3 force field with and without including hydration to simulate aqueous and nonpolar environments. It was found that in all six compound studied, the low‐energy conformations have common geometry and relative energies. Therefore, the modifications of the Phe in position 3 influence the binding to the receptor by changing the size of the third residue, rather than by changing the conformational space. The lowest‐energy conformations in the presence and absence of water had β‐turns at residues Phe3‐Gln4 and Gln4‐Asn5 and Gln4‐Asn5, respectively. The conformation at the Gln4‐Asn5 turn was most similar to the crystal structure of the pressinoic acid (the cyclic moiety of vasopressin).  相似文献   

4.
Abstract: A series of potential affinity label derivatives of the amphibian opioid peptide [d ‐Ala2]deltorphin I were prepared by incorporation at the para position of Phe3 (in the ‘message’ sequence) or Phe5 (in the ‘address’ sequence) of an electrophilic group (i.e. isothiocyanate or bromoacetamide). The introduction of the electrophile was accomplished by incorporating Fmoc‐Phe(p‐NHAlloc) into the peptide, followed later in the synthesis by selective deprotection of the Alloc group and modification of the resulting amine. While para substitution decreased the δ‐opioid receptor affinity, selected analogs retained nanomolar affinity for δ receptors. [d ‐Ala2,Phe(p‐NCS)3]deltorphin I exhibited moderate affinity (IC50 = 83 nm ) and high selectivity for δ receptors, while the corresponding amine and bromoacetamide derivatives showed pronounced decreases in δ‐receptor affinity (80‐ and >1200‐fold, respectively, compared with [d ‐Ala2]deltorphin I). In the ‘address’ sequence, the Phe(p‐NH2)5 derivative showed the highest δ‐receptor affinity (IC50 = 32 nm ), while the Phe(p‐NHCOCH2Br)5 and Phe(p‐NCS)5 peptides displayed four‐ and tenfold lower δ‐receptor affinities, respectively. [d ‐Ala2,Phe(p‐NCS)3]deltorphin I exhibited wash‐resistant inhibition of [3H][d ‐Pen2,D‐Pen5]enkephalin (DPDPE) binding to δ receptors at a concentration of 80 nm . [d ‐Ala2, Phe(p‐NCS)3]deltorphin I represents the first affinity label derivative of one of the potent and selective amphibian opioid peptides, and the first electrophilic affinity label derivative of an agonist containing the reactive functionality in the ‘message’ sequence of the peptide.  相似文献   

5.
Abstract: In an attempt to identify potential peptide‐based affinity labels for opioid receptors, endomorphin‐2 (Tyr‐Pro‐Phe‐PheNH2), a potent and selective endogenous ligand for µ‐opioid receptors, was chosen as the parent peptide for modification. The tetrapeptide analogs were prepared using standard Fmoc‐solid phase peptide synthesis in conjunction with incorporation of Fmoc‐Phe(p‐NHAlloc) and modification of the p‐amino group. The electrophilic groups isothiocyanate and bromoacetamide were introduced into the para position on either Phe3 or Phe4; the corresponding free amine‐containing peptides were also prepared for comparison. The peptides bearing an affinity label group and their free amine analogs were evaluated in a radioligand‐binding assay using Chinese hamster ovary (CHO) cells expressing µ‐ and δ‐opioid receptors. Modification on Phe4 was better tolerated than on Phe3 for µ‐receptor binding. Among the analogs tested, [Phe(p‐NH2)4]endomorphin‐2 showed the highest affinity (IC50 = 37 nm ) for µ‐receptors. The Phe(p‐NHCOCH2Br)4 analog displayed the highest µ‐receptor affinity (IC50 = 158 nm ) among the peptides containing an affinity label group. Most of the compounds exhibited negligible binding affinity for δ‐receptors, similar to the parent peptide.  相似文献   

6.
Abstract: A series of cyclic, disulfide‐ or dithioether‐containing tetrapeptides based on previously reported potent μ‐ and δ‐selective analogs has been explored with the aim of improving their poor affinity to the κ‐opioid receptor. Specifically targeted were modifications of tetrapeptide residues 3 and 4, as they presumably interact with residues from transmembrane helices 6 and 7 and extracellular loop 3 that differ among the three receptors. Accordingly, tetrapeptides were synthesized with Phe3 replaced by aliphatic (Gly, Ala, Aib, Cha), basic (Lys, Arg, homo‐Arg), or aromatic sides chains (Trp, Tyr, p‐NH2Phe), and with d ‐Pen4 replaced by d ‐Cys4, and binding affinities to stably expressed μ‐, δ‐, and κ‐receptors were determined. In general, the resulting analogs failed to exhibit appreciable affinity for the κ‐receptor, with the exception of the tetrapeptide Tyr‐c[d ‐Cys‐Phe‐d ‐Cys]‐NH2, cyclized via a disulfide bond, which demonstrated high binding affinity toward all opioid receptors (Kiμ = 1.26 nm , Kiδ = 16.1 nm , Kiκ = 38.7 nm ). Modeling of the κ‐receptor/ligand complex in the active state reveals that the receptor‐binding pocket for residues 3 and 4 of the tetrapeptide ligands is smaller than that in the μ‐receptor and requires, for optimal fit, that the tripeptide cycle of the ligand assume a higher energy conformation. The magnitude of this energy penalty depends on the nature of the fourth residue of the peptide (d ‐Pen or d ‐Cys) and correlates well with the observed κ‐receptor binding affinity.  相似文献   

7.
Analogues of the opioid peptides H‐Tyr‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 (non‐selective), H‐Tyr‐d ‐Arg‐Phe‐Lys‐NH2 (μ‐selective) and dynorphin A(1‐11)‐NH2 (κ‐selective) containing 4′‐[N‐((4′‐phenyl)‐phenethyl)carboxamido]phenylanine (Bcp) in place of Tyr1 were synthesized. All three Bcp1‐opioid peptides retained high μ opioid receptor binding affinity, but showed very significant differences in the opioid receptor selectivity profiles as compared with the corresponding Tyr1‐containing parent peptides. The cyclic peptide H‐Bcp‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 turned out to be an extraordinarily potent, μ‐selective opioid agonist, whereas the Bcp1‐analogue of dynorphin A(1‐11)‐NH2 displayed partial agonism at the μ receptor. The obtained results suggest that the large biphenylethyl substituent contained in these compounds may engage in a hydrophobic interaction with a receptor subsite and thereby may play a role in the ligand’s ability to induce a specific receptor conformation or to bind to a distinct receptor conformation in a situation of conformational receptor heterogeneity.  相似文献   

8.
Abstract: A series of endomorphin‐1 (EM‐1) and endomorphin‐2 (EM‐2) analogues, containing non‐cyclic amino acids (Ala, d ‐Ala, β‐Ala, NMeAla, d ‐NMeAla or Sar) instead of Pro in position 2 was synthesized, where NMeAla = N‐methylalanine and Sar = N‐methylglycine, sarcosine. The opioid activity profiles of these peptides were determined in μ and δ opioid receptor (MOR and DOR)‐representative binding assays and bioassays in vitro, as well as in the mouse hot‐plate test in vivo. Finally, the degradation rates of all analogues in the presence of either rat brain homogenate or selected proteolytic enzymes were determined. Analogues of EM‐2 were generally more potent than the respective analogues of EM‐1. EM‐2 analogues with d ‐Ala or d ‐NMeAla were about twofold more potent than the parent peptide and were least prone to degradation by brain homogenate, dipeptydyl peptidase IV and aminopeptidase M. In the in vivo test, [d ‐Ala2]EM‐2 and [d ‐NMeAla2]EM‐2 showed much higher analgesic potency than EM‐2 which confirmed the usefulness of structural modifications in obtaining new leads for pain‐relief therapeutics.  相似文献   

9.
Abstract: We previously reported that the novel dynorphin A (Dyn A, Tyr‐Gly‐Gly‐Phe‐Leu‐Arg‐Arg‐Ile‐Arg‐Pro‐Lys‐Leu‐Lys‐Trp‐Asp‐Asn‐Gln) analog arodyn (Ac[Phe1,2,3,Arg4,d ‐Ala8]Dyn A‐(1–11)NH2, Bennett, M.A., Murray, T.F. & Aldrich, J.V. (2002) J. Med. Chem. vol. 45, pp. 5617–5619) is a κ opioid receptor‐selective peptide [Ki(κ) = 10 nm , Ki ratio (κ/μ/δ) = 1/174/583] which exhibits antagonist activity at κ opioid receptors. In this study, a series of arodyn analogs was prepared and evaluated to explore the structure–activity relationships (SAR) of this peptide; this included an alanine scan of the entire arodyn sequence, sequential isomeric d ‐amino acid substitution in the N‐terminal ‘message’ sequence, NMePhe substitution individually in positions 1–3, and modifications in position 1. The results for the Ala‐substituted derivatives indicated that Arg6 and Arg7 are the most important residues for arodyn's nanomolar binding affinity for κ opioid receptors. Ala substitution of the other basic residues (Arg4, Arg9 and Lys11) resulted in lower decreases in affinity for κ opioid receptors (three‐ to fivefold compared with arodyn). Of particular interest, while [Ala10]arodyn exhibits similar κ opioid receptor binding as arodyn, it displays higher κ vs. μ opioid receptor selectivity [Ki ratio (κ/μ) = 1/350] than arodyn because of a twofold loss in affinity at μ opioid receptors. Surprisingly, the Tyr1 analog exhibits a sevenfold decrease in κ opioid receptor affinity, indicating that arodyn displays significantly different SAR than Dyn A; [Tyr1]arodyn also unexpectedly exhibits inverse agonist activity in the adenylyl cyclase assay using Chinese hamster ovary cells stably expressing κ opioid receptors. Substitution of NMePhe in position 1 gave [NMePhe1]arodyn which exhibits high affinity [Ki(κ) = 4.56 nm ] and exceptional selectivity for κ opioid receptors [Ki ratio (κ/μ/δ) = 1/1100/>2170]. This peptide exhibits antagonistic activity in the adenylyl cyclase assay, reversing the agonism of 10 nm Dyn A‐(1–13)NH2. Thus [NMePhe1]arodyn is a highly κ opioid receptor‐selective antagonist that could be a useful pharmacological tool to study κ opioid receptor‐mediated activities.  相似文献   

10.
Abstract: Replacement of Phe3 in the endogenous δ‐opioid selective peptide deltorphin I with four optically pure stereoisomers of the topographically constrained, highly hydrophobic novel amino acid β‐isopropylphenylalanine (β‐iPrPhe) produced four pharmacologically different deltorphin I peptidomimetics. Radiolabeled ligand‐binding assays and in vitro biological evaluation indicate that the stereoconfiguration of the iPrPhe residue plays a crucial role in determining the binding affinity, bioactivity and selectivity of [β‐iPrPhe3]deltorphin I analogs: a (2S,3R) configuration of the iPrPhe3 residue in [β‐iPrPhe3]deltorphin I provided the most desirable biological properties with binding affinity (IC50 = 2 n m ), bioassay potency (IC50 = 1.23 n m in MVD assay) and exceptional selectivity for the δ‐opioid receptor over the µ‐opioid receptor (30 000). Further conformational studies based on two‐dimensional NMR and computer‐assisted molecular modeling suggested a model for the possible bioactive conformation in which the Tyr1 and (2S,3R)‐β‐iPrPhe3 residues adopt trans side‐chain conformations, and the linear peptide backbone favors a distorted β‐turn conformation.  相似文献   

11.
As part of a program aimed at the design of conformationally constrained analogs of glutamic acid, (+)‐2‐aminobicyclo[3.1.0]hexane‐2,6‐carboxylic acid ( 1 ), identified as a highly potent, selective, group II metabotropic glutamate receptor agonist has been synthesized and studied clinically. Heterocyclic analogs of 1 were subsequently synthesized in which the C‐2 methylene has been replaced by an oxygen atom ( 2 ) or a sulfur atom ( 3 ). C‐14 labeled isotopomers of 1 , 2 and 3 have been synthesized to facilitate pre‐clinical ADME studies. A tritium labeled isotopomer of 1 was also synthesized for use in in vitro experiments. A stable labeled isotopomer of rac‐1 was prepared for use as an internal standard for bioanalytical assays. The key step in each of these syntheses was the reaction of chiral ketone 4 , 5 or 6 with K14CN/(NH4)2CO3 using the Bucherer–Berg protocol. In the preparation of the stable labeled isotopomer, rac‐4 ‐[13 C 2] was prepared in two steps from ethyl bromoacetate‐[UL‐13C2]; subsequent reaction of rac‐4 ‐[13 C 2] with K13CN/15NH4Cl/Na2CO3, followed by hydrolysis of the hydantoin yielded rac‐1 ‐[13 C 3,15 N ]. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract: To investigate the molecular basis for the interaction of the χ‐constrained conformation of melanotropin peptide with the human melanocortin receptors, a series of β‐substituted proline analogs were synthesized and incorporated into the Ac‐Nle‐c[Asp‐His‐d ‐Phe‐Arg‐Trp‐Lys]‐NH2 (MT‐II) template at the His6 and d ‐Phe7 positions. It was found that the binding affinities generally diminished as the steric bulk of the p‐substituents of the 3‐phenylproline residues increased. From (2S, 3R)‐3‐phenyl‐Pro6 to (2S, 3R)‐3‐(p‐methoxyphenyl)‐Pro6 analogs the binding affinity decreased 23‐fold at the human melanocortin‐3 receptor (hMC3R), 17‐fold at the hMC4R, and eight‐fold at the hMC5R, but selectivity for the hMC5R increased. In addition, the substitution of the d ‐Phe7 residue with a (2R, 3S)‐3‐phenyl‐Pro resulted in greatly reduced binding affinity (103–105) at these melanocortin receptors. Macromodel's Large Scale Low Mode (LLMOD) with OPLS‐AA force field simulations revealed that both MT‐II and SHU‐9119 share a similar backbone conformation and topography with the exception of the orientation of the side chains of d ‐Phe7/d ‐Nal (2′)7 in χ space. Introduction of the dihedrally constrained phenylproline analogs into the His6 position (analogs 2 – 6 ) caused topographical changes that might be responsible for the lower binding affinities. Our findings indicate that hMC3 and hMC4 receptors are more sensitive to steric effects and conformational constraints than the hMC5 receptor. This is the first example for melanocortin receptor selectivity where the propensity of steric interactions in χ space of β‐modified Pro6 analogs of MT‐II has been shown to play a critical role for binding as well as bioefficacy of melanotropins at hMC3 and hMC4 receptors, but not at the hMC5 receptor.  相似文献   

13.
Synthesis of [15N4] purine labeled cytokinine glycosides derived from zeatins and topolins containing a 9‐β‐d , 7‐β‐d ‐glucopyranosyl, or 9‐β‐d ‐ribofuranosyl group is described. These N6‐substituted adenine derivatives are intended as internal analytic standards for phytohormone analysis. All labeled compounds were prepared from 6‐chloro[15N4]purine ( 1 ). The equilibrium reaction of 1 with acetobromo‐α‐d ‐glucose gave isomeric 7‐β‐d ( 3 ) and 9‐β‐d ( 4 ) chloro glucosyl precursors, which were treated with the corresponding amines to get desired labeled cytokinin 7‐β‐d ( 6 ) and 9‐β‐d ( 5 ) glucopyranosides. Cytokinins containing 9‐β‐d ‐ribofuranosyl group ( 8 ) were obtained by direct enzymatic transglycosylation reaction of cytokinins ( 7 ) prepared from 6‐chloro[15N4] purine ( 1 ).  相似文献   

14.
A series of [3-tryptophan]-β-casomorphin-5([Trp3]-β-CM-5) analogs were investigated by circular dichroism (CD) and fluorescence spectroscopy to explore their structure-conformation properties in solution. In addition, the comparative opioid activities of these compounds were evaluated using the in vitro guinea pig ileum (GPI) and mouse vas deferens (MVD) assays. Specifically, the pentapeptide sequence of [Trp3]-β-CM-5, H-Tyr-Pro-Trp-Pro-Gly-OH (I) was modified at Pro-2 and Pro-4 by d -Pro substitutions to provide two diastereometric analogs, [Trp3-d -Pro-4]-β-CM-5 (II) and [d -Pro2,4,Trp3]-β-CM-5 (III). In the GPI and MVD assays, β-CM-5 effected IC50 values of 1.3 μm and 8.9 μm , respectively, which confirmed its known μ/δ-selectivity on these two peripheral opioid receptor subtypes. The potencies of compounds I, II, and III were 0.2, 2.0, and < 0.005 relative to β-CM-5 on the GPI assay. Compounds I and II exhibited pronounced μ/δ-selectivities (> 18.9- and 12.4-fold respectively), whereas compound III was essentially inactive in both the GPI and MVD assays. CD studies of β-CM-5 and its [Trp3]-β-CM-5 analogs showed striking differences in their near-UV and far-UV spectra in aqueous or organic solvents. In the far UV CD spectra, weak (20%) α-helicity (maximum at 193 nm and minima at 208 and 222 nm) for β-CM-5 was obtained in trifluoroethanol (TFE); however, none of the [Trp3]-β-CM-5 analogs showed such CD bands. Of potential relevance to γ-turn or C7 secondary structure was the observation of a strong negative band at 245 nm for compounds II and III which was not solvent-dependent in H2O or TFE, whereas compound I showed this CD band exclusively in TFE. In the near-UV CD at 275 nm (Trp electronic transition), the relative order of intensities of this band were determined for the [Trp3]-β-CM-5 compounds to be II > I > III, which was identical to their relative biological potencies in both the GPI and MVD assays. Fluorescence energy transfer (FET) experiments of compounds I-III provided the intramolecular distances (r) between their Tyr (donor) to Trp (acceptor) side-chains, by the Förster method, and were as follows: [Trp3]-β-CM-5, r = 10.6Å; [Trp3, d -Pro4]-β-CM-5, r = 9.6Å; and [d -Pro2,4,Trp3]-β-CM-5, r = 11.0Å. A rank order correlation existed between the Tyr-Trp intramolecular distances and biological activity with shorter distance corresponding to higher biological potency. Furthermore, based on the fluorescence lifetime data analysis (Globals software) of the [Trp3]-β-CM-5 analogs, which were best fitted to a double exponential decay model, the relative ranking of long (> 1.5 ns) lifetime fractions of these three compounds was II > I > III. In summary, detailed spectroscopic analysis of three [Trp3]-β-CM-5 diastereomeric analogs by CD and FET have provided intriguing data indicating a possible structure conformation-activity relationship among these μ/δ-selective opioid-mimetic compounds.  相似文献   

15.
Abstract: The synthesis of conformationally restricted dipeptidic moieties 4‐amino‐1,2,4,5‐tetrahydro‐2‐benzazepin‐3‐one (Aba)‐Gly ([(4S)‐amino‐3‐oxo‐1,2,4,5‐tetrahydro‐1H‐2‐benzazepin‐2‐yl]‐acetic acid) and 8‐hydroxy‐4‐amino‐1,2,4,5‐tetrahydro‐2‐benzazepin‐3‐one (Hba)‐d ‐Ala ([(4S)‐amino‐8‐hydroxy‐3‐oxo‐1,2,4,5‐tetrahydro‐benzo[c]azepin‐2‐yl]‐propionic acid) was based on a synthetic strategy that uses an oxazolidinone as an N‐acyliminium precursor. Introducing these Aba scaffolds into the N‐terminal tetrapeptide of dermorphin (H‐Tyr‐d ‐Ala‐Phe‐Gly‐Tyr‐Pro‐Ser‐NH2)‐induced remarkable shifts in affinity and selectivity towards the opioid μ‐ and δ‐receptors. This paper provides the synthesis and biological in vitro and in vivo evaluation of constricted analogues of the N‐terminal tetrapeptide H‐Tyr‐d ‐Ala‐Phe‐Gly‐NH2, which is the minimal subunit of dermorphin needed for dermorphin‐like opiate activity.  相似文献   

16.
This article describes new deltorphin I analogs in which phenylalanine residues were replaced by the corresponding (R) or (S)‐α‐benzyl‐β‐azidoalanine, α‐benzyl‐β‐(1‐pyrrolidinyl)alanine, α‐benzyl‐β‐(1‐piperidinyl)alanine, and α‐benzyl‐β‐(4‐morpholinyl)‐alanine residues. The potency and selectivity of the new analogs were evaluated by a competitive receptor binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). The affinity of analogs containing (R) or (S)‐α‐benzyl‐β‐azidoalanine in position 3 to δ‐receptors strongly depended on the chirality of the α,α‐disubstituted residue. The conformational behavior of peptides modified with (R) or (S)‐α‐benzyl‐β‐(1‐piperidinyl)Ala, which displays the opposite selectivity, was analyzed by 1H and 13C NMR. The μ‐selective Tyr‐d ‐Ala‐(R)‐α‐benzyl‐β‐(1‐piperidinyl)Ala‐Asp‐Val‐Val‐Gly‐NH2 lacks the helical conformation observed in the δ‐selective Tyr‐d ‐Ala‐(S)‐α‐benzyl‐β‐(1‐piperidinyl)Ala‐Asp‐Val‐Val‐Gly‐NH2. Our results support the proposal that differences between δ‐ and μ‐selective opioid peptides are attributable to the presence or absence of a spatial overlap between the N‐terminal message domain and the C‐terminal address domain.  相似文献   

17.
The effects of phosphorothioate antisense oligodeoxynucleotides against exons‐1, ‐2, ‐3 and ‐4 of the human μ‐opioid receptor were studied in the CHO‐μ‐opioid receptor cells using aequorin luminescence‐based calcium assay. All four antisense oligodeoxynucleotides significantly decreased the level of μ‐opioid receptor mRNA in comparison with the non‐treated cells, used as control. However, no statistically significant differences between antisense oligodeoxynucleotides were observed. antisense oligodeoxynucleotides against exon‐2 attenuated endomorphin‐1‐induced intracellular calcium response in a concentration‐dependent manner. antisense oligodeoxynucleotides against exons‐1, ‐2, ‐3 and ‐4 inhibited endomorphin‐2‐induced intracellular calcium response in a concentration‐dependent manner and the effect of antisense oligodeoxynucleotides against exons‐3 and ‐4 was most pronounced. The mismatch oligodeoxynucleotides against respective exons failed to exert any effect. The selective actions of antisense probes directed against different exons of the human μ‐opioid receptor gene, that resulted, at the protein level, in attenuation of calcium responses induced by endomorphin‐1 and endomorphin‐2, suggest that the binding sites for endomorphins are structurally and functionally different. The presence of functionally distinct binding sites might play a crucial role in the modulation of pain and may be important clinically.  相似文献   

18.
Abstract: Using results from our previously reported cyclic opioid peptide series and reliable models for μ‐, δ‐, and κ‐opioid receptors (MOR, DOR, and KOR, respectively) and their complexes with peptide ligands, we have designed and synthesized a series of cyclic pentapeptides of structure Tyr‐c[d ‐Cys‐Phe‐Phe‐X]‐NH2, cyclized via disulfide, methylene, or ethylene dithioethers, and where X = d ‐ or l ‐Cys; or d ‐ or l ‐penicillamine (Pen; β,β‐dimethylcysteine). Determination of binding affinities to MOR, DOR, and KOR revealed that members of this series with X = d ‐ or l ‐Cys display KOR affinities in the low nanomolar range, demonstrating that a ‘DPDPE‐like’ tetrapeptide scaffold is suitable not only for DOR and MOR ligands, but also for KOR ligands. The cyclic pentapeptides reported here are not, however, selective for KOR, rather they display significant selectivity and high affinity for MOR. Indeed, peptide 8 , Tyr‐c[d ‐Cys‐Phe‐Phe‐Cys]‐NH2‐cyclized via a methylene dithioether, shows picomolar binding affinity for MOR ( = 16 pm ) with more than 100‐fold selectivity for MOR vs. DOR or KOR, and may be of interest as a high affinity, high selectivity MOR ligand. Nonetheless, the high affinity KOR peptides in this series represent excellent leads for the development of structurally related, selective KOR ligands designed to exploit structurally specific features of KOR, MOR, and DOR.  相似文献   

19.
Abstract: The previously described cyclic mu opioid receptor‐selective tetrapeptide Tyr‐c[d ‐Cys‐Phe‐d ‐Pen]NH2 (Et) (JOM‐6) was modified at residues 1 and 3 by substitution with various natural and synthetic amino acids, and/or by alteration of the cyclic system. Effects on mu and delta opioid receptor binding affinities, and on potencies and efficacies as measured by the [35S]‐GTPγS assay, were evaluated. Affinities at mu and delta receptors were not influenced dramatically by substitution of Tyr1 with conformationally restricted phenolic amino acids. In the [35S]‐GTPγS assay, all of the peptides tested exhibited a maximal response comparable with that of fentanyl at the mu opioid receptor, and all showed high potency, in the range0.4–9 nm . However, potency changes did not always correlate with affinity, suggesting that the conformation required for binding and the conformation required for activation of the opioid receptors are different. At the delta opioid receptor, none of the peptides were able to produce a response equivalent to that of the full delta agonist BW 373,U86 and only one had an EC50 value of less than 100 nm . Lastly, we have identified a peptide, d ‐Hat‐c[d ‐Cys‐Phe‐d ‐Pen]NH2 (Et), with high potency and > 1000‐fold functional selectivity for the mu over delta opioid receptor as measured by the [35S]‐GTPγS assay.  相似文献   

20.
Abstract: The dermorphin‐derived tetrapeptide H‐Dmt‐d ‐Arg‐Phe‐Lys‐NH2 (Dmt = 2′,6′‐dimethyltyrosine) ([Dmt1]DALDA) is a highly potent and selective μ‐opioid agonist capable of crossing the blood–brain barrier and producing a potent, centrally mediated analgesic effect when given systemically. For the purpose of biodistribution studies by fluorescence techniques, [Dmt1]DALDA analogues containing various fluorescent labels [dansyl, anthraniloyl (atn), fluorescein, or 6‐dimethylamino‐2′‐naphthoyl] in several different locations of the peptide were synthesized and characterized in vitro in the guinea‐pig ileum and mouse vas deferens assays, and in μ‐, δ‐ and κ‐opioid receptor‐binding assays. The analogues showed various degrees of μ receptor‐binding selectivity, but all of them were less μ‐selective than the [Dmt1]DALDA parent peptide. Most analogues retained potent, full μ‐agonist activity, except for one with fluorescein attached at the C‐terminus ( 3a ) (partial μ‐agonist) and one containing β‐(6′‐dimethylamino‐2′‐naphthoyl)alanine (aladan) in place of Phe3 ( 4 ) (μ‐ and κ‐antagonist). The obtained data indicate that the receptor‐binding affinity, receptor selectivity and intrinsic efficacy of the prepared analogues vary very significantly, depending on the type of fluorescent label used and on its location in the peptide. The results suggest that the biological activity profile of fluorescence‐labeled peptide analogues should always be carefully determined prior to their use in biodistribution studies or other studies. One of the analogues containing the atn group ( 2a ) proved highly useful in a study of cellular uptake and intracellular distribution by confocal laser scanning microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号