首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: In order to extend the use of proteases to organic synthesis and seek the rules of enzymatic reactions in organic media, we focused on unnatural substrates for proteases to form amide bonds. In this paper, the study of unnatural substrates containing d ‐amino acid residue, which act as acyl acceptors as well as acyl donors for proteases in organic media, is reported. Dermorphin is a heptapeptide (H‐Tyr‐d ‐Ala‐Phe‐Gly‐Tyr‐Pro‐Ser‐NH2) with potent analgesic activity. The N‐terminal tetrapeptide is the minimum sequence that retains dermorphin activity, and is selected as the model compound in our study. Two dermorphin‐(1–4) derivatives, Boc‐Tyr‐d ‐Ala‐Phe‐Gly‐N2H2Ph and Boc‐Tyr‐d ‐Ala‐Phe‐Gly‐NH2, which contained a d ‐amino acid residue, were synthesized by proteases in organic media for the first time. The synthesis of these two dermorphin‐(1–4) derivatives could be catalyzed by subtilisin with Boc‐Tyr‐d ‐Ala‐OCH2CF3 as an acyl donor substrate in AcOEt. The synthesis of dermorphin‐(1–2) derivative Boc‐Tyr‐d ‐Ala‐N2H2Ph was catalyzed by α‐chymotrypsin in different organic solvents and d ‐Ala‐N2H2Ph was used as an acyl acceptor substrate. Factors influencing the above enzymatic reactions were systematically studied.  相似文献   

2.
Analogues of the opioid peptides H‐Tyr‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 (non‐selective), H‐Tyr‐d ‐Arg‐Phe‐Lys‐NH2 (μ‐selective) and dynorphin A(1‐11)‐NH2 (κ‐selective) containing 4′‐[N‐((4′‐phenyl)‐phenethyl)carboxamido]phenylanine (Bcp) in place of Tyr1 were synthesized. All three Bcp1‐opioid peptides retained high μ opioid receptor binding affinity, but showed very significant differences in the opioid receptor selectivity profiles as compared with the corresponding Tyr1‐containing parent peptides. The cyclic peptide H‐Bcp‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 turned out to be an extraordinarily potent, μ‐selective opioid agonist, whereas the Bcp1‐analogue of dynorphin A(1‐11)‐NH2 displayed partial agonism at the μ receptor. The obtained results suggest that the large biphenylethyl substituent contained in these compounds may engage in a hydrophobic interaction with a receptor subsite and thereby may play a role in the ligand’s ability to induce a specific receptor conformation or to bind to a distinct receptor conformation in a situation of conformational receptor heterogeneity.  相似文献   

3.
Abstract: A series of cyclic, disulfide‐ or dithioether‐containing tetrapeptides based on previously reported potent μ‐ and δ‐selective analogs has been explored with the aim of improving their poor affinity to the κ‐opioid receptor. Specifically targeted were modifications of tetrapeptide residues 3 and 4, as they presumably interact with residues from transmembrane helices 6 and 7 and extracellular loop 3 that differ among the three receptors. Accordingly, tetrapeptides were synthesized with Phe3 replaced by aliphatic (Gly, Ala, Aib, Cha), basic (Lys, Arg, homo‐Arg), or aromatic sides chains (Trp, Tyr, p‐NH2Phe), and with d ‐Pen4 replaced by d ‐Cys4, and binding affinities to stably expressed μ‐, δ‐, and κ‐receptors were determined. In general, the resulting analogs failed to exhibit appreciable affinity for the κ‐receptor, with the exception of the tetrapeptide Tyr‐c[d ‐Cys‐Phe‐d ‐Cys]‐NH2, cyclized via a disulfide bond, which demonstrated high binding affinity toward all opioid receptors (Kiμ = 1.26 nm , Kiδ = 16.1 nm , Kiκ = 38.7 nm ). Modeling of the κ‐receptor/ligand complex in the active state reveals that the receptor‐binding pocket for residues 3 and 4 of the tetrapeptide ligands is smaller than that in the μ‐receptor and requires, for optimal fit, that the tripeptide cycle of the ligand assume a higher energy conformation. The magnitude of this energy penalty depends on the nature of the fourth residue of the peptide (d ‐Pen or d ‐Cys) and correlates well with the observed κ‐receptor binding affinity.  相似文献   

4.
The amidation of 2‐[1,1‐dioxide‐3‐oxo‐1,2‐benzisothiazole‐2(3H)‐yl] acetyl chloride with carbon‐14‐labelled 4‐amino‐[14C(U)]phenol in NaOAc‐HOAc buffer solution at ?10°C gave N‐(4‐hydroxy‐[14C(U)]phenyl)‐2‐[2,3‐dihydro‐3‐oxo‐1,2‐benziso‐thiazol‐2‐yl‐1,1‐dioxide]acetamide in 82% yield. Subsequent hydrolysis with aqueous 0.5 N NaOH solution afforded the ring opened product N‐(4‐hydroxy‐[14C(U)]‐phenyl)‐2‐[2‐carboxy‐phenylsulfonamido]acetamide in 80% yield. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract: Using results from our previously reported cyclic opioid peptide series and reliable models for μ‐, δ‐, and κ‐opioid receptors (MOR, DOR, and KOR, respectively) and their complexes with peptide ligands, we have designed and synthesized a series of cyclic pentapeptides of structure Tyr‐c[d ‐Cys‐Phe‐Phe‐X]‐NH2, cyclized via disulfide, methylene, or ethylene dithioethers, and where X = d ‐ or l ‐Cys; or d ‐ or l ‐penicillamine (Pen; β,β‐dimethylcysteine). Determination of binding affinities to MOR, DOR, and KOR revealed that members of this series with X = d ‐ or l ‐Cys display KOR affinities in the low nanomolar range, demonstrating that a ‘DPDPE‐like’ tetrapeptide scaffold is suitable not only for DOR and MOR ligands, but also for KOR ligands. The cyclic pentapeptides reported here are not, however, selective for KOR, rather they display significant selectivity and high affinity for MOR. Indeed, peptide 8 , Tyr‐c[d ‐Cys‐Phe‐Phe‐Cys]‐NH2‐cyclized via a methylene dithioether, shows picomolar binding affinity for MOR ( = 16 pm ) with more than 100‐fold selectivity for MOR vs. DOR or KOR, and may be of interest as a high affinity, high selectivity MOR ligand. Nonetheless, the high affinity KOR peptides in this series represent excellent leads for the development of structurally related, selective KOR ligands designed to exploit structurally specific features of KOR, MOR, and DOR.  相似文献   

6.
Abstract A series of conformationally restricted analogs of the hen egg lysozyme (HEL) decapeptide 52‐61 in which the conformationally flexible Tyr53 residue was replaced by several more constrained tyrosine and phenylalanine analogs was prepared. Among these tyrosine and phenylalanine analogs were 1,2,3,4‐tetrahydro‐7‐hydroxyisoquinoline‐3‐carboxylic acid (Htc), 1,2,3,4‐tetrahydroisoquinoline‐3‐carboxylic acid (Tic), 4‐amino‐1,2,4,5‐tetrahydro‐8‐hydroxy‐2‐benzazepine‐3‐one (Hba), 4‐amino‐1,2,4,5‐tetrahydro‐2‐benzazepine‐3‐one (Aba), 2‐amino‐6‐hydroxytetralin‐2‐carboxylic acid (Hat) and 2‐amino‐5‐hydroxyindan‐2‐carboxylic acid (Hai) in which the rotations around Cα‐Cβ and Cβ‐Cγ were restricted because of cyclization of the side‐chain to the backbone. Synthesis of Pht‐Hba‐Gly‐OH using a modification of the Flynn and de Laszlo procedure is described. Analogs of β‐methyltyrosine (β‐MeTyr) in which the side‐chains were biased to particular side‐chain torsional angles because of substitution at the β‐hydrogens were also prepared. These analogs of HEL[52‐61] peptide were tested for their ability to bind to the major histocompatibility complex class II I‐Ak molecule and to be recognized in this context by two T‐cell hybridomas, specific for the parent peptide HEL[52‐61]. The data showed that the conformation and also the configuration of the Tyr53 residue influenced both the binding of the peptide to I‐Ak and the recognition of the peptide/I‐Ak complex by aT‐cell receptor.  相似文献   

7.
3,7,8‐15N3‐N1‐(β‐D‐erythro‐pentofuranosyl)‐5‐guanidinohydantoin was synthesized from the oxidation of 1,7,NH215N3‐8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine with 2 equivalents of Ir(IV) in pH 4.5 potassium phosphate buffer. The synthesis of 1,7,NH215N3‐8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine started with bromination of 1,7,NH215N3‐2′‐deoxyguanosine. The resulting 1,7,NH215N3‐8‐bromo‐7,8‐dihydro‐2′‐deoxyguanosine reacted with sodium benzyloxide to afford 1,7,NH215N3‐8‐benzyloxy‐7,8‐dihydro‐2′‐deoxyguanosine. Subsequent catalytic transfer hydrogenation of 1,7,NH215N3‐8‐benzyloxy‐7,8‐dihydro‐2′‐deoxyguanosine with cyclohexene and 10% Pd/C yielded 1,7,NH215N3‐8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine. Purification of 3,7,8‐15N3‐N1‐(β‐D‐erythro‐pentofuranosyl)‐5‐guanidinohydantoin was first carried out on a C18 column and the product was further purified on a graphite column. ESI‐MS was used to confirm the identity and to determine the isotopic purity of all the labeled compounds. The isotopic purity of 3,7,8‐15N3‐N1‐(β‐D‐erythro‐pentofuranosyl)‐5‐guanidinohydantoin was 99.4 atom% based on LC‐MS measurements. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract: The melanocortin receptor (MCR) pathway has been identified as participating in several physiologically important pathways including pigmentation, energy homeostasis, inflammation, obesity, hypertension, and sexual function. All the endogenous MCR agonists contain a core His‐Phe‐Arg‐Trp sequence identified as important for receptor molecular recognition and stimulation. Several structure–activity studies using the Ac‐His‐d ‐Phe‐Arg‐Trp‐NH2 tetrapeptide template have been performed in the context of modifying N‐terminal ‘capping’ groups and amino acid constituents. Herein, we report the synthesis and pharmacologic characterization of modified Xaa‐d ‐Phe‐Arg‐Trp‐NH2 (Xaa = His or Phe) melanocortin tetrapeptides (N‐site selective methylation, permethylation, or amide bond reduction) at the mouse MC1, MC3, MC4 and MC5 receptors. The modified peptides generated in this study resulted in equipotent or reduced MCR potency when compared with control ligands. The reduced amide bond analog of the Phe‐d ‐Phe‐Arg‐Trp‐NH2 peptide converted its agonist activity into an antagonistic at the central mMC3 and mMC4 receptors involved in the regulation of energy homeostasis, while retaining full agonist activity at the peripheral MC1 and MC5 receptors.  相似文献   

9.
Protoporphyrinogen oxidase ( EC 1.3.3.4 ) is one of the most significant targets for a large family of herbicides. As part of our continuous efforts to search for novel protoporphyrinogen oxidase‐inhibiting herbicides, N‐(benzothiazol‐5‐yl)tetrahydroisoindole‐1,3‐dione was selected as a lead compound for structural optimization, leading to the syntheses of a series of novel N‐(benzothiazol‐5‐yl)hexahydro‐1H‐isoindole‐1,3‐diones ( 1a – o ) and N‐(benzothiazol‐5‐yl)hexahydro‐1H‐isoindol‐1‐ones ( 2a – i ). These newly prepared compounds were characterized by elemental analyses, 1H NMR, and ESI‐MS, and the structures of 1h and 2h were further confirmed by X‐ray diffraction analyses. The bioassays indicated that some compounds displayed comparable or higher protoporphyrinogen oxidase inhibition activities in comparison with the commercial control. Very promising, compound 2a , ethyl 2‐((6‐fluoro‐5‐(4,5,6,7‐tetrahydro‐1‐oxo‐1H‐isoindol‐2(3H)‐yl)benzo[d]thiazol‐2‐yl)‐sulfanyl)acetate, was recognized as the most potent candidate with Ki value of 0.0091 μm . Further greenhouse screening results demonstrated that some compounds exhibited good herbicidal activity against Chenopodium album at the dosage of 150 g/ha.  相似文献   

10.
Abstract: Peptides and peptidomimetics often exhibit poor oral bioavailability due to their metabolic instability and low permeation across the intestinal mucosa. N‐Methylation has been used successfully in peptide‐based drug design in an attempt to improve the metabolic stability of a peptide‐based lead compound. However, the effect of N‐methylation on the absorption of peptides through the intestinal mucosa is not well understood, particularly when transporters, i.e. the oligopeptide transporter (OPT) and P‐glycoprotein (P‐gp), modulate the passive diffusion of these types of molecules. To examine this, terminally free and terminally modified (N‐acetylated and C‐amidated) analogs of H‐Ala‐Phe‐Ala‐OH with N‐methyl groups on either the Ala‐Phe or Phe‐Ala peptide bond were synthesized. Transport studies using Caco‐2 cell monolayers, an in vitro model of the intestinal mucosa, showed that N‐methylation of the Ala‐Phe peptide bond of H‐Ala‐Phe‐Ala‐OH stabilized the molecule to protease degradation, and the resulting analog exhibited significant substrate activity for OPT. However, N‐methylation of the Phe‐Ala peptide bond of H‐Ala‐Phe‐Ala‐OH did not stabilize the molecule to protease degradation, and the substrate activity of the resulting molecule for OPT could not be determined. Interestingly, N‐methylation of the Phe‐Ala peptide bond of the terminally modified tripeptide Ac‐Ala‐Phe‐Ala‐NH2 decreased the substrate activity of the molecule for the efflux transporter P‐gp. In contrast, N‐methylation of the Ala‐Phe peptide bond of the terminally modified tripeptide Ac‐Ala‐Phe‐Ala‐NH2 increased the substrate activity of the molecule for P‐gp.  相似文献   

11.
Abstract: Dermorphin and [Lys7]dermorphin, selective µ‐opioid receptor ligands originating from amphibian skin, have been modified with various electrophiles in either the ‘message’ or ‘address’ sequences as potential peptide‐based affinity labels for µ‐receptors. Introduction of the electrophilic isothiocyanate and bromoacetamide groups on the para position of Phe3 and Phe5 was accomplished by incorporating Fmoc‐Phe(p‐NHAlloc) into the peptide followed by selective deprotection and modification. The corresponding amine‐containing peptides were also prepared. The pure peptides were evaluated in radioligand binding experiments using Chinese hamster ovary (CHO) cells expressing µ‐ and δ‐opioid receptors. In dermorphin, introduction of the electrophilic groups in the ‘message’ domain lowered the binding affinity by > 1000‐fold; only [Phe(p‐NH2)3]dermorphin retained nanomolar affinity for µ‐receptors. Modifications in the ‘address’ region of both dermorphin and [Lys7]dermorphin were relatively well tolerated. In particular, [Phe(p‐NH2)5,Lys7]dermorphin showed similar affinity to dermorphin, with almost 2‐fold higher selectivity for µ‐receptors. [Phe(p‐NHCOCH2Br)5]‐ and [Phe(p‐NHCOCH2Br)5,Lys7]dermorphin exhibited relatively high affinity (IC50 = 27.7 and 15.1 nm , respectively) for µ‐receptors. However, neither of these peptides inhibited [3H]DAMGO binding in a wash‐resistant manner.  相似文献   

12.
The amino acid sequence of osteogenic growth peptide (OGP) consists of 14 residues identical to the C‐terminal tail of histone H4. Native and synthetic OGP are mitogenic to osteoblastic and fibroblastic cells and enhance osteogenesis and hematopoiesis in vivo. The C‐terminal truncated pentapeptide of OGP, H‐Tyr‐Gly‐Phe‐Gly‐Gly‐OH [OGP(10–14)], is a naturally occurring osteoblastic mitogen, equipotent to OGP. The present study assesses the role of individual amino acid residues and side chains in the OGP(10–14) mitogenic activity which showed a very high correlation between osteoblastic and fibroblastic cell cultures. Truncation of either Tyr10 or its replacement by Ala or d ‐Ala resulted in substantial, but not complete, loss of activity. Nevertheless, only a small loss of activity was observed following removal of the Tyr10 amino group. No further loss occurred consequent to the monoiodination of desaminoTyr10 on meta‐position. However, a marked decrease in proliferative activity followed removal of the Tyr10 phenolic or the Phe12 aromatic group. Loss of activity of a similar magnitude also occurred subsequent to replacing Gly11 with l ‐ or d ‐Ala. Approximately 50% loss of mitogenic activity occurred subsequent to truncation of Gly14 or blocking the C‐terminal group as the methyl ester. All other modifications of the C‐terminus and l ‐ or d ‐Ala substitution of Gly13 resulted in 70–97% decrease in activity. Collectively, these data suggest that the integrity of the pharmacophores presented by Tyr and Phe side chains, as well as the Gly residues at the C‐terminus, are important for optimal bioactivity of OGP(10–14).  相似文献   

13.
Abstract: The cyclic enkephalin analog H‐Tyr‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 is a highly potent opioid agonist with IC50s of 35 pm and 19 pm in the guinea‐pig ileum (GPI) and mouse vas deferens (MVD) assays, respectively. The Phe1‐analog of this peptide showed 370‐fold and 6790‐fold lower agonist potency in the GPI and MVD assays, respectively, indicating the importance of the Tyr1 hydroxyl‐group in the interaction with μ and δ opioid receptors. In the present study, the effect of various substituents (‐NH2, ‐NO2, ‐CN, ‐CH3, ‐COOH, ‐COCH3, ‐CONH2) introduced in the para‐position of the Phe1‐residue of H‐Phe‐c[d ‐Cys‐Gly‐Phe(pNO2)‐d ‐Cys]NH2 on the in vitro opioid activity profile was examined. Most analogs showed enhanced μ and δ agonist potencies in the two bioassays, except for the Phe(pCOOH)1‐analog, which was weakly active, probably as a consequence of the negative charge. The most potent compounds were the Phe(pCOH3)1‐ and the Phe(pCONH2)1‐analogs. The latter compound showed subnanomolar μ and δ agonist potencies and represents the most potent enkephalin analog lacking the Tyr1 hydroxyl‐group reported to date. Taken together, these results indicate that various substituents introduced in the para‐position of Phe1 enhance opioid activity via hydrogen bonding or hydrophobic interactions with the receptor. Comparison with existing structure‐activity relationship on phenolic hydroxyl replacements in morphinans indicates that these nonpeptide opiates and some of the cyclic enkephalin analogs described here may have different modes of binding to the receptor.  相似文献   

14.
Abstract: A new approach for the design and synthesis of pheromone biosynthesis activating neuropeptide (PBAN) agonists and antagonists using the backbone cyclization and cycloscan concepts is described. Two backbone cyclic (BBC) libraries were synthesized: library I (Ser library) was based on the active C‐terminal hexapeptide sequence Tyr‐Phe‐Ser‐Pro‐Arg‐Leu‐NH2 of PBAN1‐33NH2; whereas library II (d ‐Phe library) was based on the sequence of the PBAN lead linear antagonist Arg‐Tyr‐Phe‐d ‐Phe‐Pro‐Arg‐Leu‐NH2. In both libraries the Pro residue was replaced by the BBC building unit Nα‐(ω‐aminoalkyl) Gly having various lengths of alkyl chain. The peptides of the two libraries were tested for agonistic and antagonistic activity. Four precyclic peptides based on two of the BBC antagonists were also synthesized; their activity revealed that a negative charge at the N‐terminus of the peptide abolished antagonistic activity. We also describe the use of the reagent SiCl3I for selective deprotection of the Boc group from the building unit prior to on‐resin amino‐end to backbone‐nitrogen (AE‐BN) cyclization, during solid‐phase synthesis with Fmoc chemistry.  相似文献   

15.
This article describes new deltorphin I analogs in which phenylalanine residues were replaced by the corresponding (R) or (S)‐α‐benzyl‐β‐azidoalanine, α‐benzyl‐β‐(1‐pyrrolidinyl)alanine, α‐benzyl‐β‐(1‐piperidinyl)alanine, and α‐benzyl‐β‐(4‐morpholinyl)‐alanine residues. The potency and selectivity of the new analogs were evaluated by a competitive receptor binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). The affinity of analogs containing (R) or (S)‐α‐benzyl‐β‐azidoalanine in position 3 to δ‐receptors strongly depended on the chirality of the α,α‐disubstituted residue. The conformational behavior of peptides modified with (R) or (S)‐α‐benzyl‐β‐(1‐piperidinyl)Ala, which displays the opposite selectivity, was analyzed by 1H and 13C NMR. The μ‐selective Tyr‐d ‐Ala‐(R)‐α‐benzyl‐β‐(1‐piperidinyl)Ala‐Asp‐Val‐Val‐Gly‐NH2 lacks the helical conformation observed in the δ‐selective Tyr‐d ‐Ala‐(S)‐α‐benzyl‐β‐(1‐piperidinyl)Ala‐Asp‐Val‐Val‐Gly‐NH2. Our results support the proposal that differences between δ‐ and μ‐selective opioid peptides are attributable to the presence or absence of a spatial overlap between the N‐terminal message domain and the C‐terminal address domain.  相似文献   

16.
The Met‐enkephalin, Tyr‐Gly‐Gly‐Phe‐Met, was synthesized by the solution‐phase synthesis (SPS) methodology employing ‐OBzl group as carboxyls' protection, while the t‐Boc groups were employed for the N‐terminal α‐amines' protection for the majority of the amino acids of the pentapeptide sequence. The l ‐methionine (l ‐Met) amino acid was used as PTSA.Met‐OBzl obtained from the simultaneous protection of the α‐amino, and carboxyl group with para‐toluene sulfonic acid (PTSA) and as‐OBzl ester, respectively in a C‐terminal start of the 2 + 2 + 1 fragments condensation convergent synthetic approach. The protection strategy provided a short, single‐step, simultaneous, orthogonal, nearly quantitative, robust, and stable process to carry through the protected l ‐methionine and l ‐phenylalanine coupling without any structural deformities during coupling and workups. The structurally confirmed final pentapeptide product was feasibly obtained in good yields through the current approach.  相似文献   

17.
Abstract: The glycopeptide hormone catfish somatostatin (somatostatin‐22) has the amino acid sequence H‐Asp‐Asn‐Thr‐Val‐Thr‐Ser‐Lys‐Pro‐Leu‐Asn‐Cys‐Met‐Asn‐Tyr‐Phe‐Trp‐Lys‐Ser‐Arg‐Thr‐Ala‐Cys‐OH; it includes a cyclic disulfide connecting the two Cys residues, and the major naturally occurring glycoform contains d ‐GalNAc and d ‐Gal O‐glycosidically linked to Thr5. The linear sequence was assembled smoothly starting with an Fmoc‐Cys(Trt)‐PAC‐PEG‐PS support, using stepwise Fmoc solid‐phase chemistry. In addition to the nonglycosylated peptide, two glycosylated forms of somatostatin‐22 were accessed by incorporating as building blocks, respectively, NαFmoc‐Thr(Ac3‐α‐D‐GalNAc)‐OH and Nα‐Fmoc‐Thr(Ac4‐β‐D‐Gal‐(1→3)‐Ac2‐α‐D‐GalNAc)‐OH. Acidolytic deprotection/cleavage of these peptidyl‐resins with trifluoroacetic acid/scavenger cocktails gave the corresponding acetyl‐protected glycopeptides with free sulfhydryl functions. Deacetylation, by methanolysis in the presence of catalytic sodium methoxide, was followed by mild oxidation at pH 7, mediated by Nαdithiasuccinoyl (Dts)‐glycine, to provide the desired monomeric cyclic disulfides. The purified peptides were tested for binding affinities to a panel of cloned human somatostatin receptor subtypes; in several cases, presence of the disaccharide moiety resulted in 2‐fold tighter binding.  相似文献   

18.
The aim of this work was to synthesize 13C internal standards for the quantification of 4‐hydroxy‐2(E)‐nonenal (HNE), a lipid peroxidation product, and of the etheno‐adducts possibly formed by HNE damage to DNA nucleobases. We designed an eight‐step synthesis starting from ethyl 2‐bromoacetate and giving access to 4‐[(tetrahydro‐2H‐pyran‐2‐yl)oxy]‐2(E)‐nonenal. This compound is a precursor of HNE. The scheme was then used to produce the 13C precursor [1,2‐13C2]‐4‐[(tetrahydro‐2H‐pyran‐2‐yl)oxy]‐2(E)‐nonenal. [1,2‐13C2]‐HNE was obtained by acid deprotection. All the intermediary and final compounds were fully characterized by IR, HRMS, 1H and 13C NMR. It is the first synthesis of HNE which enables the incorporation of two 13C labels at determined positions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract: A series of three homologous dimethyldiamides Ac‐ΔAla‐NMe2, Ac‐l ‐Ala‐NMe2 and Ac‐dl ‐Ala‐NMe2 has been synthesized and the structures of these amides determined from single‐crystal X‐ray diffraction data. To learn more about the conformational preferences of compounds studied, the fully relaxed (φ–ψ) conformational energy maps in vacuo (AM1) of Ac‐ΔAla‐NMe2 and Ac‐l ‐Ala‐NMe2 were obtained, and the calculated minima reoptimized with the DFT/B3LYP/6–31G** method. The crystal‐state results have been compared with the literature data. Ac‐ΔAla‐NMe2 and other α,β‐dehydroamino acid dimethyldiamides, Ac‐ΔXaa‐NMe2 adopt the conservative conformation of the torsion angles φ, ψ = ~ ?45°, ~130°, which are located in the high‐energy region (region H) of Ramachandran diagram. Ac‐l ‐Ala‐NMe2 and Ac‐dl ‐Ala‐NMe2, as well as other saturated amino acid dimethylamides Ac‐l /dl ‐Xaa‐NMe2, present common peptide structures, and no conformational preferences are observed. Molecular packing of the amides analysed reveals two general hydrogen‐bonded motifs. Dehydro and dl ‐species are paired into centrosymmetric dimers, and l ‐compounds form catemers. However, Ac‐ΔAla‐NMe2 and Ac‐DL ‐Ala‐NMe2 constitute exceptions: their molecules also link into catemers.  相似文献   

20.
Abstract: A series of position 4‐substituted endomorphin‐2 (Tyr‐Pro‐Phe‐Phe‐NH2) analogs containing 3‐(1‐naphthyl)‐alanine (1‐Nal) or 3‐(2‐naphthyl)‐alanine (2‐Nal) in l ‐ or d ‐configuration, was synthesized. The opioid activity profiles of these peptides were determined in the μ‐opioid receptor representative binding assay and in the Guinea‐Pig Ileum assay/Mouse Vas Deferens assay (GPI/MVD) bioassays in vitro, as well as in the mouse hot‐plate test of analgesia in vivo. In the binding assay the affinity of all new analogs for the μ‐opioid receptor was reduced compared with endomorphin‐2. The two most potent analogs were [d ‐1‐Nal4]‐ and [d ‐2‐Nal4]endomorphin‐2, with IC50 values 14 ± 1.25 and 19 ± 2.1 nm , respectively, compared with 1.9 ± 0.21 nm for endomorphin‐2. In the GPI assay these analogs were found to be weak antagonists and they were inactive in the MVD assay. The in vitro GPI assay results were in agreement with those obtained in the in vivo hot‐plate test. Antinociception induced by endomorphin‐2 was reversed by concomitant intracerebroventricula (i.c.v.) administration of [d ‐1‐Nal4]‐ and [d ‐2‐Nal4]‐endomorphin‐2, indicating that these analogs were μ‐opioid antagonists. Their antagonist activity was compared with that of naloxone. At a dose 5 μg per animal naloxone almost completely inhibited antinociceptive action of endomorphin‐2, while [d ‐1‐Nal4]endomorphin‐2 in about 46%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号