首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
The postantifungal effect (PAFE) of fluconazole, MK-0991, LY303366, and amphotericin B was determined against isolates of Candida albicans and Cryptococcus neoformans. Concentrations ranging from 0. 125 to 4 times the MIC were tested following exposure to the antifungal for 0.25 to 1 h. Combinations of azole and echinocandin antifungals (MK-0991 and LY303366) were tested against C. neoformans. Fluconazole displayed no measurable PAFE against Candida albicans or Cryptococcus neoformans, either alone or in combination with either echinocandin antifungal. MK-0991, LY303366, and amphotericin B displayed a prolonged PAFE of greater than 12 h against Candida spp. when tested at concentrations above the MIC for the organism and 0 to 2 h when tested at concentrations below the MIC for the organism.  相似文献   

2.
The in vitro activities of ravuconazole and voriconazole were compared with those of amphotericin B, flucytosine (5FC), itraconazole, and fluconazole against 6,970 isolates of Candida spp. obtained from over 200 medical centers worldwide. Both ravuconazole and voriconazole were very active against all Candida spp. (MIC at which 90% of the isolates tested are inhibited [MIC(90)], 0.25 microg/ml; 98% of MICs were < or 1 microg/ml); however, a decrease in the activities of both of these agents was noted among isolates that were susceptible-dose dependent (fluconazole MIC, 16 to 32 microg/ml) and resistant (MIC, > or = 64 microg/ml) to fluconazole. Candida albicans was the most susceptible species (MIC(90) of both ravuconazole and voriconazole, 0.03 microg/ml), and C. glabrata was the least susceptible species (MIC(90), 1 to 2 microg/ml). Ravuconazole and voriconazole were each more active in vitro than amphotericin B, 5FC, itraconazole, and fluconazole against all Candida spp. and were the only agents with good in vitro activity against C. krusei. These results provide further evidence for the spectrum and potency of ravuconazole and voriconazole against a large and geographically diverse collection of Candida spp.  相似文献   

3.
Isavuconazole is the active component of the new azole antifungal agent BAL8557, which is entering phase III clinical development. This study was conducted to compare the in vitro activities of isavuconazole and five other antifungal agents against 296 Candida isolates that were recovered consecutively from blood cultures between 1995 and 2004 at a tertiary care university hospital. Microdilution testing was done in accordance with CLSI (formerly NCCLS) guideline M27-A2 in RPMI-1640 MOPS (morpholinepropanesulfonic acid) broth. The antifungal agents tested were amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole, and isavuconazole. C. albicans was the most common species, representing 57.1% of all isolates. There was no trend found in favor of non-Candida albicans species over time. In terms of MIC(50)s, isavuconazole was more active (0.004 mg/liter) than amphotericin B (0.5 mg/liter), itraconazole (0.008 mg/liter), voriconazole (0.03 mg/liter), flucytosine (0.125 mg/liter), and fluconazole (8 mg/liter). For isavuconazole, MIC(50)s/MIC(90)s ranged from 000.2/0.004 mg/liter for C. albicans to 0.25/0.5 mg/liter for C. glabrata. Two percent of isolates (C. glabrata and C. krusei) were resistant to fluconazole; C. albicans strains resistant to fluconazole were not detected. There were only two isolates with MICs for isavuconazole that were >0.5 mg/liter: both were C. glabrata isolates, and the MICs were 2 and 4 mg/liter, respectively. In conclusion, isavuconazole is highly active against Candida bloodstream isolates, including fluconazole-resistant strains. It was more active than itraconazole and voriconazole against C. albicans and C. glabrata and appears to be a promising agent against systemic Candida infections.  相似文献   

4.
Posaconazole is a new investigational triazole with broad-spectrum antifungal activity. The in vitro activities of posaconazole were compared with those of itraconazole and fluconazole against 3,685 isolates of Candida spp. (3,312 isolates) and C. neoformans (373 isolates) obtained from over 70 different medical centers worldwide. The MICs of the antifungal drugs were determined by broth microdilution tests performed according to the National Committee for Clinical Laboratory Standards method using RPMI 1640 as the test medium. Posaconazole was very active against all Candida spp. (MIC at which 90% of the isolates were inhibited [MIC(90)], 0.5 microg/ml; 97% of MICs were < or =1 microg/ml) and C. neoformans (MIC(90), 0.5 microg/ml; 100% of MICs were < or =1 microg/ml). Candida albicans was the most susceptible species of Candida (MIC(90), 0.06 microg/ml), and Candida glabrata was the least susceptible (MIC(90), 4 microg/ml). Posaconazole was more active than itraconazole and fluconazole against all Candida spp. and C. neoformans. These results provide further evidence for the spectrum and potency of posaconazole against a large and geographically diverse collection of clinically important fungal pathogens.  相似文献   

5.
OBJECTIVES: The antifungal drug susceptibilities of 351 isolates of Candida species, obtained through active laboratory-based surveillance in the period January 2002-December 2003, were determined (Candida albicans 51%, Candida parapsilosis 23%, Candida tropicalis 10%, Candida glabrata 9%, Candida krusei 4%). METHODS: The MICs of amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole and caspofungin were established by means of the broth microdilution reference procedure of the European Committee on Antibiotic Susceptibility Testing. RESULTS AND CONCLUSIONS: Amphotericin B and flucytosine were active in vitro against all strains. A total of 24 isolates (6.8%) showed decreased susceptibility to fluconazole (MIC > or = 16 mg/L) and 43 (12.3%) showed decreased susceptibility to itraconazole (MIC > or = 0.25 mg/L). Voriconazole and caspofungin were active in vitro against the majority of isolates, even those that were resistant to fluconazole.  相似文献   

6.
The in vitro activities of LY-303366, a new semisynthetic echinocandin, and comparators amphotericin B, 5-fluorocytosine, fluconazole, and ketoconazole against 205 systemic isolates of Candida species, Cryptococcus neoformans, Blastomyces dermatitidis, and Aspergillus species were determined. LY-303366 had MICs of < or = 0.32 microg/ml for all Candida albicans (n = 99), Candida glabrata (n = 18), and Candida tropicalis (n = 10) isolates tested. LY-303366 was also active against Aspergillus species (minimum effective concentration at which 90% of the isolates are inhibited, 0.02 microg/ml) (n = 20), was less active against Candida parapsilosis (MIC at which 90% of the isolates are inhibited [MIC90], 5.12 microg/ml) (n = 10), and was inactive against C. neoformans (MIC90, >10.24 microg/ml) (n = 15) and B. dermatitidis (MIC90, 16 microg/ml) (n = 29).  相似文献   

7.
We examined the in vitro activities of voriconazole, posaconazole, and fluconazole against 3,932 isolates of Candida spp. and 237 isolates of Cryptococcus neoformans obtained from over 100 medical centers worldwide during 2001 and 2002. The MICs of the antifungal drugs were determined by broth microdilution tests performed according to the National Committee for Clinical Laboratory Standards (NCCLS) methods using RPMI 1640 as the test medium. Voriconazole and posaconazole were very active against Candida spp. (97-98% susceptible at MICs < or =1 microg/ml) and C. neoformans (98-100% susceptible at MICs < or =1 microg/mL). C. albicans (MIC90, 0.015-0.03 microg/ml) was the most susceptible species of Candida to both agents and C. glabrata (MIC90, 1-2 microg/mL) was the least susceptible. Both voriconazole and posaconazole were more active than fluconazole against all Candida spp. and C. neoformans. These results provide further evidence for the increased spectrum and potency of the new triazoles against a large and geographically diverse collection of opportunistic fungal pathogens.  相似文献   

8.
TAK-456 is a novel oral triazole compound with potent and broad-spectrum in vitro antifungal activity and strong in vivo efficacy against Candida albicans and Aspergillus fumigatus. TAK-456 inhibited sterol synthesis of C. albicans and A. fumigatus by 50% at 3 to 11 ng/ml. TAK-456 showed strong in vitro activity against clinical isolates of Candida spp., Aspergillus spp., and Cryptococcus neoformans, except for Candida glabrata. The MICs at which 90% of the isolates tested were inhibited byTAK-456, fluconazole, itraconazole, voriconazole, and amphotericin B were 0.25, 4, 0.5, 0.13, and 0.5 microg/ml, respectively, for clinical isolates of C. albicans and 1, >64, 0.5, 0.5, and 0.5 microg/ml, respectively, for clinical isolates of A. fumigatus. Therapeutic activities of TAK-456 and reference triazoles against systemic lethal infections caused by C. albicans and A. fumigatus in mice were investigated by orally administering drugs once daily for 5 days, and efficacies of the compounds were evaluated by the prolongation of survival. In normal mice, TAK-456 and fluconazole were effective against infection caused by fluconazole-susceptible C. albicans at a dose of 1 mg/kg. In transiently neutropenic mice, therapeutic activity of TAK-456 at 1 mg/kg of body weight against infection with the same strain was stronger than those at 1 mg/kg of fluconazole. TAK-456 was effective against infections with two strains of fluconazole-resistant C. albicans at a dose of 10 mg/kg. TAK-456 also expressed activities similar to or higher than those of itraconazole against the infections caused by two strains of A. fumigatus in neutropenic mice at a dose of 10 mg/kg. These results suggest that TAK-456 is a promising candidate for development for the treatment of candidiasis and aspergillosis in humans.  相似文献   

9.
The activities of itraconazole and the new triazole BMS-207147 were determined against Candida strains that were susceptible-dose dependent (fluconazole MICs 16 to 32 micrograms/mL) or resistant (MICs > or = 64 micrograms/mL) to fluconazole. These strains included clinical isolates of Candida krusei, Candida glabrata, and Candida albicans. In addition, 16 isogenic, genetically characterized isolates of C. albicans, with progressively decreased susceptibility to fluconazole, were tested. BMS-207147 MICs to C. krusei, a species considered intrinsically resistant to fluconazole, were at 0.13 to 0.5 microgram/mL. The population distribution of the fluconazole-nonsusceptible C. glabrata was bimodal with BMS-207147/itraconazole MICs at 0.5 to 2 micrograms/mL and > or = 16 micrograms/mL. The BMS-207147 MICs to the majority of fluconazole-nonsusceptible C. albicans strains tested were < or = 1 microgram/mL. The activity of BMS-207147 was minimally affected by overexpression of the gene encoding the efflux pump MDR1, but MIC increases were observed with changes in ERG11 and with overexpression of the CDR transporter gene. Nonetheless, BMS-207147 can be active against C. albicans mutants containing cumulative resistance mechanisms to azoles. In other words, fluconazole-resistant candidal strains may be susceptible to BMS-207147.  相似文献   

10.
A broth macrodilution technique, which was performed by following the recommendations provided by the National Committee for Clinical Laboratory Standards (document M27-P), was applied to study the in vitro activity of itraconazole against fluconazole-susceptible and -resistant Candida albicans isolates from the oral cavities of 100 patients infected with human immunodeficiency virus. The in vitro data demonstrated that itraconazole had good activity against the tested isolates; for 90% of all strains of C. albicans, MICs were 1 microgram/ml, and only one isolate was highly resistant to this triazole (MIC, > 16 micrograms/ml). However, the itraconazole MICs for the fluconazole-susceptible isolates were significantly lower than those for the fluconazole-resistant isolates; the MICs for 50 and 90% of the isolates tested were < or = 0.03 and 0.25 microgram/ml, respectively, for the fluconazole-susceptible isolates and 0.5 and 1 microgram/ml, respectively, for the fluconazole-resistant isolates (P = 0.00001). Our findings could be of clinical relevance because human immunodeficiency virus-infected patients who fail fluconazole therapy for oral and/or esophageal candidiasis may require itraconazole at doses higher than those used in standard therapy.  相似文献   

11.
The in vitro activity of amphotericin B, 5-fluorocytosine, ketoconazole, fluconazole and itraconazole was tested against 245 yeast strains isolated from clinical specimens (68 Candida albicans, 74 Candida tropicalis, 43 Candida krusei, 28 Candida glabrata, 19 Candida parapsilosis, 8 Candida lusitaniae and 5 Candida guilliermondii). An agar dilution method was employed to carry out testing. Minimal inhibitory concentrations to restrain 90% of isolate growth (MIC90) ranged from 0.12 to 2 mg/l for amphotericin B and for 5-fluorocytosine, from 0.03 to 8 mg/l for ketoconazole, from 0.05 to 50 mg/l for itraconazole and from 0.1 to > 100 mg/l for fluconazole. Among the azole derivatives, the most active was ketoconazole, followed by itraconazole. Only 1 strain of C. albicans was resistant to amphotericin B (MIC > 4 mg/l). Both C. tropicalis and C. krusei responded poorly to fluconazole and the former to itraconazole as well. The species most susceptible to the antifungal agents tested was C. glabrata and the most resistant were C. tropicalis and C. krusei.  相似文献   

12.
OBJECTIVES: The aim of the present study was to expand the MIC database for Candida lusitaniae in order to further determine its antifungal susceptibility pattern. METHODS: The activities of amphotericin B, fluconazole, itraconazole, voriconazole and flucytosine were determined in vitro against 80 clinical isolates of C. lusitaniae. A set of 59 clinical isolates of Candida albicans and of 51 isolates of Candida glabrata was included to compare the susceptibilities to amphotericin B. The MICs were determined by Etest with RPMI 1640 agar, and with both this medium and antibiotic medium 3 (AM3) agar for testing of amphotericin B. RESULTS: All isolates were highly susceptible to fluconazole. The susceptibility to itraconazole was good; only 4% of isolates had dose-dependent susceptibility (MICs 0.25-0.5 mg/L). Voriconazole was very active in vitro (100% of isolates were inhibited at < or =0.094 mg/L). Flucytosine MICs ranged widely (0.004->32 mg/L). The set included 19% of flucytosine-resistant isolates. For amphotericin B, 100% of isolates were inhibited at < or =0.75 mg/L (MIC(50) 0.047 mg/L; MIC(90) 0.19 mg/L) and at < or =4 mg/L (MIC(50) 0.25 mg/L; MIC(90) 0.75 mg/L) on RPMI and on AM3, respectively. A single isolate was categorized as resistant to amphotericin B (MIC 0.75 and 4 mg/L on RPMI and on AM3, respectively). Amphotericin B thus appeared very active in vitro against C. lusitaniae. Whatever the test medium, the level of susceptibility of C. lusitaniae to amphotericin B did not differ much from those of C. albicans and C. glabrata. CONCLUSION: C. lusitaniae appears to be susceptible to amphotericin B, azole antifungal agents, and, to a lesser extent, flucytosine.  相似文献   

13.
The present study tested in vitro susceptibility of Candida bloodstream isolates to fluconazole to determine if the ratio of the fluconazole area under the concentration-time curve (AUC) or weight-normalized daily dose (dose(wn)) to MIC correlated with mortality. Fluconazole susceptibility and outcome data were determined for 77 patients with a positive Candida blood culture between 2002 and 2005. The most commonly isolated Candida species were C. albicans (64%), C. glabrata (14%), C. parapsilosis (8%), C. tropicalis (6%), and C. lusitaniae (4%). Only two isolates were classified as fluconazole resistant by the CLSI M27-A2 method. Fluconazole MICs were highest against C. glabrata relative to other Candida species. Overall the crude mortality assessed at hospital discharge was 19.4% (n = 15). Mortality rates by species were as follows: C. albicans, 16.3%; C. glabrata, 36.4%; C. parapsilosis, 0%; C. tropicalis, 0%; C. lusitaniae, 33.3%. A mortality rate of 50% was noted among patients infected with nonsusceptible isolates (MIC > or = 16 microg/ml) compared to 18% for patients infected with susceptible (MIC < or = 8 microg/ml) isolates (P = 0.17). The fluconazole dose(wn)/MIC (24-h) values were significantly higher for the 62 survivors (13.3 +/- 10.5 [mean +/- standard deviation]) compared to the 15 nonsurvivors (7.0 +/- 8.0) (P = 0.03). The fluconazole AUC/MIC (24 h) values also trended higher for survivors (775 +/- 739) compared to nonsurvivors (589 +/- 715) (P = 0.09). These data support the dose-dependent properties of fluconazole. Underdosing fluconazole against less-susceptible Candida isolates has the potential to increase the risk of mortality associated with candidemia.  相似文献   

14.
Fluconazole-resistant Candida albicans and intrinsically fluconazole-resistant Candida species have been reported as bloodstream isolates. However, an association between the isolation of fluconazole-resistant Candida from the bloodstream and patient risk factors for fungemia has not been established. The purpose of this study was to determine the prevalence of fluconazole resistance in bloodstream isolates of Candida species and Cryptococcus neoformans collected from patients with neutropenia, one of the most important risk factors for fungemia. MICs of voriconazole, fluconazole, itraconazole, ketoconazole, amphotericin B, and flucytosine were determined by the National Committee for Clinical Laboratory Standards M27-A method (1997). Voriconazole, on a per-weight basis, was the most active azole tested. Fluconazole resistance (MIC >/= 64 microg/ml) was not identified in any of the C. albicans (n = 513), Candida parapsilosis (n = 78), Candida tropicalis (n = 62), or C. neoformans (n = 38) isolates tested.  相似文献   

15.
Caspofungin is an echinocandin antifungal agent with broad-spectrum activity against Candida and Aspergillus spp. The in vitro activities of caspofungin against 3,959 isolates of Candida spp. obtained from over 95 different medical centers worldwide were compared with those of fluconazole and itraconazole. The MICs of the antifungal drugs were determined by broth microdilution tests performed according to the NCCLS method using RPMI 1640 as the test medium. Caspofungin was very active against Candida spp. (MIC at which 90% of the isolates were inhibited [MIC(90)], 1 micro g/ml; 96% of MICs were < or =2 micro g/ml). Candida albicans, C. dubliniensis, C. tropicalis, and C. glabrata were the most susceptible species of Candida (MIC(90), 0.25 to 0.5 micro g/ml), and C. guilliermondii was the least susceptible (MIC(90), >8 micro g/ml). Caspofungin was very active against Candida spp., exhibiting high-level resistance to fluconazole and itraconazole (99% of MICs were < or =1 micro g/ml). These results provide further evidence for the spectrum and potency of caspofungin activity against a large and geographically diverse collection of clinically important isolates of Candida spp.  相似文献   

16.
目的了解国产伏立康唑对北京和我国其他地区临床分离的常见病原真菌体外抗菌活性。方法分别参照CLSIM27-A2和M38-A方案测定伏立康唑对144株酵母和82株产孢丝状真菌的抗菌活性。受试菌株包括念珠菌114株(含氟康唑获得性耐药白念珠菌)、新型隐球菌20株、阿萨希毛孢子菌10株、曲霉62株(含伊曲康唑耐药曲霉及两性霉素B不敏感曲霉)、镰刀菌10株、尖端赛多孢菌10株。结果伏立康唑对念珠菌(不包括氟康唑耐药和剂量依赖敏感白念珠菌)、新型隐球菌、阿萨希毛孢子菌的MIC50≤0.5mg/L、MIC90≤1mg/L;而对氟康唑获得性耐药白念珠菌MIC50和MIC90均〉16mg/L。对曲霉、尖端赛多孢菌的MIC50≤1mg/L、MIC90≤2mg/L,对镰刀菌的MIC50和MIC90分别为4mg/L和〉16mg/L。结论伏立康唑对多数酵母有较强的体外抗菌活性,尤其是对克柔念珠菌和光滑念珠菌等氟康唑天然耐药菌株。该药对多数产孢丝状真菌也有较好的体外抗菌作用,包括伊曲康唑耐药及两性霉素B不敏感的曲霉以及对多种抗真菌药物耐药的尖端赛多孢菌;但其对氟康唑获得性耐药白念珠菌有一定交叉耐药。  相似文献   

17.
The activity of CS-758 (R-120758), a new triazole antifungal agent, was evaluated and compared with those of fluconazole, itraconazole, and amphotericin B in vitro and with those of fluconazole and itraconazole in vivo. CS-758 exhibited potent in vitro activity against clinically important fungi. The activity of CS-758 against Candida spp. was superior to that of fluconazole and comparable or superior to those of itraconazole and amphotericin B. CS-758 retained potent activity against Candida albicans strains with low levels of susceptibility to fluconazole (fluconazole MIC, 4 to 32 microg/ml). Against Aspergillus spp. and Cryptococcus neoformans, the activity of CS-758 was at least fourfold superior to those of the other drugs tested. CS-758 also exhibited potent in vivo activity against murine systemic infections caused by C. albicans, C. neoformans, Aspergillus fumigatus, and Aspergillus flavus. The 50% effective doses against these infections were 0.41 to 5.0 mg/kg of body weight. These results suggest that CS-758 may be useful in the treatment of candidiasis, cryptococcosis, and aspergillosis.  相似文献   

18.
We investigated the in vitro activity of a new antifungal triazole, D0870, against 100 Candida albicans isolates from the oral cavities of patients infected with human immunodeficiency virus by using a broth macrodilution method following the recommendations provided by the National Committee for Clinical Laboratory Standards (document M27-P). All of the isolates were chosen from C. albicans isolates already tested for fluconazole susceptibility by the procedure of the National Committee for Clinical Laboratory Standards. Fifty isolates were considered fluconazole susceptible (MICs, < or = 4 micrograms/ml), and 50 isolates were considered fluconazole resistant (MICs, > or = 8 micrograms/ml). The in vitro data demonstrated that D0870 had good activity against isolates tested; for 90% of all strains of C. albicans, MICs were 0.5 micrograms/ml. However, the D0870 MICs for the fluconazole-susceptible isolates were lower than those for the fluconazole-resistant isolates; MICs for 50 and 90% of the isolates tested were < or = 0.0078 and 0.06 micrograms/ml, respectively, for fluconazole-susceptible isolates and 0.25 and 2 micrograms/ml, respectively, for fluconazole-resistant isolates (P < 0.001). Our data suggest that this new triazole could represent a valid alternative in the treatment of oral candidiasis in human immunodeficiency virus-infected patients.  相似文献   

19.
The echinocandin MK-0991, formerly L-743,872, is a water-soluble lipopeptide that has been demonstrated in preclinical studies to have potent activity against Candida spp., Aspergillus fumigatus, and Pneumocystis carinii. An extensive in vitro biological evaluation of MK-0991 was performed to better define the potential activities of this novel compound. Susceptibility testing with MK-0991 against approximately 200 clinical isolates of Candida, Cryptococcus neoformans, and Aspergillus isolates was conducted to determine MICs and minimum fungicidal concentrations MF(s). The MFC at which 90% of isolates are inhibited for 40 C. albicans clinical isolates was 0.5 microg/ml. Susceptibility testing with panels of antifungal agent-resistant species of Candida and C. neoformans isolates indicated that the MK-0991 MFCs for these isolates are comparable to those obtained for susceptible isolates. Growth kinetic studies of MK-0991 against Candida albicans and Candida tropicalis isolates showed that the compound exhibited fungicidal activity (i.e., a 99% reduction in viability) within 3 to 7 h at concentrations ranging from 0.06 to 1 microg/ml (0.25 to 4 times the MIC). Drug combination studies with MK-0991 plus amphotericin B found that this combination was not antagonistic against C. albicans, C. neoformans, or A. fumigatus in vitro. Studies with 0 to 50% pooled human or mouse serum established that fungal susceptibility to MK-0991 was not significantly influenced by the presence of human or mouse serum. Results from resistance induction studies suggested that the susceptibility of C. albicans was not altered by repeated exposure (40 passages) to MK-0991. Erythrocyte hemolysis studies with MK-0991 with washed and unwashed human or mouse erythrocytes indicated minimal hemolytic potential with this compound. These favorable results of preclinical studies support further studies with MK-0991 with humans.  相似文献   

20.
Analysis of the sterol compositions of 13 clinical isolates of the pathogenic yeast Cryptococcus neoformans obtained from five patients with recurring cryptococcal meningitis showed that, unlike Candida albicans, the major sterols synthesized by this yeast were obtusifoliol (range, 21.1 to 68.2%) and ergosterol (range, 0.0 to 46.5%). There was considerable variation in the sterol contents among the 13 isolates, with total sterol contents ranging from 0.31 to 5.9% of dry weight. The isolates from the five patients who had relapses had different total sterol contents and compositions in comparison with those of the pretreatment isolates, indicating either that the sterols had been changed by therapy or that the patients were infected with new isolates with different sterol compositions. Growth of the cryptococcal isolates in the presence of subinhibitory concentrations of fluconazole (0.25x the MIC) significantly altered the sterol content and pattern. The total sterol content decreased in nine isolates and increased in four isolates in response to pretreatment with fluconazole. Fluconazole had no consistent effect on ergosterol levels. In contrast, fluconazole caused a decrease in obtusifoliol levels and an increase in 4,14-dimethylzymosterol levels in all isolates. These results indicate extensive diversity in sterol content, sterol composition, and sterol synthesis in response to subinhibitory concentrations of fluconazole in C. neoformans strains. We propose that fluconazole inhibits the sterol synthesis of C. neoformans by interfering with both 14 alpha-demethylase-dependent and -independent pathways. No correlation between the sterol compositions of C. neoformans isolates and their susceptibilities to fluconazole was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号