首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
背景与目的:缺氧对DNA错配修复系统(mismatch repair, MMR)活性的调控是肿瘤细胞遗传不稳定的重要原因,但其机制尚不完全清楚.本研究拟观察缺氧状态下人小细胞肺癌H446细胞DNA错配修复基因MLH1、MSH2的表达变化,初步探讨DNA甲基化在其中的作用.方法:应用RT-PCR、Western blot等方法检测H446细胞在缺氧状态下以及甲基转移酶抑制剂5-氮杂-2′-脱氧胞苷(5-Aza-CdR)处理后MLH1、MSH2基因的表达水平,同时,采用甲基化特异性PCR(MSP)方法检测MLH1、MSH2基因启动子CpG岛甲基化状态.结果:缺氧状态下,H446细胞MLH1、MSH2基因在转录和翻译水平均显著性降低.同时,随着缺氧时间延长,MLH1基因启动子逐渐由非甲基化状态、部分甲基化状态转变为完全甲基化状态,而MSH2基因启动子则直接由非甲基化状态转变为完全甲基化状态.甲基转移酶抑制剂5-Aza-CdR可使MLH1、MSH2基因表达水平有所恢复,但去除5-Aza-CdR后其表达再次下调.结论:启动子甲基化可能是缺氧诱导H446细胞显著性下调MLH1、MSH2基因表达的重要机制,甲基转移酶抑制剂5-Aza-CdR可恢复其表达.  相似文献   

2.
Human mismatch repair (MMR) genes encode highly conserved interacting proteins that correct replication errors predisposing to hereditary gastrointestinal and genitourinary malignancies. A subset of sporadic genitourinary tumors also exhibits MMR deficiency and can be identified by measuring the frequency of microsatellite instability (MSI) in cancer cell DNA. We investigated expression of the two most commonly mutated MMR genes, MSH2 and MLH1, in sporadic testicular germ cell tumor (GCT) in order to: (1) determine the expression pattern of MSH2 and MLH1 proteins in normal seminiferous tubules and histologically distinct GCT subtypes, (2) correlate MMR gene expression with genetic instability in GCT and (3) develop a panel of molecular markers that can identify genetically distinct subsets of GCT for prognostic assessment. MSH2 and MLH1 had differential staining patterns in normal seminiferous tubules and malignant tissues. MSH2 was expressed in all stages of spermatogenesis up to but excluding mature sperm whereas MLH1 was predominantly expressed in premeiotic germ cells. All histological GCT subtypes showed differential immunostaining for MSH2 and MLH1 however pure seminoma had statistically significant fewer low MSH2 staining tumors than other subtypes (p = 0.046). Twenty-five percent of GCT exhibited increased frequency of MSI (MSI+ tumors) with 73, 70 and 43% of MSI+ tumors exhibiting low MSH2, low MLH1 or low MSH2 and low MLH1 staining respectively. Fifteen percent of testicular GCT exhibited loss of heterozygosity (LOH) but no MSI (LOH only tumors). Only 28, 17 or 6% of LOH only tumors exhibited low MSH2, low MLH1 or low MSH2 and low MLH1 staining respectively.  相似文献   

3.
4.
Hereditary non-polyposis colorectal cancer (HNPCC) represents 1-3% of all colorectal cancers. HNPCC is caused by a constitutional defect in a mismatch repair (MMR) gene, most commonly affecting the genes MLH1, MSH2 and MSH6. The MMR defect results in an increased cancer risk, with the greatest lifetime risk for colorectal cancer and other cancers associated to HNPCC. The HNPCC-associated tumor phenotype is generally characterized by microsatellite instability (MSI) and immunohistochemical loss of expression of the affected MMR protein. The aim of this study was to determine the sensitivity of IHC for MLH1, MSH2 and MSH6, and MSI analysis in tumors from known MMR gene mutation carriers. Fifty-eight paired normal and tumor samples from HNPCC families enrolled in our high-risk colorectal cancer registry were studied for the presence of germline mutations in MLH1, MSH2 and MSH6 by DGGE and direct sequencing. MSI analysis and immunostaining for MLH1, MSH2 and MSH6 were evaluated. Of the 28 patients with a real pathogenic mutation, loss of immunohistochemical expression for at least 1 of these MMR proteins was found, and all except 1 have MSI-H. Sensitivity by MSI analysis was 96%. IHC analysis had a sensitivity of 100% in detecting MMR deficiency in carriers of a pathogenic MMR mutation, and can be used to predict which gene is expected to harbor the mutation for MLH1, MSH2 and MSH6. This study suggests that both analyses are useful for selecting high-risk patients because most MLH1, MSH2 and MSH6 gene carriers will be detected by this 2-step approach. This practical method should have immediate application in the clinical work of patients with inherited colorectal cancer syndromes.  相似文献   

5.
6.
A cohort of 206 consecutively-collected patients with colorectal carcinoma (CRC) were screened for germline mutations in the principal DNA mismatch repair (MMR) genes, MLH1 and MSH2, and in the Fanconi anemia (FA) genes involved in homologous recombination DNA repair. Mutation analysis was performed by denaturing high-performance liquid chromatography (DHPLC) and automated sequencing. Available paraffin-embedded tumor tissues were evaluated for gene expression by immunohistochemistry. Genes of the FA pathway were found to participate in CRC pathogenesis, being silenced during disease progression and metastasis formation. Conversely, MLH1 and MSH2 genes seem to be inactivated at earlier stages of the disease. Finally, very few (about 5%) cases presented a simultaneous inactivation of the MMR and FA genes. Overall, our findings indicated that: i) mismatch DNA repair remains the main mechanism to be altered at both germline and somatic levels among CRC patients; ii) functional impairments of mismatch DNA repair and FA-related repair may represent two different pathogenetic alterations which are concurring in colorectal cancer progression.  相似文献   

7.
High rates of early colorectal cancers are observed in Tunisia suggesting high genetic susceptibility. Nevertheless, up to now no molecular studies have been performed. Hereditary nonpolyposis colorectal cancer (HNPCC) is the most frequent cause of inherited colorectal cancer. It is caused by constitutional mutations in the DNA mismatch repair (MMR) genes. Here, we investigated a Tunisian family highly suspected of hereditary nonpolyposis colorectal cancer (HNPCC). Six patients were diagnosed with a colorectal or an endometrial cancer at an early age, including one young female who developed a colorectal cancer at 22 years and we tested for germline mutations in MMR genes. MMR genes were tested for rearrangements by MLPA (MLH1, MSH2) and the presence of point mutations by sequencing (MLH1, MSH2, MSH6). Moreover, tumors were analyzed for microsatellite instability and expression of MMR proteins, as well as for somatic rearrangements in MLH1 and MSH2 by MLPA. MMR gene analysis by MLPA revealed the presence of a large deletion in MLH1 removing exon 6. Sequence analysis of the breakpoint region showed that this rearrangement resulted from a homologous unequal recombination mediated by a repetitive Alu sequence. Moreover, tumors harbored biallelic deletion of MLH1 exon 6 and loss of heterozygosity at MLH1 intragenic markers, suggesting duplication of the rearranged allele in the tumor. This germline MLH1 rearrangement was associated to a severe phenotype in this family. This is the first report of a molecular analysis in a Tunisian family with HNPCC.  相似文献   

8.
BACKGROUND: The human Mut-L-Homologon-1 (MLH1) and Mut-S-Homologon-2 (MSH2) are post replication mismatch repair (MMR) genes. METHODS: We examined the correlation of the clinical features of 122 patients with esophageal squamous cell carcinoma (ESCC) with the expression of MLH1 and MSH2 by immunohistochemical analysis. RESULTS: According to our criteria, 34 and 25 cases did not express MLH1 and MSH2, respectively. Expression of both the MLH1 and MSH2 gene products was observed in 73 (59.8%) cases; loss of MLH1 or MSH2 expression was detected in 35(28.7%) cases. Fourteen (11.5%) cases demonstrated loss of both MLH1 and MSH2 expression in ESCC. Loss of MLH1 and/or MSH2 gene expression significantly correlated with increases in malignancy, as evidenced by increases in the existence of metastatic lymph nodes (P = 0.0056), extensive invasion (P = 0.0007), and poor differentiation (P = 0.0992). The MLH1-negative patients had a significantly poorer prognosis than those in the MLH1-positive group (P = 0.0043). Similar results were observed for MSH2 expression (P = 0.0002). Patients both MLH1 and MSH2 negative exhibited the most poor clinical outcome than other patients (P < 0.0001). CONCLUSION: We conclude that MMR protein expression, detected by immunohistochemistry, is a useful marker providing information necessary to decide appropriate therapeutic strategies in patients with ESCC.  相似文献   

9.
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease with high penetrance, caused by germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, PMS2 and MLH3. Most reported pathogenic mutations are point mutations, comprising single base substitutions, small insertions and deletions. In addition, genomic rearrangements, such as large deletions and duplications not detectable by PCR and Sanger sequencing, have been identified in a significant proportion of HNPCC families, which do not carry a pathogenic MMR gene point mutation. To clarify whether genomic rearrangements in MLH1, MSH2 or MSH6 also occur in patients carrying a point mutation, we subjected normal tissue DNA of 137 colorectal cancer (CRC) patients to multiplex ligation-dependent probe amplification (MLPA) analysis. Patients fulfilled the following pre-requisites: all patients met at least one criterion of the Bethesda guidelines and their tumors exhibited high microsatellite instability (MSI-H) and/or showed loss of expression of MLH1, MSH2 or MSH6 proteins. PCR amplification and Sanger sequencing of all exons of at least one MMR gene, whose protein expression had been lost in the tumor tissue, identified 52 index patients without a point mutation (Group 1), 71 index patients with a pathogenic point mutation in MLH1 (n=38) or MSH2 (n=22) or MSH6 (n=11) (Group 2) and 14 patients with an unclassified variant in MLH1 (n=9) or MSH2 (n=3) or MSH6 (n=2) (Group 3). In 13 of 52 patients of group 1 deletions of at least one exon were identified. In addition, in group 3 one EX1_15del in MLH1 was found. No genomic rearrangement was identified in group 2 patients. Genomic rearrangements represent a significant proportion of pathogenic mutations of MMR genes in HNPCC patients. However, genomic rearrangements are rare in patients carrying point mutations in MMR genes. These findings suggest the use of genomic rearrangement tests in addition to Sanger sequencing in HNPCC patients.  相似文献   

10.
Mismatch repair deficiency in tumors can result from germ line mutations in one of the mismatch repair (MMR) genes (MLH1, MSH2, MSH6 and PMS2), or from sporadic promoter hypermethylation of MLH1. The role of unclassified variants (UVs) in MMR genes is subject to debate. To establish the extend of chromosomal instability and copy neutral loss of heterozygosity (cnLOH), we analyzed 41 archival microsatellite unstable carcinomas, mainly colon cancer, from 23 patients with pathogenic MMR mutations, from eight patients with UVs in one of the MMR genes and 10 cases with MLH1 promoter hypermethylation. We assessed genome wide copy number abnormalities and cnLOH using SNP arrays. SNP arrays overcome the problems of detecting LOH due to instability of polymorphic microsatellite markers. All carcinomas showed relatively few chromosomal aberrations. Also cnLOH was infrequent and in Lynch syndrome carcinomas usually confined to the locus harbouring pathogenic mutations in MLH1, MSH2 or PMS2 In the carcinomas from the MMR-UV carriers such cnLOH was less common and in the carcinomas with MLH1 promoter hypermethylation no cnLOH at MLH1 occurred. MSI-H carcinomas of most MMR-UV carriers present on average with more aberrations compared to the carcinomas from pathogenic MMR mutation carriers, suggesting that another possible pathogenic MMR mutation had not been missed. The approach we describe here shows to be an excellent way to study genome-wide cnLOH in archival mismatch repair deficient tumors.  相似文献   

11.
BACKGROUND: Carcinomas of the small intestine are rare, but the risk is greatly increased in patients with hereditary nonpolyposis colorectal cancer (HNPCC) due to an inherited mismatch repair (MMR) gene mutation, most commonly affecting the genes MLH1 or MSH2. Defective MMR is characterized by microsatellite instability (MSI) and loss of MMR protein expression in the tumor tissue. However, a subset of several sporadic tumor types, including about 15% of colon cancers, also evolve through defective MMR. METHODS: The authors have assessed the frequency of MSI and analyzed the immunohistochemical expression of MLH1 and MSH2 in a population-based series of 89 adenocarcinomas of the small intestine. To study the contribution of MSI and defective MMR protein expression in young patients, 43 cancers of the small intestine from patients below age 60 years (including 24 tumors from the population-based series and an additional 19 tumors from young individuals) were also analyzed. RESULTS: MSI was detected in 16/89 tumors (18%) in the population-based series, and immunohistochemistry revealed loss of expression for MLH1 in 7/16 MSI tumors and in 2/73 MSS tumors, whereas all tumors showed normal expression for MSH2. Among the young patients, the authors identified MSI in 10/43 tumors (23%), and 6 of these 10 MSI tumors showed immunohistochemical loss of MMR protein expression, which affected MLH1 in 3 cases and MSH2 in 3 cases. CONCLUSIONS: The frequency of MSI (18%) in adenocarcinomas of the small intestine equals that of colon cancer. However, silencing of MLH1 seems to explain the MSI status in only about half of the MSI tumors. Among patients with cancer of the small intestine before age 60 years, MSI is found in 23% of the cases, with MLH1 and MSH2 being affected at equal frequencies, indicating that HNPCC may underly a subset of such cases.  相似文献   

12.
Colorectal cancer (CRC) is a leading cause of morbidity and mortality and alterations in mismatch repair (MMR) genes, leading to absent protein (negative) expression, are responsible for approximately 20% of CRC cases. Immunohistochemistry is a tool for prescreening of MMR protein expression in CRC but the literature on its use on Hispanics is scarce. However, Hispanics represent the second leading ethnicity in the United States (US) and CRC is a public health burden in this group. Our objectives were to determine the frequency of MMR protein-negative CRC and to evaluate its association with clinical and pathological characteristics among Hispanics from Puerto Rico, for the first time to our knowledge. A retrospective observational study of unselected CRC patients from the Puerto Rico Medical Center from 2001 to 2005 was done. MLH1 and MSH2, the most commonly altered MMR genes, protein expression was evaluated using immunohistochemistry, with microsatellite instability (MSI) and BRAF gene analyses in the absence of MLH1 protein expression. One-hundred sixty-four CRC patients were evaluated: the overall MMR protein-negative frequency was 4.3%, with 0.6% frequency of co-occurrence of MLH1-protein negative expression, MSI-high, and normal BRAF gene. MMR protein-negative expression was associated with proximal colon location (P = 0.02) and poor histological tumor differentiation (P = 0.001), but not with other characteristics. The frequency of MMR protein-negative CRC in Hispanics from Puerto Rico was lower than reported in other populations. This finding may explain the lower CRC incidence rate among US Hispanics as compared to US non-Hispanic whites and blacks.  相似文献   

13.
The microsatellite instability (MSI) pathway is found in most cases of hereditary nonpolyposis colorectal cancer (HNPCC) and in 12 % of sporadic colorectal cancer (CRC). It involves inactivation of deoxyribonucleic acid mismatch repair (MMR) genes MLH1, MSH2, PMS2, and MSH6. MMR germline mutation detections are an important supplement to HNPCC clinical diagnosis. It enables at-risk and mutation-positive relatives to be informed about their cancer risks and to benefit from intensive surveillance programs that have been proven to reduce the incidence of CRC. In this study, we analyzed for the first time in Tunisia the potential value of immunohistochemical assessment of MMR protein to identify microsatellite instability in CRC. We evaluate by immunohistochemistry MMR protein expression loss in tumoral tissue compared to positive expression in normal mucosa. Immunohistochemistry revealed loss of expression for MLH1, MSH2, MSH6, and PMS2 in 15, 21, 13, and 15 % of cases, respectively. Here, we report a more elevated frequency of MSI compared to data of the literature. In fact, by immunohistochemistry, 70 % of cases were shown to be MSS phenotype, whereas 30 % of cases, in our set, were instable. Moreover, according to molecular investigation, 71 % of cases were instable (MSI-H) and remaining cases were stable (29 %). Thus, we found a perfect association between MMR immunohistochemical analyses and MSI molecular investigation. Immunohistochemical analysis of MMR gene product expression may allow one to specifically identify MSI phenotype of patients with colorectal carcinomas.  相似文献   

14.
Mutation of human homologues of DNA mismatch repair (MMR) genes in tumours has been shown to be associated with the phenomenon of microsatellite instability (MSI). Several studies have reported the occurrence of MSI in bladder cancer, but evidence of involvement of MMR genes in the pathogenesis of this cancer is still unclear. We therefore utilized quantitative immunohistochemical (IHC) image analysis and PCR-based allelotype analysis to determine hMLH1 and hMSH2 genes alteration in a cohort of Egyptian bladder cancer samples. IHC analysis of 24 TCC and 12 SCC revealed marked- intra and intertumour heterogeneity in the levels of expression of the two MMR proteins. One TCC lost MLH1 expression and one lost MSH2, (1/24, 4%), and one SCC lost MSH2 (1/12, 8%). A large proportion of analysed tumours revealed a percentage positivity of less than 50% for MLH1 and MSH2 expression (44% and 69%, respectively). Complete loss of heterozygosity in three dinucleotide repeats lying within, or in close proximity to, hMLH1 and hMSH2 was rare (2/57, (4%) for MLH1; and 1/55, (2%) for MSH2), however allelic imbalance was detected in 11/57 (hMLH1) and 10/55 (hMSH2) at any of the informative microsatellite loci. These alterations in structure and expression of DNA MMR genes suggest their possible involvement in the tumorigenesis and/or progression of bladder cancer.  相似文献   

15.
Background and aims: Hereditary non-polyposis colorectal cancer (HNPCC) may be caused by mutations in the mismatch repair (MMR) genes MLH1, MSH2 or MSH6. Family history (Amsterdam criteria) has traditionally been used to select patients for mutation testing. It has been demonstrated that germline mutations in the MMR genes are associated with lack of the corresponding gene product as assessed with immunohistochemistry (IHC) in tumour specimens. The aim of the study was to assess the value of the Amsterdam criteria II and IHC in predicting germline mutations. Methods: Fifty-six families that were previously tested for MLH1, MSH2 and MSH6 mutations were selected for this study. All pedigrees were extended and verified and the families were scored according to the original (I) and the revised Amsterdam criteria (II). The probabilities for MLH1 and MSH2 mutations were calculated by logistic regression. In addition, all available tumour material from indexed family members was examined by IHC for the presence of the three gene products. Results: Three out of seven (39%) families where the mutation could be identified complied with the Amsterdam criteria I, while all seven (100%) met the Amsterdam criteria II. All families carrying a MLH1 or MSH2 mutation had > 15% calculated probability of finding a mutation. Tumours from all seven mutation carriers lacked the immunohistochemical expression of the corresponding MMR gene. Conclusion: The results indicate that the Amsterdam criteria II in combination with immunohistochemistry of the mismatch repair proteins in tumours may be a cost-effective approach to select families for mutation analysis.  相似文献   

16.
背景与目的:林奇综合征(Lynch syndrome,LS)相关的子宫内膜癌有着独特的临床病理学特征及治疗手段。对新发子宫内膜癌患者采用免疫组织化学(immunohistochemistry,IHC)染色的方法检测错配修复(mismatch repair,MMR)蛋白表达情况,可以有效地筛查LS相关的癌症患者。本研究探讨MMR蛋白(MLH1、MSH2、MSH6及PMS2)在子宫内膜样腺癌中的表达情况及其与患者临床病理学特征的关系。方法:收集中国医科大学盛京医院2018年1月—2020年8月共515例子宫内膜样腺癌连续性病例为研究对象,年龄范围为28 ~ 81(57.73±8.41)岁。采用IHC染色的方法检测癌组织中MLH1、MSH2、MSH6和PMS2蛋白表达情况,应用聚合酶链式反应(polymerase chain reaction,PCR)方法对MLH1蛋白表达缺失的标本进行基因的甲基化检测,并且分析MMR蛋白表达缺失情况与子宫内膜样腺癌临床病理学特征的关系。只要有一种MMR蛋白表达缺失即判定为MMR蛋白错配修复缺陷(deficient mismatch repair,dMMR),蛋白全部阳性则判定为MMR表达完整(proficient mismatch repair,pMMR)。结果:515例子宫内膜样腺癌中有138例(26.8%)发生MMR蛋白表达缺失,MLH1、PMS2、MSH2及MSH6蛋白表达缺失率分别是16.3%(84/515)、19.0%(98/515)、5.4%(28/515)、8.0%(41/515)。MMR蛋白的缺失以MLH1和PMS2联合表达缺失(60.9%,84/138)为主;其次为MSH2和MSH6联合表达缺失(18.8%,26/138);MSH2、MSH6和PMS2联合表达缺失有2例(1.4%,2/138);PMS2、MSH2和MSH6蛋白单独表达缺失比例分别为8.0%(11/138)、1.4%(2/138)、10.1%(14/138)。对27例MLH1蛋白表达缺失标本进行甲基化检测,结果显示,阳性率为85.2%(23/27)。515例子宫内膜样腺癌组织中的MMR蛋白表达缺失与患者发病年龄、国际妇产科联合会(The International Federation of Gynecology and Obstetrics,FIGO)分期、组织学分化程度、浸润深度、脉管转移、神经侵犯、淋巴结转移、p53异常表达、肿瘤浸润淋巴细胞(tumor infiltrating lymphocyte,TIL)及肿瘤伴瘤周淋巴细胞有相关性,而与是否累及子宫下段无关。与pMMR的患者相比,dMMR的患者发病年龄更小,FIGO临床分期多为Ⅲ ~ Ⅳ期,组织学分化程度多为低分化,肿瘤多无肌层浸润,肿瘤多出现脉管神经侵犯及淋巴结转移,肿瘤浸润淋巴细胞增多,且肿瘤伴瘤周淋巴细胞更显著,MSH6蛋白缺失患者多无p53异常表达。结论:dMMR的子宫内膜样腺癌患者具有独特的临床病理学特征。应用免疫组织化学染色方法检测MMR蛋白表达情况,并对MLH1表达缺失的标本进行基因甲基化检测,能初步筛查LS患者,对肿瘤患者免疫治疗具有一定指导意义。  相似文献   

17.
There is increased incidence of microsatellite instability (MSI) in patients who develop multiple primary colorectal cancers (CRC), although the association with hereditary nonpolyposis colon cancer (HNPCC) is unclear. This study aims to evaluate the underlying genetic cause of MSI in these patients. Microsatellite instability was investigated in 111 paraffin-embedded CRCs obtained from 78 patients with metachronous and synchronous cancers, and a control group consisting of 74 cancers from patients with a single CRC. Tumours were classified as high level (MSI-H), low level (MSI-L) or stable (MSS). MLH1, MSH2 and MSH6 gene expression was measured by immunohistochemistry. Methylation of the MLH1 promoter region was evaluated in MSI-H cancers that failed to express MLH1, and mutational analysis performed in MSI-H samples that expressed MLH1, MSH2 and MSH6 proteins. The frequency of MSI-H was significantly greater in the multiple, 58 out of 111 (52%), compared to the single cancers, 10 out of 74 (13.5%), P < 0.01. Of the 32 patients from whom two or more cancers were analysed, eight (25%) demonstrated MSI-H in both cancers, 13 (41%) demonstrated MSI-H in one cancer and 11 (34%) failed to demonstrate any MSI-H. MSI-H single cancers failed to express MLH1 or MSH2 in seven out of nine (78%) cases and MSI-L/MSS cancers failed to express MLH1 or MSH2 in one out of 45 (2.2%) cases, all cancers expressed MSH6. MSI-H multiple cancers failed to express MLH1 or MSH2 in 21 out of 43 (48%) cases and MSI-L/MSS cancers failed to express MLH1 or MSH2 in four out of 32 (12.5%) cases. MSH6 expression was lost in five MSI-H multiple cancers, four of which also failed to express MLH1 or MSH2. Loss of expression of the same mismatch repair (MMR) gene was identified in both cancers from six out of 19 (31%) patients. Methylation was identified in 11 out of 17 (65%) multiple and three out of six (50%) single MSI-H cancers that failed to express MLH1. Mutational analysis of 10 MSI-H multiple cancers that expressed MLH1, MSH2 and MSH6 failed to demonstrate mutations in the MLH1 or MSH2 genes. We suggest that, although MSI-H is more commonly identified in those with multiple colorectal cancers, this does not commonly arise from a classical HNPCC pathway.  相似文献   

18.
19.
PURPOSE: Hereditary nonpolyposis colorectal cancer (HNPCC) is the commonest form of inherited colorectal cancer. Whereas it has been known that mismatch repair gene mutations are the underlying cause of HNPCC, an undetermined number of patients do not have these alterations. The main objectives of this study were to assess the relevance of clinically defined HNPCC patients without characteristic mutator pathway alterations and to identify their specific features. EXPERIMENTAL DESIGN: This was a prospective, population-based, cohort that included 1,309 newly diagnosed colorectal cancer patients. Demographic, clinical, pathologic data and tumor DNA from probands as well as a detailed family history were collected. Microsatellite analysis and MLH1, MSH2, and MSH6 immunohistochemistry were done. Germ line MLH1 and MSH2 mutational analysis was done in all patients with evidence of MMR alterations. RESULTS: Twenty-five patients (1.9%) fulfilled Amsterdam criteria of HNPCC but 15 (60%) of them did not have microsatellite instability and showed normal expression of MMR proteins. These patients presented mostly left-sided tumors without lymphocytic infiltrate; they were older, had fewer family members affected with colorectal or endometrial cancers, and more often fulfilled Amsterdam II criteria than HNPCC patients with microsatellite instability. Like unstable HNPCC patients, this group without mutator pathway alterations had a significant percentage of synchronous and metachronous adenomatous polyps and cancers. CONCLUSIONS: We define an important group of HNPCC families with specific features, no evidence of mismatch repair deficiency, and an autosomal dominant trait with a lesser penetrance than HNPCC with deficiency.  相似文献   

20.
PURPOSE: A considerable fraction (30% to 70%) of families with verified or putative hereditary nonpolyposis colorectal cancer fails to show mutations in DNA mismatch repair (MMR) genes. Our purpose was to address the genetic etiology of such families. Materials and METHODS: We scrutinized a population-based cohort of 26 families from Finland that had screened mutation-negative by previous techniques. Blood was tested for allelic messenger RNA (mRNA) expression of MLH1, MSH2, and MSH6 by single nucleotide primer extension (SNuPE), and tumor tissue for MMR protein expression by immunohistochemistry (IHC) as well as for microsatellite instability (MSI). Full-length cDNAs of genes implicated by SNuPE or IHC were cloned and sequenced. RESULTS: Unbalanced mRNA expression of MLH1 alleles was evident in two families. An inherited nonsense mutation was subsequently identified in one family, and complete silencing of the mutated allele was identified in the other family. Extinct protein expression by IHC implicated MLH1 in these two and in four other families, MSH2 in four families, and MSH6 in one family. Although no unequivocal genomic mutations were detected in the latter families, haplotype and other findings provided support for heritable defects. With one exception, all tumors with IHC alterations showed MSI, in contrast to the remaining families, which showed neither IHC changes nor MSI. CONCLUSION: Our expression-based strategy stratified the present "mutation-negative" cohort into two discrete categories: families linked to the major MMR genes MLH1, MSH2, and MSH6 (11 [42%] of 26) and those likely to be associated with other, as yet unknown susceptibility genes (15 [58%] of 26).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号