首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tong YW  Shoichet MS 《Biomaterials》2001,22(10):1029-1034
Embryonic hippocampal neurons cultured on surface modified fluoropolymers showed enhanced interaction and neurite extension. Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) film surfaces were aminated by reaction with a UV-activated mercury ammonia system yielding FEP-[N/O]. Laminin-derived cell-adhesive peptides (YIGSR and IKVAV) were coupled to FEP surface functional groups using tresyl chloride activation. Embryonic (E18) hippocampal neurons were cultured in serum-free medium for up to 1 week on FEP film surfaces that were modified with either one or both of GYIGSR and SIKVAV or GGGGGGYIGSR and compared to control surfaces of FEP-[N/O] and poly(L-lysine)/laminin-coated tissue culture polystyrene. Neuron-surface interactions were analyzed over time in terms of neurite outgrowth (number and length of neurites), cell adhesion and viability. Neurite outgrowth and adhesion were significantly better on peptide-modified surfaces than on either FEP or FEP-[N/O]. Cells on the mixed peptide (GYIGSR/SIKVAV) and the spacer group peptide (GGGGGGYIGSR) surfaces demonstrated similar behavior to those on the positive PLL/laminin control. The specificity of the cell-peptide interaction was demonstrated with a competitive assay where dissociated neurons were incubated in media containing peptides prior to plating. Cell adhesion and neurite outgrowth diminished on all surfaces when hippocampal neurons were pre-incubated with dissolved peptides prior to plating.  相似文献   

2.
We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.  相似文献   

3.
Chondroitin sulfate (CS) expression is increased in the glial scar following spinal cord injury demonstrating the importance understanding the role of CS in the central nervous system (CNS). There have been conflicting studies on the effects of the most abundant types of CS, chondroitin 4-sulfate (C4S) and chondroitin 6-sulfate (C6S), found in the CNS. In this study, the effects of C4S and C6S on rat embryonic day 18 cortical neurons were investigated. C4S had no effect on neuron behavior whereas C6S inhibited neurite outgrowth at higher concentrations (>10 μg/ml). Two C6S-binding peptides (C6S-1 and C6S-2) were tested for their ability to block the inhibitory activity of C6S on neurite outgrowth. Neurons cultured with C6S and C6S-binding peptide at higher peptide concentrations had neurite lengths similar to neurons cultured without C6S. Therefore, the C6S-binding peptides were effective at blocking the inhibitory activity of C6S. The C6S-1 peptide had a higher binding affinity than the C6S-2 peptide and was consequently more effective at blocking C6S inhibition of neurite growth. To date, this is the first study to employ an alternative strategy from enzymatic digestion of CS chains to increase neurite outgrowth. These studies warrant further investigation of the use of C6S-binding peptides to increase nerve regeneration following spinal cord injury.  相似文献   

4.
Study of axonal growth and ligand-receptor interactions requires specificity and careful characterization of the biomaterial substrates to which the neurons bind. It would be impossible to predict the effects of important variables such as composition, surface density, spatial distribution, and conformation of the ligands on axonal growth of a neuron without highly specific surface characterization. Here, we compare two methods of surface modification (hereafter referred to as "Heterobifunctional Crosslinker" and "Pluronics" methods) used for immobilization of fibronectin (FN) and FN-derived, RGD-containing peptides to the substrates. We also characterized their performance in neurite outgrowth experiments. Various surface analytical techniques such as contact angle measurement, XPS, and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were used for the analysis of the substrates at each step of the two different chemistries involved. FN-patterned surfaces were created by micro-contact printing methods and confirmed by imaging TOF-SIMS, and AFM techniques. After immobilization of FN and/or FN-derived RGD-containing peptide, including the formation of micron-scale patterns of FN, the modified surfaces were plated with neurons from postnatal rat dorsal root ganglia (DRG) and incubated in serum-free medium. Both the peptide- and/or protein-modified substrates supported significantly greater neurite outgrowth than controls, and outgrowth on both substrate chemistries was inhibited by the addition of soluble RGD peptide. Patterned FN surfaces were successful in spatially controlling the neuron attachment and outgrowth.  相似文献   

5.
This article demonstrates that directional outgrowth of neurites is promoted by applying a combination of physical and chemical cues to biodegradable polymer substrates. Films of poly-D,L-lactic acid and poly(lactide-co-glycolide) were micropatterned to form grooves on substrate surfaces, using novel indirect transfer techniques developed specifically for biodegradable polymers that cannot be micropatterned directly. Laminin was selectively adsorbed in the grooves. Whole and dissociated dorsal root ganglia were seeded on the substrates and neurite outgrowth and alignment along the microgrooves were measured. The microgrooves provide physical guidance, whereas laminin provides chemical cues to the neurons. The groove depth and spacing were found to significantly influence neurite alignment. The presence of laminin was found to promote neurite adhesion and outgrowth along the grooves. Using a combination of optimized physical and chemical cues, excellent spatial control of directional neurite outgrowth, with up to 95% alignment of neurites, was obtained. The synergistic effect of physical and chemical guidance cues was found to be more effective than individual cues in promoting directional outgrowth of neurites.  相似文献   

6.
Chemical and topographical cues can be used to guide dissociated neurons into user-defined network geometries on artificial substrates, yet control of neuron polarity (differentiation into axons and dendrites) remains an elusive goal. We developed a dual guidance cue strategy for directing morphological maturity in neurons in vitro using combined chemical and topographical guidance cues on glass substrates. The surface chemistry provides chemical attraction and repulsion for controlling neuron placement and outgrowth, while the topography provides additional surface area for neuron attachment. Poly-l-lysine (PLL) was adsorbed into etched trenches in glass substrates, and an acetone liftoff process was used to produce bifunctional surfaces with a hydrophobic hexamethyldisilazane (HMDS) background and trench patterns of PLL. We examined the cytoarchitectural polarization of dissociated hippocampal pyramidal neurons on guidance cues designed to promote rapid outgrowth of neurites onto continuous line features and delayed neurite outgrowth onto interrupted line features. An optimum distance of approximately 5 μm between the cell body attachment node and the first interrupted line guidance cue led to specific cytoarchitectural polarization of ≥60% of neurons by 3 days of culture in vitro.  相似文献   

7.
After injury to the CNS, the anatomical organization of the tissue is disrupted, posing a barrier to the regeneration of axons. Meningeal cells, a central participant in the CNS tissue response to injury, migrate into the core of the wound site in an unorganized fashion and deposit a disorganized extracellular matrix (ECM) that produces a nonpermissive environment. Previous work in our laboratory has shown that the presentation of nanometer-scale topographic cues to these cells influences their morphological, cytoskeletal, and secreted ECM alignment. In the present study, we provided similar environmental cues to meningeal cells and examined the ability of the composite construct to influence dorsal root ganglion regeneration in vitro. When grown on control surfaces of meningeal cells lacking underlying topographic cues, there was no bias in neurite outgrowth. In contrast, when grown on monolayers of meningeal cells with underlying nanometer-scale topography, neurite outgrowth length was greater and was directed parallel to the underlying surface topography even though there exists an intervening meningeal cell layer. The observed outgrowth was significantly longer than on laminin-coated surfaces, which are considered to be the optimal substrata for promoting outgrowth of dorsal root ganglion neurons in culture. These results suggest that the nanometer-level surface finish of an implanted biomaterial may be used to organize the encapsulation tissue that accompanies the implantation of materials into the CNS. It furthermore suggests a simple approach for improving bridging materials for repair of nerve tracts or for affecting cellular organization at a device-tissue interface.  相似文献   

8.
Several lines of evidence suggest that the brain exhibits reduced plasticity with aging. However, a variety of soluble neurite outgrowth-promoting factors, such as neurotrophins, are not decreased in the aged brain, and aged neurons do not possess dramatically reduced growth potential. The possibility that aging results in reduced baseline substrate-bound neurite outgrowth-promoting activity in the central nervous system (CNS) was evaluated using tissue section culture. There were clear differences between brain regions in the extent of neurite outgrowth on both young and aged brain sections. However, no differences in the extent of neurite outgrowth were observed as a function of age. These results suggest that aging of the rat CNS is not accompanied by major alterations in the baseline neurite outgrowth-promoting substrate properties of the tissue.  相似文献   

9.
中枢髓鞘膜蛋白抑制神经突起生长与胞内cAMP关系的研究   总被引:1,自引:1,他引:0  
李涛  谢富康 《解剖学报》2001,32(3):209-211,T002
目的:探讨中枢神经髓鞘膜蛋白抑制神经突起生长与神经元胞内cAMP水平的关系。方法:应用体外培养方法观察经密度梯度离心法提取的中枢神经髓鞘膜蛋白对小脑颗粒细胞突起生长的影响。用放射免疫方法检测神经元接触髓鞘膜蛋白后胞内cAMP水平的变化。结果:1.中枢神经髓鞘膜蛋白抑制培养小脑颗粒细胞突起的生长;2.神经元接触髓鞘膜蛋白后的最初5min,胞内cAMP水平即开始下降,12h降至最低点,结论中枢神经髓鞘膜蛋白抑制神经突起生长的作用可能与抑制因子通过信号转导使神经元胞内cAMP水平降低有关。  相似文献   

10.
Gold-coated polyurethanes were chemisorbed with three cell-adhesion peptides having an N-terminal cysteine: cys-arg-gly-asp (CRGD), cys-arg-glu-asp-val (CREDV), and the cyclic peptide cys-cys-arg-arg-gly-asp-try-leu-cys (CCRRGDWLC). The peptides were selected based on their presumed preferential interactions with the cell-surface integrins on vascular endothelial cells. The ability of the surfaces to support the preferential adhesion of human vascular endothelial cells was studied by comparing in vitro adhesion results for these cells with those from mouse 3T3 fibroblasts. Surface modification with the peptides was confirmed by water-contact angles and XPS. Surface morphology was determined by AFM and SEM. In vitro cell-culture studies in conjunction with plasma-protein adsorption and immunoblotting were performed on the various modified surfaces. The data suggest that peptide-modified surfaces have significant potential for supporting cell adhesion. Little or no cell adhesion was noted on gold- or cysteine-modified control surfaces. Human vascular endothelial cells showed the greatest adhesion to the CCRRGDWLC-modified surfaces, and the 3T3 fibroblasts adhered best to the CREDV-modified surfaces. Protein adsorption studies suggest that the preferential adsorption of the cell-adhesive proteins fibronectin and vitronectin is not likely mediating the differences noted. It is concluded that the cell-adhesive peptide-modified gold-coated polymers have significant potential for further development both as model substrates for fundamental studies and for use in biomaterials applications.  相似文献   

11.
Current methods to promote growth of cultured neurons use two-dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly-L-lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin-1). However, these 2D surfaces represent a poor topological approximation of the three-dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL-coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin-C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide-modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury.  相似文献   

12.
Microcontact printing techniques were used to pattern circles (diameters 10. 50, 100, and 200 microm) of N1[3-(trimethoxysilyl)-propyl]diethylenetriamine (DETA) surrounded by octadecyltrichlorosilane (OTS) borders on borosilicate glass, a model substrate. The DETA regions were further modified by immobilization of either the cell-adhesive peptides Arginine-Glycine-Aspartic Acid-Serine (RGDS) and Lysine-Arginine-Serine-Arginine (KRSR) or the non-adhesive peptides Arginine-Aspartic Acid-Glycine-Serine (RDGS) and Lysine-Serine-Serine-Arginine (KSSR). After four hours under standard cell culture conditions but in the absence of serum, adhesion of either osteoblasts or fibroblasts on surfaces patterned with the non-adhesive peptides RDGS and KSSR was random and low. In contrast, both osteoblasts and fibroblasts adhered and formed clusters onto circles modified with the adhesive peptide RGDS, whereas only osteoblasts adhered and formed clusters onto the circles modified with KRSR, a peptide that selectively promotes adhesion of osteoblasts. These results provide evidence that patterning of select peptides can direct adhesion of specific cell lines exclusively to predetermined regions on material surfaces.  相似文献   

13.
Improved endothelialization without platelet adhesion is essential to enhance the long-term patency of synthetic vascular grafts and other blood-contacting devices. We have developed a dually modified polyurethaneurea by incorporating endothelial cell adhesive YIGSR peptide sequences as chain extenders and nonthrombogenic PEG as a soft segment (PUUYIGSR-PEG) in the polymer backbone. PUUYIGSR-PEG was successfully synthesized and characterized by proton NMR, FTIR, GPC, DSC, ESCA, and contact angle measurement. Despite having similar molecular weight, the peptide/PEG-modified polyurethaneurea (PUUYIGSR-PEG) showed superior mechanical properties compared to the control PEG-modified polyurethaneurea (PUUPPD-PEG). Virtually no platelet adhesion was observed on PUUYIGSR-PEG, while endothelial cell adhesion, spreading, and migration were significantly greater on PUUYIGSR-PEG compared to PUUPPD-PEG. Thus, this bioactive polymer may be an appropriate biomaterial for small diameter vascular grafts.  相似文献   

14.
Yu TT  Shoichet MS 《Biomaterials》2005,26(13):1507-1514
A hydrogel scaffold of well-defined geometry was created and modified with laminin-derived peptides in an aqueous solution, thereby maintaining the geometry of the scaffold while introducing bioactive peptides that enhance cell adhesion and neurite outgrowth. By combining a fiber templating technique to create longitudinal channels with peptide modification, we were able to synthesize a scaffold that guided cell adhesion and neurite outgrowth of primary neurons. Scaffolds were designed to have numerous longitudinally oriented channels with an average channel diameter of 196 +/- 6 microm to ultimately promote fasciculation of regenerating cables and a compressive modulus of 192 +/- 8 kPa to match the modulus of the soft nerve tissue. Copolymerization of 2-hydroxylethyl methacrylate (HEMA) with 2-aminoethyl methacrylate (AEMA) scaffolds, provided primary amine groups to which two sulfhydryl terminated, laminin-derived oligopeptides, CDPGYIGSR and CQAASIKVAV, were covalently bound using the sulfo-(N-maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC) crosslinking agent. The concentration of peptides on the scaffolds was measured at 106 +/- 4 micromol/cm(2) using the ninhydrin method and 92 +/- 9 micromol/cm(2) using the BCA protein assay. The peptide modified P(HEMA-co-AEMA) scaffolds were easily fabricated in aqueous conditions, highly reproducible, well-defined, and enhanced neural cell adhesion and guided neurite outgrowth of primary chick dorsal root ganglia neurons relative to non-peptide-modified controls. The copolymerization of AEMA with HEMA can be extended to other radically polymerized monomers and is advantageous as it facilitates scaffold modification in aqueous solutions thereby obviating the use of organic solvents which can be cytotoxic and often disrupt scaffold geometry. The combination of well-defined chemical and physical stimuli described herein provides a means for guided regeneration both in vitro and in vivo.  相似文献   

15.
Self-assembled monolayers (SAMs) of omega-substituted alkanethiols on gold have been explored as well defined in vitro model surfaces for the investigation of neuronal growth and function. When used as cell culture substrates, surfaces with monolayers functionalized with terminal -COOH groups support neuron attachment and growth even without an intermediate protein layer. Addition of a poly-L-lysine layer (PLL) to the -COOH terminated monolayers significantly increases total neurite outgrowth. Mixed monolayers containing -COOH and -CH3 terminal groups in 1:10 and 1:100 ratios poorly support neuron adhesion and preclude neurite extension. A layer of PLL improves the ability of mixed monolayer surfaces to support neuronal growth in culture. The morphology of cultured neurons depends on the chemical composition of SAMs on the support surface. Using glass microelectrode intracellular recording, the properties of cell culture substrates modulate the dynamic properties of action potentials of cultured neurons. These findings provide insight into the cellular responses of excitable cells to the chemical details of a surface and, thus, may help direct the rational design of biologically active materials.  相似文献   

16.
Axonal pathfinding is a complex process that is mediated through cell-matrix and cell-cell interactions. A large number of studies have demonstrated that ECM and ECM-derived proteins and peptides are potent promoters of neurite outgrowth, however much less attention is given to the fact that these same ligands also elicit responses in a wide variety of non-neuronal cell types. We examined the use of a substrate-bound recombinant form of human L1, an integral membrane protein, as a ligand for bridging materials for repairing the CNS by studying its effectiveness in promoting specific responses of neuronal cells in the presence of astrocytes and fibroblasts. L1, a cell adhesion molecule expressed in the developing CNS and PNS, has strong neurite promoting activity, and contributes to axonal guidance and axonal fasciculation during development. In this study, substrates treated with L1-Fc were compared to subtrates treated with fibronectin and poly-lysine (PDL) with respect to their interaction with a variety of cell types, including three types of neurons (DRG neurons, cerebellar granule neurons, and hippocampal neurons), astrocytes, dermal fibroblasts, and meningeal cells. L1-Fc-treated substrates supported significantly higher levels of neurite outgrowth relative to fibronectin and PDL, while inhibiting the attachment of astrocytes, meningeal cells, and fibroblasts. We also show that neuronal cells attach to and extend neurites on 30 microm diameter L1-Fc-treated filaments as an example of a potentially useful bridging substrate. The high level of biological specificity displayed by surface-bound L1, along with the fact that it is a potent promoter of neurite outgrowth, is normally expressed on axons and regulates axonal fasciculation during normal development bodes well for its use on bridging materials for the repair of the CNS, and suggests that cell adhesion molecules, in general, may be useful for biomaterial modification. Moreover, small diameter filaments coated with L1-Fc may function in an analogous way to pioneering axons that guide the growth of axons to distal targets during development.  相似文献   

17.
Recent efforts in our laboratory have focused on developing methods for immobilizing bioactive peptides to low cell-adhesive dextran monolayer coatings and promoting biospecific cell adhesion for biomaterial implant applications. In the current study, this dextran-based bioactive coating technology was developed for silicon, polyimide, and gold, the base materials utilized to fabricate our prototype neural implants. Chemical composition of all modified surfaces was verified by X-ray photoelectron spectroscopy (XPS). We observed that surface-immobilized dextran supported very little cell adhesion in vitro (24-h incubation with serum-supplemented medium) on all base materials. Inactive nonadhesion-promoting Gly-Arg-Ala-Asp-Ser-Pro peptides immobilized on dextran-coated materials promoted adhesion and spreading at low levels not significantly different from dextran-coated substrates. Arg-Gly-Asp (RGD) peptide-grafted surfaces were observed to promote substantial fibroblast and glial cell adhesion with minimal PC12 (neuronal cell) adhesion. In contrast, dextran-coated materials with surface-grafted laminin-based, neurite-promoting Ile-Lys-Val-Ala-Val (IKVAV) peptide promoted substantial neuron cell adhesion and minimal fibroblast and glial cell adhesion. It was concluded that neuron-selective substrates are feasible using dextran-based surface chemistry strategies. The chemical surface modifications could be utilized to establish a stable neural tissue-implant interface for long-term performance of neural prosthetic devices.  相似文献   

18.
研究neuroplastin在培养神经元的表达及对大鼠原代培养小脑颗粒细胞分化与存活的影响。培养大鼠小脑颗粒细胞、中脑多巴胺能神经元、海马神经元、PC12-E2、新生鼠前脑组织,用RT-PCR检测neuroplastin65 mRNA和neuroplastin55 mRNA的表达;加入neuroplastin合成肽,观察小脑颗粒细胞神经突起生长及在低钾的神经毒性条件下神经元的存活。结果表明:在培养0、7d的海马神经元、中脑多巴胺能神经元、小脑颗粒细胞以及新生鼠前脑组织、PC12-E2细胞均表达np65 mRNA、np55 mRNA,且np55 mRNA的表达高于np65 mRNA;来自neuroplastin Ig1的合成肽是1ab-s,1cd-s,1dd,1ef,1fg;来自neuroplastinIg2的合成肽是2cd和2fg。1fg,1cd-s,2cd,2fg强烈刺激神经突起的生长,1dd,1ab-s中等程度刺激神经突起的生长,1ef,1bc则无效。1cd-s,1bc,1dd,1ef,2cd,2fg能促进低钾神经毒性环境下神经元的存活,1fg,1ab-s无效。以上结果提示,neuroplastin通过亲同性结合或亲异性结合后,诱导神经突起生长和促进神经元存活。  相似文献   

19.
Lee JH  Lee HY  Kim HW 《Acta biomaterialia》2012,8(1):165-172
Adhesive proteins existing in the extracellular matrix (ECM) play important roles in the regulation of neuronal cell behavior, including cell adhesion, motility and neurite outgrowth. Herein we show the effects of a series of adhesive proteins on the neurite outgrowth of PC12 cells and elucidate that this is closely related to the activation of focal adhesion kinase (FAK). For this we prepared culture substrates by coating tissue culture plastic with either collagen (Col), fibronectin (FN) or laminin (LN) and investigated the neurite outgrowth behavior. The results demonstrated that neurite outgrowth was highly dependent on the particular type of adhesive protein. While neurite number was comparable on all the coated surfaces, the length of neurites was greater on the FN- and LN-coated ones (greatest on the LN-coated one). In particular, FAK expression was highly up-regulated in the FN- and LN-coated surfaces, as revealed by Western blot analysis. A knock-down experiment further supported the idea that neurite outgrowth was largely suppressed in cells transfected with a FAK knock-down gene. Taken together, the neurite outgrowth of PC12 cells was greatly affected by adhesive proteins of the ECM, particularly FN and LN, and this is considered to be closely related to FAK intracellular signaling. This study may be useful in the consideration and design of nerve guidance and three-dimensional scaffolds which are appropriate to promote neuronal growth and nerve tissue regeneration.  相似文献   

20.
We explored the contribution of inhibitory peanut-binding extracellular matrix glycoproteins to the regeneration of characteristic outgrowth patterns by different types of identified neurons. Adult leech neurons were isolated one by one and plated in culture on a substrate that consisted of the capsules that encase the CNS ganglia. On the inside surface of this substrate, a combination of growth-promoting and -inhibiting extracellular matrix glycoproteins regulates the regeneration of distinctive outgrowth patterns by different neuron types. The role of inhibitory glycoproteins that bind to peanut lectin was studied by perturbation experiments in which peanut lectin was added to the culture medium. The effects of peanut lectin on the outgrowth patterns depended on the specific cell type that was tested. Anterior pagoda neurons, which on capsules produce a bipolar outgrowth pattern, in the presence of the lectin multiplied the number of primary neurites and the total neurite length and also lost their bipolarity. Annulus erector motoneurons, which on capsules grow poorly, in the presence of peanut lectin sprouted 70% more neurites and duplicated their total neurite length. By contrast, Retzius neurons which grow profusely on ganglion capsules, in the presence of peanut lectin increased the number of primary neurites without increasing their total neurite length or branch points. When neurons were plated on plastic, peanut lectin added to the culture medium did not affect the growth of neurons, thus showing that the effects of peanut lectin were induced by blocking the binding of neurons to inhibitory glycoproteins on the capsules. These results show that regeneration of different neuron types has different regulation by inhibitory extracellular matrix molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号