首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the San Francisco Regional Monitoring Program (RMP) sampling began, elutriate samples prepared with sediment from the Grizzly Bay monitoring station have been consistently toxic to bivalve larvae (Mytilus galloprovincialis). An investigation into the cause of toxicity was initiated with a Phase I Toxicity Identification Evaluation (TIE) using bivalve embryos. TIE results and chemical analyses of elutriate samples suggested that divalent metals were responsible for the observed toxicity. Following the initial characterization of trace metals as toxicants, additional TIEs were performed on elutriates prepared from three additional Grizzly Bay samples collected between 1997 and 2001. Additional TIEs included ethylenediamine tetraacetic acid (EDTA) treatments in a sediment-water interface (SWI) exposure system, and the use of a cation exchange column with serial elution of sample fractions with hydrochloric acid of increasing normality. EDTA significantly reduced toxicity in overlying water in the SWI system. The cation exchange column reduced both toxicity and concentrations of trace metals, and serial elution of the column added back both toxicity and specific metals contained in individual acid fractions. Chemical analyses of three elutriate samples demonstrated copper concentrations were within the range toxic to bivalves. Results of Phase I TIEs, additional Phase II treatments, SWI exposures, and metals analyses indicate the potential for metal toxicity in sediments from this estuarine site. When combined with the results of standard TIE methods, a solid-phase cation extraction and elution approach identified copper as the most probable cause of toxicity.  相似文献   

2.
The Santa Maria River provides significant freshwater and coastal habitat in a semiarid region of central California, USA. We conducted a water and sediment quality assessment consisting of chemical analyses, toxicity tests, toxicity identification evaluations, and macroinvertebrate bioassessments of samples from six stations collected during four surveys conducted between July 2002 and May 2003. Santa Maria River water samples collected downstream of Orcutt Creek (Santa Maria, Santa Barbara County, CA, USA), which conveys agriculture drain water, were acutely toxic to cladocera (Ceriodaphnia dubia), as were samples from Orcutt Creek. Toxicity identification evaluations (TIEs) suggested that toxicity to C. dubia in Orcutt Creek and the Santa Maria River was due to chlorpyrifos. Sediments from these two stations also were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. The TIEs conducted on sediment suggested that toxicity to amphipods, in part, was due to organophosphate pesticides. Concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d median lethal concentration for H. azteca. Additional TIE and chemical evidence suggested sediment toxicity also partly could be due to pyrethroid pesticides. Relative to an upstream reference station, macroinvertebrate community structure was impacted in Orcutt Creek and in the Santa Maria River downstream of the Creek input. This study suggests that pesticide pollution likely is the cause of ecological damage in the Santa Maria River.  相似文献   

3.
Widespread sediment toxicity has been documented throughout the San Francisco Estuary since the mid-1980s. Studies conducted in the early 1990s as part of the Bay Protection and Toxic Cleanup Program (BPTCP), and more recently as part of the Regional Monitoring Program (RMP) have continued to find sediment toxicity in the Estuary. Results of these studies have shown a number of sediment toxic hotspots located at selected sites in the margins of the Estuary. Recent RMP monitoring has indicated that the magnitude and frequency of sediment toxicity is greater in the winter wet season than in the summer dry season, which suggests stormwater inputs are associated with sediment toxicity. Additionally, spatial trends in sediment toxicity data indicate that toxic sediments are associated with inputs from urban creeks surrounding the Estuary, and from Central Valley rivers entering the northern Estuary via the Delta. Sediment toxicity has been correlated with a number of contaminants, including selected metals, PAHs and organochlorine pesticides. While toxicity identification evaluations (TIEs) suggest that metals are the primary cause of sediment toxicity to bivalve embryos; TIEs conducted with amphipods have been inconclusive.  相似文献   

4.
Increases in the use and application of pyrethroid insecticides have resulted in concern regarding potential effects on aquatic ecosystems. Methods for the detection of pyrethroids in receiving waters are required to monitor environmental levels of these insecticides. One method employed for the identification of causes of toxicity in aquatic samples is the toxicity identification evaluation (TIE); however, current TIE protocols do not include specific methods for pyrethroid detection. Recent work identified carboxylesterase treatment as a useful method for removing/detecting pyrethroid-associated toxicity. The present study has extended this earlier work and examined the ability of carboxylesterase activity to remove permethrin- and bifenthrin-associated toxicity to Ceriodaphnia dubia and Hyalella azteca in a variety of matrices, including laboratory water, Sacramento River (CA, USA) water, and Salinas River (CA, USA) interstitial water. Esterase activity successfully removed 1,000 ng/L of permethrin-associated toxicity and 600 ng/L of bifenthrin-associated toxicity to C. dubia in Sacramento River water. In interstitial water, 200 ng/L of permethrin-associated toxicity and 60 ng/L of bifenthrin-associated toxicity to H. azteca were removed. The selectivity of the method was validated using heat-inactivated enzyme and bovine serum albumin, demonstrating that catalytically active esterase is required. Further studies showed that the enzyme is not significantly inhibited by metals. Matrix effects on esterase activity were examined with municipal effluent and seawater in addition to the matrices discussed above. Results confirmed that the esterase retains catalytic function in a diverse array of matrices, suggesting that this technique can be adapted to a variety of aquatic samples. These data demonstrate the utility of carboxylesterase treatment as a viable step to detect the presence of pyrethroids in receiving waters.  相似文献   

5.
Piperonyl butoxide (PBO) is a synergist used in some pyrethroid and pyrethrin pesticide products and has been used in toxicity identification evaluations (TIEs) of water samples to indicate organophosphate or pyrethroid-related toxicity. Methods were developed and validated for use of PBO as a TIE tool in whole-sediment testing to help establish if pyrethroids are the cause of toxicity observed in field-collected sediments. Pyrethroid toxicity was increased slightly more than twofold in 10-d sediment toxicity tests with Hyalella azteca exposed to 25 microg/L of PBO in the overlying water. This concentration was found to be effective for sediment TIE use, but it is well below that used in previous water and pore-water TIEs with PBO. The effect of PBO on the toxicity of several nonpyrethroids also was tested. Toxicity of the organophosphate chlorpyrifos was reduced by PBO, and the compound had no effect on toxicity of cadmium, DDT, or fluoranthene. Mixtures of the pyrethroid bifenthrin and chlorpyrifos were tested to determine the ability of PBO addition to identify pyrethroid toxicity when organophosphates were present in a sample. The PBO-induced increase in pyrethroid toxicity was not seen when chlorpyrifos was present at or above equitoxic concentrations with the pyrethroid. In the vast majority of field samples, however, the presence of chlorpyrifos does not interfere with use of PBO to identify pyrethroid toxicity. Eleven field sediments or soils containing pyrethroids and/or chlorpyrifos were used to validate the method. Characterization of the causative agent as determined by PBO addition was consistent with confirmation by chemical analysis and comparison to known toxicity thresholds in 10 of the 11 sediments.  相似文献   

6.
Toxicity caused by heavy metals in environmental samples can be assessed by performing a suite of toxicity identification evaluation (TIE) methods. The behavior of metals during TIEs can vary greatly according to sample matrix. Some approaches and precautions in using TIE to identify metal toxicants in a sample are discussed, using case studies from three effluent and one sediment TIEs. These approaches include responses of metals that erroneously suggest the presence of other toxicants, the bioavailability of metals retained by glass-fiber filtration, and cautionary steps in Phase III to avoid dilution water effects on sample toxicity.Mention of trade names does not constitute endorsement by the U.S. Environmental Protection Agency.  相似文献   

7.
Recent agrochemical usage patterns suggest that the use of organophosphate (OP) pesticides will decrease, resulting in a concomitant increase in pyrethroid usage. Pyrethroids are known for their potential toxicity to aquatic invertebrates and many fish species. Current toxicity identification evaluation (TIE) techniques are able to detect OPs, but have not been optimized for pyrethroids. Organophosphate identification methods depend upon the use of piperonyl butoxide (PBO) to identify OP-induced toxicity. However, the use of PBO in TIE assays will be confounded by the co-occurrence of OPs and pyrethroids in receiving waters. It is necessary, therefore, to develop new TIE procedures for pyrethroids. This study evaluated the use of a pyrethroid-specific antibody, PBO, and carboxylesterase activity to identify pyrethroid toxicity in aquatic toxicity testing with Ceriodaphnia dubia. The antibody caused significant mortality to the C. dubia. Piperonyl butoxide synergized pyrethroid-associated toxicity, but this effect may be difficult to interpret in the presence of OPs and pyrethroids. Carboxylesterase activity removed pyrethroid-associated toxicity in a dose-dependent manner and did not compromise OP toxicity, suggesting that carboxylesterase treatment will not interfere with TIE OP detection methods. These results indicate that the addition of carboxylesterase to TIE procedures can be used to detect pyrethroids in aquatic samples.  相似文献   

8.
Marine sediments accumulate a variety of contaminants and, in some cases, demonstrate toxicity because of this contamination. Toxicity identification evaluation (TIE) methods provide tools for identifying the toxic chemicals causing sediment toxicity. Currently, whole-sediment TIE methods are not available for anionic metals like arsenic and chromium. In the present paper, we describe two new anion-exchange resins used in the development of whole-sediment TIE methods for arsenic and chromium. Resins were shown to reduce whole-sediment toxicity and overlying water concentrations of the anionic metals. Sediment toxicity, expressed as the median lethal concentration, was reduced by a factor of two to a factor of nearly six between amended sediment treatments containing resin and those without resin. Aqueous concentrations of arsenic and chromium in the toxicity exposures decreased to less than the detection limits or to concentrations much lower than those measured in treatments without resin. Interference studies indicated that the anion-exchange resins had no significant effect on concentrations of the representative pesticide endosulfan and minimal effects on concentrations of ammonia. However, the anion-exchange resins did significantly reduce the concentrations of a selection of cationic metals (Cd, Cu, Ni, Pb, and Zn). These data demonstrate the utility of anion-exchange resins for determining the contribution of arsenic and chromium to whole-sediment toxicity. The present results also indicate the importance of using TIE methods in a formal TIE structure to ensure that results are not misinterpreted. These methods should be useful in the performance of marine whole-sediment TIEs.  相似文献   

9.
The lower Santa Maria River watershed provides important aquatic habitat on the central California coast and is influenced heavily by agricultural runoff. As part of a recently completed water quality assessment, we conducted a series of water column and sediment toxicity tests throughout this watershed. Sediment from Orcutt Creek, a tributary that drains agricultural land, consistently was toxic to the amphipod Hyalella azteca, which is a resident genus in this river. Toxicity identification evaluations (TIEs) were conducted to determine cause(s) of toxicity. We observed no toxicity in sediment interstitial water even though concentrations of chlorpyrifos exceeded published aqueous toxicity thresholds for H. azteca. In contrast to interstitial water, bulk sediment was toxic to H. azteca. In bulk-phase sediment TIEs, the addition of 20% (by volume) coconut charcoal increased survival by 41%, implicating organic chemical(s). Addition of 5% (by volume) of the carbonaceous resin Ambersorb 563 increased survival by 88%, again suggesting toxicity due to organic chemicals. Toxicity was confirmed by isolating Ambersorb from the sediment, eluting the resin with methanol, and observing significant toxicity in control water spiked with the methanol eluate. A carboxylesterase enzyme that hydrolyzes synthetic pyrethroids was added to overlying water, and this significantly reduced toxicity to amphipods. Although the pesticides chlorpyrifos, DDT, permethrin, esfenvalerate, and fenvalerate were detected in this sediment, and their concentrations were below published toxicity thresholds for H. azteca, additivity or synergism may have occurred. The weight-of-evidence suggests toxicity of this sediment was caused by an organic contaminant, most likely a synthetic pyrethroid.  相似文献   

10.
A sediment quality assessment survey and subsequent toxicity identification evaluation (TIE) study was conducted at several sites in Puget Sound, Washington. The sites were previously suspected of contamination with ordnance compounds. The initial survey employed sea urchin porewater toxicity tests to locate the most toxic stations. Sediments from the most toxic stations were selected for comprehensive chemical analyses. Based on the combined information from the toxicity and chemical data, three adjacent stations in Ostrich Bay were selected for the TIE study. The results of the phase I TIE suggested that organics and metals were primarily responsible for the observed toxicity in the sea urchin fertilization test. In addition to these contaminants, ammonia was also contributing to the toxicity for the sea urchin embryological development test. The phase II TIE study isolated the majority of the toxicity in the fraction containing nonpolar organics with high log K ow, but chemical analyses failed to identify a compound present at a concentration high enough to be responsible for the observed toxicity. The data suggest that some organic or organometallic contaminant(s) that were not included in the comprehensive suite of chemical analyses caused the observed toxicological responses. Received: 12 December 2000/Accepted: 11 May 2001  相似文献   

11.
The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California (USA). Large areas of this watershed are cultivated year-round in row crops, and previous laboratory studies have demonstrated that acute toxicity of agricultural drain water to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. We investigated chemical contamination and toxicity in waters and sediments in the river downstream of an agricultural drain water input. Ecological impacts of drain water were investigated by using bioassessments of macroinvertebrate community structure. Toxicity identification evaluations were used to characterize chemicals responsible for toxicity. Salinas River water downstream of the agricultural drain was acutely toxic to the cladoceran Ceriodaphnia dubia, and toxicity to C. dubia was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. Toxicity identification evaluations (TIEs) conducted on sediment pore water suggested that toxicity to amphipods was due in part to OP pesticides; concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d mean lethal concentration (LC50) for H. azteca. Potentiation of toxicity with addition of the metabolic inhibitor piperonyl butoxide suggested that sediment toxicity also was due to other non-metabolically activated compounds. Macroinvertebrate community structure was highly impacted downstream of the agricultural drain input, and a number of macroinvertebrate community metrics were negatively correlated with combined TUs of chlorpyrifos and diazinon, as well as turbidity associated with the drain water. Some macroinvertebrate metrics were also correlated with bank vegetation cover. This study suggests that pesticide pollution is the likely cause of ecological damage in the Salinas River, and this factor may interact with other stressors associated with agricultural drain water to impact the macroinvertebrate community in the system.  相似文献   

12.
Growth inhibition bioassays with the microalga Nitzschia closterium have recently been applied in marine Toxicity Identification Evaluation (TIE) testing. However, the 48-h test duration can result in substantial loss of toxicants over time, which might lead to an underestimation of the sample toxicity. Although shorter-term microalgal bioassays can minimize such losses, there are few bioassays available and none are adapted for marine TIE testing. The acute (5-min) chlorophyll-a fluorescence bioassay is one alternative; however, this bioassay was developed for detecting herbicides in freshwater aquatic systems and its suitability for marine TIE testing was not known. In this study, a chlorophyll-a fluorescence bioassay using the marine microalga Isochrysis galbana was able to detect contaminants other than herbicides at environmentally relevant concentrations and tolerated the physical and chemical manipulations needed for a Phase I TIE. Phase I TIE procedures were successfully developed using this chlorophyll-a fluorescence bioassay and used to identify all classes of contaminants present in a synthetic mixture of known chemical composition. In addition, TIEs with both the acute fluorescence bioassay and the standard growth inhibition bioassay identified the same classes of toxicants in a sample of an unknown complex effluent. Even though the acute chlorophyll-a fluorescence end point was less sensitive than the chronic cell division end point, TIEs with the chlorophyll-a fluorescence bioassay provided a rapid and attractive alternative to longer-duration bioassays.  相似文献   

13.
Since the toxicity of pyrethroid insecticides is known to increase at low temperatures, the use of temperature manipulation was explored as a whole-sediment toxicity identification evaluation (TIE) tool to help identify sediment samples in which pyrethroid insecticides are responsible for observed toxicity. The amphipod Hyalella azteca is commonly used for toxicity testing of sediments at a 23 degrees C test temperature. However, a temperature reduction to 18 degrees C doubled the toxicity of pyrethroids, and a further reduction to 13 degrees C tripled their toxicity. A similar response, though less dramatic, was found for 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), and dissimilar temperature responses were seen for cadmium and the insecticide chlorpyrifos. Tests with field-collected sediments containing pyrethroids and/or chlorpyrifos showed the expected thermal dependency in nearly all instances. The inverse relationship between temperature and toxicity provides a simple approach to help establish when pyrethroids are the principal toxicant in a sediment sample that could be used as a supplemental tool in concert with chemical analysis or other TIE manipulations. The phenomenon appears to be, in part, a consequence of a reduced ability to biotransform the toxic parent compound at cooler temperatures. The strong dependence of pyrethroid toxicity on temperature has important ramifications for predicting their environmental effects, and the standard test temperature of 23 degrees C dramatically underestimates risk to resident fauna during the cooler months.  相似文献   

14.
A previous study found that coke leachates (CL) collected from oil sands field sites were acutely toxic to Ceriodaphnia dubia; however, the cause of toxicity was not known. Therefore, the purpose of this study was to generate CL in the laboratory to evaluate the toxicity response of C. dubia and perform chronic toxicity identification evaluation (TIE) tests to identify the causes of CL toxicity. Coke was subjected to a 15-d batch leaching process at pH 5.5 and 9.5. Leachates were filtered on day 15 and used for chemical and toxicological characterization. The 7-d median lethal concentration (LC50) was 6.3 and 28.7% (v/v) for pH 5.5 and 9.5 CLs, respectively. Trace element characterization of the CLs showed Ni and V levels to be well above their respective 7-d LC50s for C. dubia. Addition of ethylenediaminetetraacetic acid significantly (p?≤?0.05) improved survival and reproduction in pH 5.5 CL, but not in pH 9.5 CL. Cationic and anionic resins removed toxicity of pH 5.5 CL only. Conversely, the toxicity of pH 9.5 CL was completely removed with an anion resin alone, suggesting that the pH 9.5 CL contained metals that formed oxyanions. Toxicity reappeared when Ni and V were added back to anion resin-treated CLs. The TIE results combined with the trace element chemistry suggest that both Ni and V are the cause of toxicity in pH 5.5 CL, whereas V appears to be the primary cause of toxicity in pH 9.5 CL. Environmental monitoring and risk assessments should therefore focus on the fate and toxicity of metals, especially Ni and V, in coke-amended oil sands reclamation landscapes.  相似文献   

15.
This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of these organic compounds, are important to identify the causes of toxicity.  相似文献   

16.
When sediments are found to be toxic usually there is a mixture of chemicals present. Often it is important to establish which chemicals contribute to the toxicity. Establishing causality can be difficult and often requires fractionation with subsequent toxicity testing. The sample collection and manipulation process can alter chemical bioavailability and toxicity. An in situ toxicity identification evaluation (iTIE) chamber is described that was placed in sediments and fractionated pore-water chemicals into nonpolar chemicals, metals, and ammonia-type groups. This method was field tested and compared to the laboratory-based, U.S. Environmental Protection Agency (U.S. EPA) toxicity identification evaluation (TIE) method. Field studies were performed at three sites contaminated primarily with polycyclic aromatic hydrocarbons (PAHs) (Little Scioto River, OH, USA), polychlorinated biphenyls (PCBs) (Dicks Creek, OH, USA), and chlorobenzenes (Sebasticook River, ME, USA). Both the iTIE and the U.S. EPA TIE methods used Daphnia magna in 24-h exposures. Although the iTIE and TIE were conducted on sediments from the same location, there was significantly more toxicity observed in the iTIE testing. The dominant chemical classes were separated by the iTIE method and revealed which fractions contributed to toxicity. The loss of toxicity in the TIE approach did not allow for subsequent fractionation and stressor identification. Advantages of the iTIE over the TIE method were greater sensitivity and ability to detect causative toxic chemical fractions; lack of sediment collection and subsequent manipulation; and, thus, reduction in potential artifacts, more realistic exposure with slow, continual pore-water renewal in situ, ability to evaluate pore waters in sandy or rocky substrates where pore waters are difficult to collect, and a quicker phase I evaluation. Limitations of the iTIE method as compared to the TIE methods were extensive pretest assembly process, fewer phase I fractionation possibilities, and restriction to shallow waters. The results of these studies suggest that the iTIE method provides a more accurate and sensitive evaluation of pore water toxicity than the laboratory TIE method.  相似文献   

17.
Columbia River sediments were characterized (metals, organics, porewater toxicity) with samples (n=12) from four dams below the Hanford site. Analyses were supplemented with colocated radionuclide data, along with comparable data from the Priest Rapids dam, immediately upriver from Hanford. Although not statistically significant (Bonferroni P>0.05), metals were generally highest at Priest Rapids, relative to downriver dams. Semivolatiles, Aroclors, and organochlorine pesticides were below method reporting limits. Radionuclide differences across locations were minor (Bonferroni P>0.05). Whereas Microtox showed little toxicity, Daphnia IQ tests exhibited measurable toxicity at all locations (EC50 = 22 - 78% porewater). Ecotoxicological benchmarks for metals were exceeded at several locations, most notably at Priest Rapids. Except for K-40, radionuclides were below benchmarks. Overall, chemistry and ecotoxicity results suggested that sediments may pose a risk to benthic biota, likely due to metals (derived largely from upriver mining) or factors associated with a reducing environment (e.g., low oxygen, high ammonia).  相似文献   

18.
Supercritical fluid extraction (SFE) with pure CO(2) was assessed as a confirmatory tool in phase III of whole sediment toxicity identification evaluations (TIEs). The SFE procedure was assessed on two reference sediments and three contaminated sediments by using a combination of toxicological and chemical measurements to quantify effectiveness. Sediment toxicity pre- and post-SFE treatment was quantified with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia), and nonionic organic contaminants (NOCs) polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were measured in sediments, overlying waters, and interstitial waters. In general, use of SFE with the reference sediments was successful, with survival averaging 91% in post-SFE treatments. Substantial toxicity reductions and contaminant removal from sediments and water samples generated from extracted sediments of up to 99% in two of the contaminated sediments demonstrated SFE effectiveness. Furthermore, toxicological responses for these SFE-treated sediments showed comparable results to those from the same sediments treated with the powdered coconut charcoal addition manipulation. These data demonstrated the utility of SFE in phase III of a whole sediment TIE. Conversely, in one of the contaminated sediments, the SFE treatments had no effect on sediment toxicity, whereas sediment concentrations of PCBs and PAHs were reduced. We propose that, for some sediments, the SFE treatment may result in the release of otherwise nonbioavailable cationic metals that subsequently cause toxicity to test organisms. Overall, SFE treatment was found to be effective for reducing the toxicity and concentrations of NOCs in some contaminated sediments. However, these studies suggest that SFE treatment may enhance toxicity with some sediments, indicating that care must be taken when applying SFE and interpreting the results.  相似文献   

19.
Toxicity identification evaluations (TIEs) were performed on seven produced water (PW) effluents from inland discharge facilities operated in Trinidad and Tobago, a Caribbean tropical country with one of the oldest commercial oil industries in the world. The research was performed to determine the presence and magnitude of toxicity and characterize which toxicants are responsible for observed effects. Marine effluent toxicity characterizations with Metamysidopsis insularis revealed high whole acute toxic-unit response for produced water ranged from 8.1 to > 17.0 acute toxic-unit (initial toxicity test) and 5.7 to 1,111 acute toxic-unit (baseline toxicity test). Toxicity test results for all sites except one, which had the highest toxicity, are comparative with similar studies on produced water. The toxicological causality of this complex mixture differed for each PW with nonpolar organics being consistently toxic in all samples. Other potential toxicants contributing to overall toxicity to a much lesser extent were metals, ammonia, and volatile organic compounds. With the use of sodium thiosulfate and filtration manipulations for only PW6 sample, there was very slight reduction in toxicity; therefore, oxidants and filterable materials were not a great contributing factor. Whole effluent toxicity also can be attributed to ionic imbalance and the very stable oil-in-water emulsion that consists of fine oil droplets (less than 0.1-10 microm with an average diameter of 2.5 microm). This investigation is the first of its type in Trinidad and demonstrates clearly the applicability of this test method and local test species for evaluating complex effluents in tropical environments.  相似文献   

20.
Sulfate-reducing passive bioreactors treat acid mine drainage (AMD) by increasing its pH and alkalinity and by removing metals as metal sulfide precipitates. In addition to discharge limits based on physicochemical parameters, however, treated effluent is required to be nontoxic. Acute and sublethal toxicity was assessed for effluent from 3.5-L column bioreactors filled with mixtures of natural organic carbon sources and operated at different hydraulic retention times (HRTs) for the treatment of a highly contaminated AMD. Effluent was first tested for acute (Daphnia magna and Oncorhynchus mykiss) and sublethal (Pseudokirchneriella subcapitata, Ceriodaphnia dubia, and Lemna minor) toxicity. Acute toxicity was observed for D. magna, and a toxicity identification evaluation (TIE) procedure was then performed to identify potential toxicants. Finally, metal speciation in the effluent was determined using ultrafiltration and geochemical modeling for the interpretation of the toxicity results. The 10-d HRT effluent was nonacutely lethal for O. mykiss but acutely lethal for D. magna. The toxicity to D. magna, however, was removed by 2 h of aeration, and the TIE procedure suggested iron as a cause of toxicity. Sublethal toxicity of the 10-d HRT effluent was observed for all test species, but it was reduced compared to the raw AMD and to a 7.3-d HRT effluent. Data regarding metal speciation indicated instability of both effluents during aeration and were consistent with the toxicity being caused by iron. Column bioreactors in operation for more than nine months efficiently improved the physicochemical quality of highly contaminated AMD at different HRTs. The present study, however, indicated that design of passive treatment should include sufficient HRT and posttreatment aeration to meet acute toxicity requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号