首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined grip force development in individuals with hemiparesis following unilateral stroke. Eleven patients with chronic stroke with severe hand impairment and five age-matched neurologically intact subjects grasped an instrumented object between the index finger and thumb while fingertip forces, digit posture, and muscle electromyographic activity were recorded. We tested a range of different grip conditions with varying grip sizes, object stability, and grip force level. We found that fingertip force direction in the paretic digits deviated from the direction normal to the grip surface by more than twice as much as for asymptomatic digits. Additionally, the paretic thumb had, on average, 18% greater deviation of grip force direction than the paretic index finger. This large deviation of finger force direction for the paretic digits was consistently observed regardless of grip size, grip force level, and object stability. Due to the large deviation of the force direction from the normal direction, the paretic digits slipped and moved more than 1 cm during 55% of all grasping trials. A regression analysis suggests that this altered grip force direction was associated with altered hand muscle activation patterns, but not with the posture at which the digit made contact with the object. Therapies to redirect the force direction at the digits may improve stroke survivors’ ability to stably grip an object.  相似文献   

2.
The functioning of a static dynamometer designed to measure simultaneous forces exerted by the thumb in the vertical and horizontal axes is described. The analysis of the output signals by a desktop computer program provides information regarding the forces generated in eight directions covering a plane transverse to the thumb by 45° increments. In 12 normal female subjects, the maximum voluntary torques exerted at the trapezo-metacarpal joint of the thumb were examined and the muscle activation patterns of the interosseus, flexor pollicis brevis and adductor pollicis brevis muscles were recorded in one subject. Torques and muscle activation patterns were depicted using polar plots. Dynamometric data indicate that strength varies with direction and that higher torques are obtained in directions that bring the thumb towards the palm, i.e. flexion, adduction, combined flexion-adduction and extension-adduction. Patterns of muscle activity vary according to the direction evaluated suggesting that strength depends on the number of activated muscles as well as the relative force contribution of each muscle.  相似文献   

3.
An increase in ipsilateral descending motor pathway activity has been reported following hemiparetic stroke. In axial muscles, increased ipsilateral cortical activity has been correlated with good recovery whereas in distal arm muscles it is correlated with poor recovery. Currently, little is known about the control of proximal upper limb muscles following stroke. This muscle group is less impaired than the distal arm muscles following stroke, yet contributes to the abnormal motor coordination patterns associated with movements of the arm which can severely impair reaching ability. This study used transcranial magnetic stimulation (TMS) to evaluate the presence and magnitude of ipsilateral and contralateral projections to the pectoralis major (PMJ) muscle in stroke survivors. A laterality index (LI) was used to investigate the relationship between ipsilateral and contralateral projections and strength, clinical impairment level, and the degree of abnormal coordination expressed in the arm. The ipsilateral and contralateral hemispheres were stimulated using 90% TMS intensity while the subject generated shoulder adduction torques in both arms. Motor evoked potentials (MEPs) were measured in the paretic and non-paretic PMJ. The secondary torque at the elbow was measured during maximal adduction as an indicator of the degree of extensor synergy. Ipsilateral MEPs were most common in stroke survivors with moderate to severe motor deficits. The LI was correlated with clinical impairment level (P = 0.05) and the degree of extension synergy expressed in the arm (P = 0.03). The LI was not correlated with strength. These results suggest that increased excitability of ipsilateral pathways projecting to the proximal upper arm may contribute to the expression of the extension synergy following stroke. These findings are discussed in relation to a possible unmasking or upregulation of oligosynaptic cortico-bulbospinal pathways following stroke.  相似文献   

4.
Recent evidence suggests that brain injury can impair the ability to independently activate shoulder and elbow muscles. We hypothesized that if muscle activation patterns are constrained, then brain-injured subjects should not be able to accurately grade initial hand movement direction during reaching toward a broad range of target directions. To test this hypothesis, we measured hand trajectories during reaching in three-space by 16 hemiparetic stroke subjects to an array of 75 targets distributed throughout the workspace. Contrary to our hypothesis, we found that the ability to grade movement direction was largely preserved following mild and moderate stroke. However, the most severely impaired subjects exhibited a degradation of directional control consistent with a loss of independent muscle control. Initial and final hand movement directions for these subjects were grouped roughly in two opposing directions, in a plane parallel with the coronal plane of the body, rather than distributed across the normal range. Selection between the two movement directions appeared partially random, in that subjects initiated over 50% of movements in the direction generally opposite the intended target, for targets to one side of the body. These results suggest that individuals with severe stroke are constrained to use only two gross, stereotypical muscle coactivation patterns for reaching control, and that selection between these patterns is stochastically influenced as the actual direction of motion is not strictly predictable given the desired direction.  相似文献   

5.
An experimental apparatus was developed to measure force production of a digit at various points of force application along the digit and in any direction within the transverse plane of the longitudinal axis of the digit. Eight normal subjects with asymptomatic hands were tested. Maximum voluntary isometric contraction forces were measured at the interphalangeal joint of the thumb in 16 directions that were evenly distributed within 360 degrees. Peak forces measured in all directions were used to create polar plots and to construct force envelopes using cubic spline interpolation. The areas of the force envelope and force quadrants were then calculated. The force produced by the thumb was dependent on the direction of force application. The highest force, 104.8 +/- 14.2 N, was generated in flexion, while the lowest force was generated in extension. The forces in extension, abduction and adduction were 24.8%, 57.2%, and 46.2% of the flexion force, respectively. Relatively high forces were generated in the directions of flexion combined with abduction, and flexion combined with adduction. The area of the entire force envelope was found to be 12,142 +/- 3,149 N-N. The percentage quadrant areas, relative to the total force envelope area, for extension-adduction, extension-abduction, flexion-abduction, and flexion-adduction were 7.8%, 11.4%, 39.3%, and 41.4%, respectively. The percentage quadrant areas for extension, abduction, flexion, and adduction were 4.9%, 23.6%, 52.7%, and 18.8%, respectively. The current study provides a more advanced and comprehensive method for quantification and investigation of the motor function of the thumb, which has potential in clinical applications for diagnosis of hand disorders, evaluation of deterioration or improvement of hand motor function, and guidance of therapeutic and surgical intervention.  相似文献   

6.
Surface EMG was recorded from two intrinsic and two extrinsic muscles of the index finger during a two-dimensional isometric force task in the plane of flexion and extension. Subjects applied force isometrically at the fingertip in eight equally spaced directions, encompassing 360 degrees. Target forces spanned the range from 20% to 50% of maximum for each direction. The effect of varying the metacarpophalangeal (MCP) and interphalangeal (IP) joint angles was investigated. We found that when applying isometric force with the fingertip, the intrinsic muscles of the index finger behaved as a single unit whose region of activation overlapped that of the extrinsic flexor and extensor muscles. The activation region of the intrinsic muscles also spanned a range of force directions for which the extrinsic muscles were virtually inactive. The activation of all muscles, with the exception of the extrinsic extensor, was modified by changing the MCP and IP joint angles. Both IP flexion and MCP extension produced rotation of the resultant activity vector in the direction of MCP flexion. However, the relative rotation was much greater with IP flexion than MCP extension. The effect of IP flexion is linked to rotation of the force direction where joint torque switches from extension to flexion, while the effect of MCP extension is more likely related to changes in muscle length and MCP moment arm. Our results suggest that the primary role of intrinsic finger muscles is to precisely control the direction of fingertip force, while extrinsic muscles provide stability of the joints.  相似文献   

7.
Patterns of stereotyped muscle coactivation, clinically referred to as synergies, emerge following stroke and impair arm function. Although researchers have focused on cortical contributions, there is growing evidence that altered stretch reflex pathways may also contribute to impairment. However, most previous reflex studies have focused on passive, single-joint movements without regard to their coordination during volitional actions. The purpose of this study was to examine the effects of stroke on coordinated activity of stretch reflexes elicited in multiple arm muscles following multijoint perturbations. We hypothesized that cortical injury results in increased stretch reflexes of muscles characteristic of the abnormal flexor synergy during active arm conditions. To test this hypothesis, we used a robot to apply position perturbations to impaired arms of 10 stroke survivors and dominant arms of 8 healthy age-matched controls. Corresponding reflexes were assessed during volitional contractions simulating different levels of gravitational support, as well as during voluntary flexion and extension of the elbow and shoulder. Reflexes were quantified by average rectified surface electromyogram, recorded from eight muscles spanning the elbow and shoulder. Reflex coordination was quantified using an independent components analysis. We found stretch reflexes elicited in the stroke group were significantly less sensitive to changes in background muscle activation compared with those in the control group (P < 0.05). We also observed significantly increased reflex coupling between elbow flexor and shoulder abductor-extensor muscles in stroke subjects relative to that in control subjects. This increased coupling was present only during volitional tasks that required elbow flexion (P < 0.001), shoulder extension (P < 0.01), and gravity opposition (P < 0.01), but not during the "no load" condition. During volitional contractions, reflex amplitudes scaled with the level of impairment, as assessed by Fugl-Meyer scores (r(2) = 0.63; P < 0.05). We conclude that altered reflex coordination is indicative of motor impairment level and may contribute to impaired arm function following stroke.  相似文献   

8.
We report here the activity of 96 cells in primate primary motor cortex (MI) during exertion of isometric forces at the hand in constant spatial directions, while the hand was at five to nine different spatial locations on a plane. The discharge of nearly all cells varied significantly with both hand location and the direction of isometric force before and during force-ramp generation as well as during static force-hold. In addition, nearly all cells displayed changes in the variation of their activity with force direction at different hand locations. This change in relationship was often expressed in part as a change in the cell's directional tuning at different hand locations. Cell directional tuning tended to shift systematically with hand location even though the direction of static force output at the hand remained constant. These directional effects were less pronounced before the onset of force output than after force onset. Cells also often showed planar modulations of discharge level with hand location. Sixteen proximal arm muscles showed similar effects, reflecting how hand location-dependent biomechanical factors altered their task-related activity. These findings indicate that MI single-cell activity does not covary exclusively with the level and direction of net force output at the hand and provides further evidence that MI contributes to the transformation between extrinsic and intrinsic representations of motor output during isometric force production.  相似文献   

9.
We developed a new approach to investigate how the nervous system activates multiple redundant muscles by studying the endpoint force fluctuations during isometric force generation at a multi-degree-of-freedom joint. We hypothesized that, due to signal-dependent muscle force noise, endpoint force fluctuations would depend on the target direction of index finger force and that this dependence could be used to distinguish flexible from synergistic activation of the musculature. We made high-gain measurements of isometric forces generated to different target magnitudes and directions, in the plane of index finger metacarpophalangeal joint abduction-adduction/flexion-extension. Force fluctuations from each target were used to calculate a covariance ellipse, the shape of which varied as a function of target direction. Directions with narrow ellipses were approximately aligned with the estimated mechanical actions of key muscles. For example, targets directed along the mechanical action of the first dorsal interosseous (FDI) yielded narrow ellipses, with 88% of the variance directed along those target directions. It follows the FDI is likely a prime mover in this target direction and that, at most, 12% of the force variance could be explained by synergistic coupling with other muscles. In contrast, other target directions exhibited broader covariance ellipses with as little as 30% of force variance directed along those target directions. This is the result of cooperation among multiple muscles, based on independent electromyographic recordings. However, the pattern of cooperation across target directions indicates that muscles are recruited flexibly in accordance with their mechanical action, rather than in fixed groupings.  相似文献   

10.
GABAergic intracortical inhibition (ICI) in human motor cortex (M1) assists fractionated activation of muscles, and it has been suggested that hemispheric differences in ICI may contribute to hand preference. Previous studies of this issue have all been conducted at rest, with conflicting results. Testing during voluntary activation may reveal functionally relevant differences. In normal subjects, we assessed (1) operation of ICI circuits during selective activation of an intrinsic hand muscle at different forces, and (2) whether this differs between right and left hemispheres. Surface EMG was recorded bilaterally from abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles in eleven right-handed subjects. A circular coil applied paired transcranial magnetic stimulation (TMS) with posteriorly directed current in the brain. Conditioning intensity was 0.8 × active threshold and interstimulus interval was 3 ms. TMS was applied to right or left M1 while subjects were at rest or performing isometric thumb abduction at different forces (0.5, 1, 2, 3, 5 and 10 N) with the contralateral hand. Conditioning TMS was less effective at suppressing the muscle evoked potential in APB during 2–10 N thumb abduction (P < 0.0001) versus rest, but not with lower target forces (0.5, 1 N). Conditioning TMS was less effective for FDI and ADM only during 10 N thumb abduction. We conclude that differential modulation of ICI in M1 during selective muscle activation is a function of target isometric force level. At low forces (<5% MVC), ICI is not modulated for the corticospinal neurons controlling the active or inactive muscles. There is a progressive reduction of ICI effects on corticospinal neurons at higher forces, which is largely restricted to corticospinal neurons controlling the muscle targeted for activation over the range of forces tested (up to ∼25% MVC). The pattern of ICI modulation with selective voluntary muscle contraction was similar in left and right hemispheres during this relatively simple static task. If hemispheric differences in operation of M1 ICI circuits contribute to hand preference, a more challenging finger movement protocol may be needed to demonstrate this asymmetry.  相似文献   

11.
We characterized how hemiparetic stroke survivors and neurologically intact individuals adapt reaching movements to compensate for unpredictable environmental perturbations. We tested the hypotheses that like unimpaired subjects, hemiparetic stroke survivors adapt using sensory information obtained during only the most recent movements and that the reliability of target acquisition decreases as the degree of sensorimotor impairment increases. Subjects held the handle of a two-joint robotic arm that applied forces to the hand while reaching between targets in a horizontal plane. The robot simulated a dynamic environment that varied randomly in strength from one trial to the next. The trial sequence of perturbations had a nonzero mean value corresponding to information about the environment that subjects might learn. Stroke subjects were less effective than control subjects at adapting reaches to the perturbations. From a family of potential adaptation models, we found that the compensatory strategy patients used was the same as that used by neurologically intact subjects. However, analysis of model coefficients found that the relative weighting of prior perturbations and prior movement errors on subsequent reach attempts was significantly depressed poststroke. Regulation of final hand position was also impaired in the paretic limbs. Measures of trajectory adaptation and final position regulation deficits were significantly dependent on the integrity of limb proprioception and the amount of time poststroke. However, whereas model coefficients varied systematically with impairment level poststroke, variability of final positioning in the contralesional limb did not. This difference suggests that these two aspects of limb control may be differentially impaired poststroke.  相似文献   

12.
The goal of this work was to investigate stability in relation to the magnitude and direction of forces applied by the hand. The endpoint stiffness and joint stiffness of the arm were measured during a postural task in which subjects exerted up to 30% maximum voluntary force in each of four directions while controlling the position of the hand. All four coefficients of the joint stiffness matrix were found to vary linearly with both elbow and shoulder torque. This contrasts with the results of a previous study, which employed a force control task and concluded that the joint stiffness coefficients varied linearly with either shoulder or elbow torque but not both. Joint stiffness was transformed into endpoint stiffness to compare the effect on stability as endpoint force increased. When the joint stiffness coefficients were modeled as varying with the net torque at only one joint, as in the previous study, we found that hand position became unstable if endpoint force exceeded about 22 N in a specific direction. This did not occur when the joint stiffness coefficients were modeled as varying with the net torque at both joints, as in the present study. Rather, hand position became increasingly more stable as endpoint force increased for all directions of applied force. Our analysis suggests that co-contraction of biarticular muscles was primarily responsible for the increased stability. This clearly demonstrates how the central nervous system can selectively adapt the impedance of the arm in a specific direction to stabilize hand position when the force applied by the hand has a destabilizing effect in that direction.  相似文献   

13.
Fingertip force control requires fine coordination of multiple hand muscles within and across the digits. While the modulation of neural drive to hand muscles as a function of force has been extensively studied, much less is known about the effects of fatigue on the coordination of simultaneously active hand muscles. We asked eight subjects to perform a fatiguing contraction by gripping a manipulandum with thumb, index, and middle fingers while matching an isometric target force (40% maximal voluntary force) for as long as possible. The coordination of 12 hand muscles was quantified as electromyographic (EMG) muscle activation pattern (MAP) vector and EMG-EMG coherence. We hypothesized that muscle fatigue would cause uniform changes in EMG amplitude across all muscles and an increase in EMG-EMG coherence in the higher frequency bands but with an invariant heterogeneous distribution across muscles. Muscle fatigue caused a 12.5% drop in the maximum voluntary contraction force (P < 0.05) at task failure and an increase in the SD of force (P < 0.01). Although EMG amplitude of all muscles increased during the fatiguing contraction (P < 0.001), the MAP vector orientation did not change, indicating that a similar muscle coordination pattern was used throughout the fatiguing contraction. Last, EMG-EMG coherence (0-35 Hz) was significantly greater at the end than at the beginning of the fatiguing contraction (P < 0.01) but was heterogeneously distributed across hand muscles. These findings suggest that similar mechanisms are involved for modulating and sustaining digit forces in nonfatiguing and fatiguing contractions, respectively.  相似文献   

14.
The nature of impairment in hand motor control after stroke and its relationship to hand function are still not well understood. In this study, we investigated digit independence in patients with subcortical stroke (n = 8) and moderate hand impairment, defined by wrist and hand Fugl-Meyer scale scores < or =25/33, and age-matched controls (n = 8). Subjects made cyclical flexion-extension movements of an instructed digit while keeping the other digits as still as possible. Movements of the metacarpo-phalangeal (MCP) joints of the five digits were measured using an instrumented glove. The ability to move an instructed digit individually (individuation index), and the ability to keep a noninstructed digit as still as possible (stationarity index) were determined for each digit. Contrary to the finding of normal thumb individuation in a recent study of patients with variable hand motor impairment after stroke, we found that independent movement for all digits was significantly impaired, although individuation and stationarity were differentially affected for each digit. All the digits, including the thumb, showed a similar impairment in individuation. In contrast, stationarity was affected in a digit-dependent pattern: the thumb was affected least, and the middle finger was most impaired. Stroke subjects did not extend their digits fully to the baseline position, and the angular displacement at maximum digit extension correlated significantly with digit individuation. Contrary to expectation, digit independence correlated weakly with clinical tests of hand function, which emphasize grasp. This suggests that corticospinal projections might be separated with respect to function rather than finger topography.  相似文献   

15.
Persons with impaired manual sensibility frequently report problems to use the hand in manipulative tasks, such as using tools or buttoning a shirt. At least two control processes determine grip forces during voluntary object manipulation. Anticipatory force control specifies the motor commands on the basis of predictions about physical object properties and the consequences of our own actions. Feedback sensory information from the grasping digits, representing mechanical events at the skin-object interface, automatically modifies grip force according to the actual loading requirements and updates sensorimotor memories to support anticipatory grip force control. We investigated grip force control in nine patients with moderately impaired tactile sensibility of the grasping digits and in nine sex- and age-matched healthy controls lifting and holding an instrumented object. In healthy controls grip force was adequately scaled to the weight of the object to be lifted. The grip force was programmed to smoothly change in parallel with load force over the entire lifting movement. In particular, the grip force level was regulated in an economical way to be always slightly higher than the minimum required to prevent the object slipping. The temporal coupling between the grip and load force profiles achieved a high precision with the maximum grip and load forces coinciding closely in time. For the temporal regulation of the grip force profile patients with impaired tactile sensibility maintained the close co-ordination between proximal arm muscles, responsible for the lifting movement and the fingers stabilising the grasp. Maximum grip force coincided with maximum acceleration of the lifting movement. However, patients employed greater maximum grip forces and greater grip forces to hold the object unsupported when compared with controls. Our results give further evidence to the suggestion that during manipulation of objects with known physical properties the anticipatory temporal regulation of the grip force profile is centrally processed and less under sensory feedback control. In contrast, sensory afferent information from the grasping fingers plays a dominant role for the efficient scaling of the grip force level according to actual loading requirements.  相似文献   

16.
Larger body parts are somatotopically represented in the primary motor cortex (M1), while smaller body parts, such as the fingers, have partially overlapping representations. The principles that govern the overlapping organization of M1 remain unclear. We used transcranial magnetic stimulation (TMS) to examine the cortical encoding of thumb movements in M1 of healthy humans. We performed M1 mapping of the probability of inducing a thumb movement in a particular direction and used low intensity TMS to disturb a voluntary thumb movement in the same direction during a reaction time task. With both techniques we found spatially segregated representations of the direction of TMS-induced thumb movements, thumb flexion and extension being best separated. Furthermore, the cortical regions corresponding to activation of a thumb muscle differ, depending on whether the muscle functions as agonist or as antagonist for flexion or extension. In addition, we found in the reaction time experiment that the direction of a movement is processed in M1 before the muscles participating in it are activated. It thus appears that one of the organizing principles for the human corticospinal motor system is based on a spatially segregated representation of movement directions and that the representation of individual somatic structures, such as the hand muscles, overlap.  相似文献   

17.
Pulling or pushing forces applied to an object gripped between finger and thumb excite tactile afferents in the digits in a manner awarding these afferents probable roles in triggering the reactive increases in grip force and in scaling the changes in grip force to the changes in applied load-force. In the present study we assessed the possible contributions from slowly adapting afferents supplying muscles involved in the generation of grip forces and from digital joint afferents. Impulses were recorded from single afferents via tungsten microelectrodes inserted percutaneously into the median or ulnar nerves of awake human subjects. The subject held a manipulandum with a precision grip between the receptor-related digit (index finger, middle finger, ring finger or thumb) and an opposing digit (thumb or index finger). Ramp-and-hold load forces of various amplitudes (0.5–2.0 N) and ramp rates (2–32 N/s) were delivered tangential to the parallel grip surfaces in both the distal (pulling) and the proximal (pushing) directions. Afferents from the long flexors of the digits (n=19), regardless of their muscle-spindle or tendon-organ origin, did not respond to the load forces before the onset of the automatic grip response, even with the fastest ramp rates. Their peak discharge closely followed the peak rate of increase in grip force. During the hold phase of the load stimulus, the afferents sustained a tonic discharge. The discharge rates were significantly lower with proximally directed loads despite the mean grip-force being similar in the two directions. This disparity could be explained by the differing contributions of these muscles to the finger-tip forces necessary to restrain the manipulandum in the two directions. Most afferents from the short flexors of the digits (n=17), including the lumbricals, dorsal interossei, opponens pollicis, and flexor pollicis brevis, did not respond at all, even with the fastest ramps. Furthermore, the ensemble pattern from the joint afferents (n=6) revealed no significant encoding of changes in finger-tip forces before the onset of the increase in grip force. We conclude that mechanoreceptors in the flexors of the digits and in the interphalangeal joints cannot be awarded a significant role in triggering the automatic changes in grip force. Rather, their responses appeared to reflect the reactive forces generated by the muscles to restrain the object. Hence, it appears that tactile afferents of the skin in contact with the object are the only species of receptor in the hand capable of triggering and initially scaling an appropriate change in grip force in response to an imposed change in load force, but that muscle and joint afferents may provide information related to the reactive forces produced by the subject.  相似文献   

18.
Circumferential force production of the thumb   总被引:2,自引:0,他引:2  
We developed an apparatus to measure maximal continuous circumferential forces of a digit in the transverse plane that is perpendicular to the longitudinal axis. Subjects with asymptomatic hands were asked to produce maximal forces in all directions at the proximal phalanx of the thumb. The force components during circumferential trials were used to construct a force envelope for each subject. The force envelope enlarged as the number of trials increased, and converged to a stable pattern after several trials. The shape of the force envelope was asymmetric and oblique, skewed towards the flexion/adduction direction. Maximal force (112.1 +/- 14.8 N) was generated in the direction combining flexion and adduction. The lowest force produced was only 50.3% of the maximal force in a direction combining extension and abduction. The forces in the direction of adduction, extension, abduction, and flexion were 60.1%, 61.9%, 51.5%, and 92.9% of the maximal force, respectively. The forces generated by circumferential exertions were comparable to the forces by focused directional exertions except in the flexion direction. Our methods have the potential to identify deviations from the normative force output pattern and help detect underlying impairments resulting from neuromuscular disorders.  相似文献   

19.
This study examined the patterns of muscle activity that subserve the production of dynamic isometric forces in various directions. The isometric condition provided a test for basic features of neuromuscular control, since the task was analogous to reaching movement, but the behavior was not necessarily shaped by the anisotropy of inertial and viscoelastic resistance to movement. Electromyographic (EMG) activity was simultaneously recorded from nine elbow and/or shoulder muscles, and force pulses, steps, and ramps were monitored using a transducer fixed to the constrained wrists of human subjects. The force responses were produced by activating shoulder and elbow muscles; response direction was controlled by the relative intensity of activity in muscles with different mechanical actions. The primary objective was to characterize the EMG temporal pattern. Ideally, synchronous patterns of phasic muscle activation (and synchronous dynamic elbow and shoulder torques) would result in a straight force path; asynchronous muscle activation could result in substantial force path curvature. For both pulses and steps, asynchronous muscle activation was observed and was accompanied by substantial force path curvature. A second objective was to compare phasic and tonic EMG activity. The spatial tuning of EMG intensity was similar for the phasic and tonic activities of each muscle and also similar to the spatial tuning of tonic activity in a previous study where the arm was stationary but unconstrained.  相似文献   

20.
Summary The effect of the direction of unexpected horizontal perturbations of stance on the organization of automatic postural responses was studied in cats. We recorded EMG activity in eight proximal and distal muscles of the hindlimb along with vertical forces imposed by the limbs in awake behaving cats while they stood on an hydraulic platform. Postural responses to motion of the platform in 16 different horizontal directions were recorded. Vertical force changes were consistent with passive shifts of the center of mass and active correction of stance by the animals. When the perturbation was in the sagittal plane, vertical force changes began about 65 ms following initial platform movement. When the perturbation contained a component in the lateral direction, latency for vertical force changes was about 25 ms and an inflection in the vertical force trace was observed at 65 ms. No EMG responses were observed with latencies that were short enough to account for the early force component and it was concluded that this force change was due to passive shifts of the center of mass. The amplitude of the EMG responses of each muscle recorded varied systematically as perturbation direction changed. The directions for which an individual muscle showed measurable EMG activity were termed the muscle's angular range of activation. No angular range of activation was oriented strictly in the A-P or lateral directions. Most muscles displayed angular ranges of activation that encompassed a range of less than 180°. Onset latencies of EMG responses also varied systematically with perturbation direction. The amplitude and latency relationships between muscles, which made up the organization of postural responses, also varied systematically as perturbation direction was changed. This result suggests that direction of perturbation determines organizational makeup of postural responses, and for displacements in the horizontal plane, is considered a continuous variable by the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号