首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4-hydroxynonenal (HNE), an aldehydic product of membrane lipid peroxidation, has been shown to induce neurotoxicity accompanied by multiple events. To clarify mechanisms of neuroprotective compounds on HNE-induced toxicity, the protective effects of N-acetylcysteine (NAC), alpha-tocopherol (TOC), ebselen and S-allyl-L-cysteine (SAC) were compared in cerebellar granule neurons. The decrease in MTT reduction induced by HNE was significantly suppressed by pretreatment of the neurons with 1000 microM NAC or 10 and 100 microM TOC; however, lactate dehydrogenase (LDH) release and propidium iodide (PI) fluorescence studies revealed that neuronal death was suppressed by NAC but not by TOC. Treatment of these neurons with HNE resulted in a drastic reduction of mitochondrial membrane potential, and this reduction was also prevented by NAC but not by TOC. Ebselen and SAC, a garlic compound, were unable to protect these neurons against HNE-induced toxicity. Pretreatment with NAC also prevented HNE-induced depletion of intracellular glutathione (GSH) levels in these neurons. These results suggest that NAC, but not other antioxidants such as TOC, SAC and ebselen, exerts significant protective effects against HNE-induced neuronal death in cerebellar granule neurons, and that this neuroprotective effect is due, at least in part, to preservation of mitochondrial membrane potential and intracellular GSH levels.  相似文献   

2.
The lipid peroxidation product, 4-hydroxynonenal (HNE), has been shown to induce apoptosis in PC12 cells and hippocampal neurons. We compared the degree of cell death induced by survival signal withdrawal (K+ and serum deprivation) with that induced by HNE, and investigated whether agents that block survival signal withdrawal-induced apoptosis could also prevent HNE-induced cell death in cultured cerebellar granule cells. Cell death induced by K+ and serum deprivation was inhibited by cycloheximide, a CPP 32-like protease inhibitor (Ac-DEVD-CHO) and a pituitary adenylate cyclase-activating polypeptide (PACAP)-38. In addition, nuclear cyclic AMP responsive element (CRE)- and activator protein 1 (AP-1) DNA-binding activities were increased 2 h after K+ and serum withdrawal, and these increases were inhibited by cycloheximide, Ac-DEVD-CHO and PACAP 38. Although these agents also blocked HNE-induced cell death, consistent with their efficacy in preventing survival signal withdrawal-induced cells death, CRE and AP-1 DNA-binding activities were decreased in a time-dependent manner during HNE-induced cell death. These results suggest that mechanistic differences exist between apoptosis induced by HNE and that induced by withdrawal of survival signals in cerebellar granule neurons.  相似文献   

3.
Cell cycle regulators such as cyclin-dependent kinases (Cdks) and their inhibitors (Ckis) have been reported to be involved in neuronal cell death (NCD) induced by a variety of insults such as ischemia, UV-irradiation, nerve growth factor (NGF)-withdrawal, and anticancer therapeutics. But their precise interactive regulation has still to be unveiled. In the present study, we focused on cell cycle regulators such as Cdk4, p21(WAF1) and p53 to clarify their regulatory mechanisms, using NCD induced by doxorubicin (D-NCD) in mouse cerebellar granule neurons as a model. Doxorubicin induced NCD in a dose-dependent manner, a typical feature of apoptosis as determined by TUNEL assay. Doxorubicin increased the protein expression of p53 in time- and dose-dependent manners. The protein expression of p21(WAF1), a Cki of Cdk4, was stimulated by doxorubicin at low concentrations, but it disappeared at high concentrations. Doxorubicin activated the kinase activity of Cdk4 without the enhancement of Cdk4 protein. 3-Amino-9-thio(10H)-acridone (3-ATA), the specific inhibitor of Cdk4, prevented D-NCD in a dose-dependent manner. Wortmannin, an inhibitor of ATM (ataxia telangiectasia, mutated) that has high homology with the phosphatidyl-inositol-3-kinase (PI3K) family and has protein kinase activity for the induction of p53 with specificity for serine and threonine residues, inhibited the activation of Cdk4 without the induction of p53 in D-NCD. These data suggest that (1) Cdk4 is one of the essential components for inducing NCD, that (2) p53 may prevent D-NCD through the induction of p21(WAF1) at low concentrations of doxorubicin, and that (3) Cdk4 might be activated by the same signal-molecules, like ATM, that are necessary for the activation of p53 in D-NCD.  相似文献   

4.
Yang JY  Abe K  Xu NJ  Matsuki N  Wu CF 《Neuroscience letters》2002,328(2):165-169
The effect of oleamide on apoptosis was investigated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay, DNA staining assay with propidium iodide and caspase-3 activity analyses. The present results showed that oleamide significantly attenuated the cell death and nuclear condensation of cultured rat cerebellar granule neurons induced by K(+) deprivation in a dose-dependent manner. The oleamide actions were well parallel with the attenuation of caspase-3 activity in the process of apoptotic death. Moreover, neither elaidic acid nor stearic acid, two fatty acids structurally related to oleamide without the Delta(9)-cis double bond, had similar effects on the cell death, suggesting the selectively structural features of oleamide required for this action. These data provided the first evidence of a protective effect of oleamide against apoptosis in a structurally specific manner.  相似文献   

5.
As recent evidence has revealed a pro-survival role for the anti-obesity hormone leptin in the nervous system, we investigated the generality of this finding on cerebellar Purkinje and granule neurons in vitro. We found that whilst leptin promoted cerebellar Purkinje neuron survival, it had no affect on cerebellar granule cells. In addition, we discovered that leptin promoted both the outgrowth of neurites from cerebellar Purkinje neurons and increased the complexity of the neurite arbor. Thus, leptin has different effects on two neighbouring populations of neurons within the cerebellum implying specificity of its actions in the central nervous system.  相似文献   

6.
Agonists at A1 receptors and antagonists at A2A receptors are known to be neuroprotective against excitotoxicity. We set out to clarify the mechanisms involved by studying interactions between adenosine receptor ligands and endogenous glutamate in cultures of rat cerebellar granule neurons (CGNs). Glutamate and the selective agonist N-methyl-d-aspartate (NMDA), applied to CGNs at 9 div (days in vitro), both induced cell death in a concentration-dependent manner, which was attenuated by treatment with the NMDA receptor antagonists dizocilpine, d-2-amino-5-phosphono-pentanoic acid (d-AP5) or kynurenic acid (KYA), but not by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Glutamate toxicity was reduced in the presence of all of the following: cyclosporin A (CsA), a blocker of the membrane permeability transition pore, the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone (Z-DEVD-fmk), the poly (ADP-ribose) polymerase (PARP-1) inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ), and nicotinamide. This is indicative of involvement of both apoptotic and necrotic processes. The A1 receptor agonist, N 6-cyclopentyladenosine (CPA), and the A2A receptor antagonist 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazo-5-yl-amino]ethyl)phenol (ZM241385) afforded significant protection, while the A1 receptor blocker 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxyamidoadenosine (CGS21680) had no effect. These results confirm that glutamate-induced neurotoxicity in CGNs is mainly via the NMDA receptor, but show that a form of cell death which exhibits aspects of both apoptosis and necrosis is involved. The protective activity of A1 receptor activation or A2A receptor blockade occurs against this mixed profile of cell death, and appears not to involve the selective inhibition of classical apoptotic or necrotic cascades.  相似文献   

7.
Peng YP  Qiu YH  Lu JH  Wang JJ 《Neuroscience letters》2005,374(3):192-196
Cytokine interleukin-6 (IL-6) has been showed to be an important mediator of neuroimmune responses. However, effects of IL-6 in the central nervous system (CNS) are quite complex and diverse, and mechanisms through which IL-6 influences neuronal functions are primarily unknown. In the present study, we explored protective effect of IL-6 that was chronically applied to cerebellar granule neurons (CGNs) in culture against neurodamage induced by glutamate and mechanisms involved in the neuroprotective effect of IL-6. The chronic IL-6 exposure significantly prevented the CGNs from the glutamate-induced attenuation of neuronal vitality. This neuroprotective effect of IL-6 depended on its concentrations. IL-6 at 2.5 ng/ml did not markedly improve the neuronal vitality, but IL-6 at 5 and 10 ng/ml notably improved the neuronal vitality. The glutamate-evoked neuronal apoptosis also was strikingly inhibited by the chronic IL-6 pretreatment. Intracellular Ca2+ in the CGNs lacking IL-6 pretreatment acutely rose as soon as these neurons were stimulated by glutamate and were maintained at higher levels during the whole 18-min period of glutamate attack. Although intracellular Ca2+ in the IL-6-pretreated CGNs also produced an acute and transient elevation in response to the glutamate insult, they quickly dropped and recovered to basal levels before the glutamate application. Anti-gp130 monoclonal antibody (mAb) blocked the suppressive effect of IL-6 on the glutamate-induced intracellular Ca2+ overload. These results reveal that IL-6 can protect neurons against glutamate-induced neurotoxicity, and suggest that the neuroprotective effect of IL-6 may be via gp130 signal transducing pathway to suppress the glutamate-evoked intracellular Ca2+ overload.  相似文献   

8.
Toescu EC 《Neuroscience》1999,94(2):561-570
Neuronal activity and Ca2+ channel activation play important roles in neuronal survival and development. In cerebellar granule neurons, the culture conditions can induce differential expression of various membrane receptor proteins. To test the hypothesis that culture conditions might affect the activity of voltage-operated Ca2+ channels, the present study analysed the differences in Ca2+ signalling between granule neurons grown in the presence of normal (5 mM) or high (25 mM) KCl. The Ca2+ transients evoked by 50 mM KCl developed similarly in both cultures, as a function of age. In contrast, when compared with neurons grown in 25 mM KCl, a proportion of the neurons grown in normal KCl showed, between days in vitro 4 and 6, a higher Ca2+ transient in response to 12.5 mM KCl. These neurons were less sensitive to the effect of 10 microM nifedipine and, conversely, more sensitive to the effects of 10 microM omega-conotoxin MVIIC when stimulated with 50 mM KCl, indicating that they express preferentially, at this stage, the N- and/or Q-type Ca2+ channels. This period of maximal activity of the N/Q-type Ca2+ channels was associated with a significant increase in the rate of neuronal apoptosis. The present study also shows, by comparing the rates of neuronal apoptosis, that the long-term maintenance in 25 mM KCl appears to "synchronize" and sensitize the neuronal population to the apoptotic process. These results illustrate the differential effect the culture conditions can have on the expression and activity of Ca2+ channels, which, in turn, can modulate neuronal survival.  相似文献   

9.
In the experiments on the primary cerebellar granule cell cultures, delayed neuronal death was induced by 15 min treatment of the cells with 50 microM glutamate. 5-(N-ethyl-N-isopropyl)amiloride (10 microM) known as a potent inhibitor of the Na+/H+ exchanger, when added to the glutamate-containing Mg(2+)-free solution caused a considerable (approximately by 40%) decrease in the number of dead cells counted 4 h after the termination of glutamate treatment. Patch-clamp experiments with freshly isolated rat hippocampal neurons have shown that the neuroprotective effect of 5-(N-ethyl-N-isopropyl)amiloride can be explained by its ability to block N-methyl-D-aspartate channels (receptors) at micromolar concentrations. A similar mechanism apparently underlies neuroprotective effect of external acidosis (reduction of pH from 7.6-7.8 to 6.7-6.8) during glutamate application. 5-(N-ethyl-N-isopropyl)amiloride (10 microM) and low pH (6.7) also proved capable of exhibiting neuroprotective effects upon application during the post-glutamate period. In this instance, however, the number of dead cells was decreased by no more than 20%. This neuroprotective effect of 5-(N-ethyl-N-isopropyl)amiloride and low pH is interpreted as resulting from inhibition of Na+/H+ exchange, since a direct blockade of N-methyl-D-aspartate receptors by 1 mM DL-2-amino-5-phosphonovalerate after termination of glutamate treatment did not attenuate the delayed neuronal death. Finally, we have established that the addition of 10 microM 5-(N-ethyl-N-isopropyl)amiloride to the cultures both during glutamate treatment and after its termination results in a complete protection of cultured cerebellar granule cells.  相似文献   

10.
Cerebellar granule neurons (CGN) are the most abundant neuronal type in the cerebellum. During development, these cells migrate from the external to the internal granule layer (IGL), where they receive excitatory glutamatergic and cholinergic contacts from mossy fibers. During this period of development a large proportion of CGN are eliminated via apoptosis. In vitro studies have demonstrated that when CGN are obtained from rats at postnatal day 8 (P8), the sustained activation of N-methyl-D-aspartate (NMDA) receptor at 2-4 days in vitro rescues neurons from cell death. The NMDA action on cultured CGN could mimic the in vivo actions of the transient activation of the glutamate receptors by the transmitter released by mossy fibers by P12. However, some results suggest that glutamate stimulation could be relevant for CGN at earlier stages of development. In this study we evaluated the effect of NMDA receptor stimulation or blockade on the cell death of both in vivo and cultured CGN obtained from P2 to P8 rats. Our results showed that the blockade of NMDA receptors with the antagonists D,L-2-amino-5-phosphonovaleric acid or dizocilpine (MK-801) reduces cell survival to 20-40%, whereas NMDA treatment increases neuronal survival by approximately 50-60%. In vivo, the treatment with MK-801 reduced the number of apoptotic CGN in the molecular layer (ML) from P5 to P8. These results suggest that NMDA receptor stimulation plays a critical role in the regulation of CGN death during the first week of rat cerebellar development.  相似文献   

11.
12.
13.
14.
Recent evidence suggests a major role for ionic fluxes in apoptotic cell death and apoptotic volume decrease. Cerebellar granule neurons (CGN) undergo apoptosis when they are treated with staurosporine or camptothecin (CPT) or when cells are transferred from high extracellular potassium (25 mM KCl [K+]e, K25) to low potassium concentration (5 mM KCl [K+]e, K5). In this study we described that all three apoptotic conditions induced apoptotic volume decrease in CGN and that two different potassium channel blockers, cesium (Cs+) and tetraethylammonium (TEA+), prevented the apoptotic volume decrease, caspase-3 activation, nuclear condensation and cell death induced by K5 and CPT, but not by staurosporine. Cs+ and TEA+ also blocked membrane currents generated in K5 conditions in CGN. On the other hand, non specific Cl channel blockers such as 4,4′-diisothiocyanato-stilbene-2,2′-disulfonic acid (DIDS) prevented loss of cell volume induced by K5 or staurosporine. Only the Cl channels blocker but not the K+ channels blockers protected from staurosporine-induced death of CGN. These data suggest that ionic fluxes play a key role in the activation of the apoptotic volume decrease and apoptotic death of CGN, but the fine mechanism seems to depend on the apoptotic condition.  相似文献   

15.
Caffeic acid phenethyl ester (CAPE) is an active component of propolis obtained from honeybee hives and is found to have the following properties: anti-mitogenic, anti-carcinogenic, anti-inflammatory, immunomodulatory, and antioxidant. Recent reports suggest that CAPE also has a neuronal protective property against ischemic injury. Since excitotoxicity may play an important role in ischemia, in this study, we investigated whether CAPE could directly protect neurons against excitotoxic insult. We treated cultured rat cerebellar granule neurons (CGNs) with excitotoxic concentrations of glutamate in the presence or absence of CAPE and found that CAPE markedly protected neurons against glutamate-induced neuronal death in a concentration-dependent fashion. Glutamate-induced CGNs death is associated with time-dependent activation of caspase-3 and phosphorylation of p38, both events of which can be blocked by CAPE. Treating CGNs with specific inhibitors of these two enzymes together exerts a synergistic neuroprotective effect, similar to the neuroprotective effect of CAPE exposure. These results suggest that CAPE is able to block glutamate-induced excitotoxicity by inhibiting phosphorylation of p38 and caspase-3 activation. This finding may further help understanding of the mechanism of glutamate-induced neuronal death and CAPE-induced neuroprotection against excitotoxicity.  相似文献   

16.
Cerebellar granule neurons (CGNs) depend on potassium depolarization for survival and undergo apoptosis when deprived of depolarizing concentration of potassium. Extracellular signal-regulated kinases (ERK1/2) are thought to be activated in response to potassium depolarization and responsible for the activity-dependent survival in CGNs, but one recent study has revealed that ERK1/2 is activated by potassium deprivation and is required for apoptosis of CGNs. In this study we showed that ERK1/2 was inactivated, rather than activated, by potassium deprivation, indicating a lack of ERK1/2 involvement in potassium deprivation-induced apoptosis. Furthermore, suppression of potassium depolarization-induced activation of ERK1/2 with chemical inhibitor U0126 or PD98059 had no influence on the pro-survival effect of potassium depolarisation. Thus, ERK1/2 was not required for potassium depolarization-dependent survival of CGNs. Taken together, our findings suggest that ERK1/2 is not involved in activity-dependent survival or apoptosis of CGNs.  相似文献   

17.
研究neuroplastin在培养神经元的表达及对大鼠原代培养小脑颗粒细胞分化与存活的影响。培养大鼠小脑颗粒细胞、中脑多巴胺能神经元、海马神经元、PC12-E2、新生鼠前脑组织,用RT-PCR检测neuroplastin65 mRNA和neuroplastin55 mRNA的表达;加入neuroplastin合成肽,观察小脑颗粒细胞神经突起生长及在低钾的神经毒性条件下神经元的存活。结果表明:在培养0、7d的海马神经元、中脑多巴胺能神经元、小脑颗粒细胞以及新生鼠前脑组织、PC12-E2细胞均表达np65 mRNA、np55 mRNA,且np55 mRNA的表达高于np65 mRNA;来自neuroplastin Ig1的合成肽是1ab-s,1cd-s,1dd,1ef,1fg;来自neuroplastinIg2的合成肽是2cd和2fg。1fg,1cd-s,2cd,2fg强烈刺激神经突起的生长,1dd,1ab-s中等程度刺激神经突起的生长,1ef,1bc则无效。1cd-s,1bc,1dd,1ef,2cd,2fg能促进低钾神经毒性环境下神经元的存活,1fg,1ab-s无效。以上结果提示,neuroplastin通过亲同性结合或亲异性结合后,诱导神经突起生长和促进神经元存活。  相似文献   

18.
Trauma and injury necessitate the use of various surgical interventions, yet such procedures themselves are invasive and often interrupt synaptic communications in the nervous system. Because anesthesia is required during surgery, it is important to determine whether long-term exposure of injured nervous tissue to anesthetics is detrimental to regeneration of neuronal processes and synaptic connections. In this study, using identified molluscan neurons, we provide direct evidence that the anesthetic propofol blocks cholinergic synaptic transmission between soma-soma paired Lymnaea neurons in a dose-dependent and reversible manner. These effects do not involve presynaptic secretory machinery, but rather postsynaptic acetylcholine receptors were affected by the anesthetic. Moreover, we discovered that long-term (18-24 h) anesthetic treatment of soma-soma paired neurons blocked synaptogenesis between these cells. However, after several hours of anesthetic washout, synapses developed between the neurons in a manner similar to that seen in vivo. Long-term anesthetic treatment of the identified neurons visceral dorsal 4 (VD4) and left pedal dorsal 1 (LPeD1) and the electrically coupled Pedal A cluster neurons (PeA) did not affect nerve regeneration in cell culture as the neurons continued to exhibit extensive neurite outgrowth. However, these sprouted neurons failed to develop chemical (VD4 and LPeD1) and electrical (PeA) synapses as observed in their control counterparts. After drug washout, appropriate synapses did reform between the cells, although this synaptogenesis required several days. Taken together, this study provides the first direct evidence that the clinically used anesthetic propofol does not affect nerve regeneration. However, the formation of both chemical and electrical synapses is severely compromised in the presence of this drug. This study emphasizes the importance of short-term anesthetic treatment, which may be critical for the restoration of synaptic connections between injured neurons.  相似文献   

19.
20.
Yuan Z  Mei Y  Zhou J  Tan M  Song B  Ma C  Ying C  Li D  Ching YP  Li M 《Neuroscience letters》2007,424(3):155-159
Cerebellar granule neurons (CGNs) undergo apoptosis when deprived of depolarizing concentration of potassium. A key regulator of cell cycle, E2F1, was believed to play a role in CGN apoptosis induced by potassium deprivation. However, here we demonstrated that although E2F1 was upregulated in wild type CGNs following potassium deprivation, CGNs that derived from E2F1 knockout mice underwent apoptosis at a similar rate as the wild type. Analysis of the apoptotic neurons revealed no difference in the activation of caspase-3 in E2F1 null and wild type CGNs. Furthermore, knockdown of E2F1 expression by RNA interference failed to attenuate the apoptosis of CGNs induced by potassium deprivation. Taken together, our results suggested that E2F1 is not essential for apoptosis induced by potassium deprivation in CGNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号