首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein-coupled receptors (GPCRs) constitute the largest receptor superfamily in the human genome and represent the most common targets of drug action. Classic agonist and antagonist ligands that act at GPCRs tend to bind to the receptor's orthosteric site, that is, the site recognized by the endogenous agonist for that receptor. However, it is now evident that GPCRs possess additional, extracellular, allosteric binding sites that can be recognized by a variety of small molecule modulator ligands. Allosteric modulators offer many advantages over classic orthosteric ligands as therapeutic agents, including the potential for greater GPCR-subtype selectivity and safety. However, the manifestations of allosterism at GPCRs are many and varied and, in the past, traditional screening methods have generally failed to detect many allosteric modulators. More recently, there have been a number of major advances in high throughput screening, including the advent of cell-based functional assays, which have led to the discovery of more allosteric modulator ligands than previously appreciated. In addition, a number of powerful analytical techniques have also been developed exclusively for detecting and quantifying allosteric effects, based on an increased awareness of various mechanisms underlying allosteric modulator actions at GPCRs. Together, these advances promise to change the current paucity of GPCR allosteric modulators in the clinical setting and yield novel therapeutic entities for the treatment of numerous disorders.  相似文献   

2.
Allosteric modulators of G-protein-coupled receptors (GPCRs) interact with binding sites on the receptor that are topographically distinct from the orthosteric site recognized by the receptor's endogenous agonist. Allosteric modulators offer several advantages over standard orthosteric drugs, including the potential for greater receptor subtype selectivity. To date, the current paucity of clinically available allosteric drugs reflects the bias of traditional radioligand binding assays towards the detection of orthosteric effects. However, the advent of new cell-based high-throughput functional assays has led to an increased detection of allosteric GPCR ligands. The current challenge for modulator-based GPCR drug discovery is the optimization of both binding and functional assays to better detect and validate allosteric ligands.  相似文献   

3.
Once considered a pharmacological curiosity, allosteric modulation of seven transmembrane domain G-protein-coupled receptors (GPCRs) has emerged as a potentially powerful means to affect receptor function for therapeutic purposes. Allosteric modulators, which interact with binding sites topologically distinct from the orthosteric ligand binding sites, can potentially provide improved selectivity and safety, along with maintenance of spatial and temporal aspects of GPCR signaling. Accordingly, drug discovery efforts for GPCRs have increasingly focused on the identification of allosteric modulators. This review is devoted to an examination of the strategies, challenges, and opportunities for high-throughput screening for allosteric modulators of GPCRs, with particular focus on the identification of positive allosteric modulators.  相似文献   

4.
The superfamily of G-protein coupled receptors (GPCRs) has more than 1000 members and is the largest family of proteins in the body. GPCRs mediate signalling of stimuli as diverse as light, ions, small molecules, peptides and proteins and are the targets for many pharmaceuticals. Most GPCR ligands are believed to activate (agonists) or inhibit (competitive antagonists) receptor signalling by binding the receptor at the same site as the endogenous agonist, the orthosteric site. In contrast, allosteric ligands modulate receptor function by binding to different regions in the receptor, allosteric sites. In recent years, combinatorial chemistry and high throughput screening have helped identify several allosteric GPCR modulators with novel structures, several of which already have become valuable pharmacological tools and may be candidates for clinical testing in the near future. This mini review outlines the current status and perspectives of allosteric modulation of GPCR function with emphasis on the pharmacology of endogenous and synthesised modulators, their receptor interactions and the therapeutic prospects of allosteric ligands compared to orthosteric ligands.  相似文献   

5.
Allosteric modulators of G protein-coupled receptors (GPCRs), which target at allosteric sites, have significant advantages against the corresponding orthosteric compounds including higher selectivity, improved chemical tractability or physicochemical properties, and reduced risk of receptor oversensitization. Bitopic ligands of GPCRs target both orthosteric and allosteric sites. Bitopic ligands can improve binding affinity, enhance subtype selectivity, stabilize receptors, and reduce side effects. Discovering allosteric modulators or bitopic ligands for GPCRs has become an emerging research area, in which the design of allosteric modulators is a key step in the detection of bitopic ligands. Radioligand binding and functional assays ([35S]GTPγS and ERK1/2 phosphorylation) are used to test the effects for potential modulators or bitopic ligands. High-throughput screening (HTS) in combination with disulfide trapping and fragment-based screening are used to aid the discovery of the allosteric modulators or bitopic ligands of GPCRs. When used alone, these methods are costly and can often result in too many potential drug targets, including false positives. Alternatively, low-cost and efficient computational approaches are useful in drug discovery of novel allosteric modulators and bitopic ligands to help refine the number of targets and reduce the false-positive rates. This review summarizes the state-of-the-art computational methods for the discovery of modulators and bitopic ligands. The challenges and opportunities for future drug discovery are also discussed.Key words: allosteric modulators, bitopic ligands, computational approaches, drug discovery, drug target discovery, G protein-coupled receptors  相似文献   

6.
G protein-coupled receptor (GPCR)-based drug discovery has traditionally focused on targeting the orthosteric site for the endogenous agonist. However, many GPCRs possess allosteric sites that offer enormous potential for greater selectivity in drug action. The complex behaviors ascribed to allosteric ligands also present challenges to those interested in preclinical lead discovery. These challenges include the need to detect and quantify various phenomena when screening for allosteric ligands, such as saturability of effect, probe dependence, differential effects on orthosteric ligand affinity vs. efficacy, system-dependent allosteric agonism, stimulus-bias (functional selectivity), and the potential existence of bitopic (hybrid orthosteric/allosteric) ligands. These issues are also critical when interpreting structure-function studies of allosteric GPCR modulators because mutations in receptor structure, either engineered or naturally occurring, can differentially affect not only modulator affinity, but also the nature, magnitude and direction of the allosteric effect on orthosteric ligand function. The ever-expanding array of allosteric modulators arising from both academic and industrial research also highlights the need for the development of a uniform approach to nomenclature of such compounds.  相似文献   

7.
In recent years, new strategies in cancer therapy have been developed targeting key signaling molecules in the receptor tyrosine kinase signal transduction pathway. In contrast, most therapeutical concepts to manipulate G protein-coupled receptors (GPCR)-mediated disorders are still limited to the use of receptor-specific agonists or antagonists. Visible progress in the understanding of GPCR signaling complexity, especially the detection of several families of highly target- and cell-specific regulator proteins of GPCRs, G proteins, and effector components may open new horizons to develop novel therapeutical concepts targeting GPCR signaling elements. Thus, this review will focus on different molecular levels that may be of particular interest in terms of new drug development such as: (i) GPCR subtypes, allosteric binding sites, dimerization and constitutive activity, the use of RAMPs (receptor-activity-modifying proteins) and RASSLs (receptor activated solely by synthetic ligands); (ii) AGS (activators of G protein signaling) and RGS (regulators of G protein signaling) proteins which modify G protein activity; (iii) the high diversity of isozymes involved in the generation, signal transmission, and degradation of second messenger molecules.  相似文献   

8.
G protein coupled receptors (GPCRs) play a crucial role in physiology and pathophysiology in humans. Beside the large family A (rhodopsin-like receptors) and family C GPCR (metabotropic glutamate receptors), the small family B1 GPCR (secretin-like receptors) includes important receptors such as vasoactive intestinal peptide receptors (VPAC), pituitary adenylyl cyclase activating peptide receptor (PAC1R), secretin receptor (SECR), growth hormone releasing factor receptor (GRFR), glucagon receptor (GCGR), glucagon like-peptide 1 and 2 receptors (GLPR), gastric inhibitory peptide receptor (GIPR), parathyroid hormone receptors (PTHR), calcitonin receptors (CTR) and corticotropin-releasing factor receptors (CRFR). They represent very promising targets for the development of drugs having therapeutical impact on many diseases such as chronic inflammation, neurodegeneration, diabetes, stress and osteoporosis. Over the past decade, structure-function relationship studies have demonstrated that the N-terminal ectodomain (N-ted) of family B1 receptors plays a pivotal role in natural ligand recognition. Structural analysis of some family B1 GPCR N-teds revealed the existence of a Sushi domain fold consisting of two antiparallel β sheets stabilized by three disulfide bonds and a salt bridge. The family B1 GPCRs promote cellular responses through a signaling pathway including predominantly the Gsadenylyl cyclase-cAMP pathway activation. Family B1 GPCRs also interact with a few accessory proteins which play a role in cell signaling, receptor expression and/or pharmacological profiles of receptors. These accessory proteins may represent new targets for the design of new drugs. Here, we review the current knowledge regarding: i) the structure of family B1 GPCR binding domain for natural ligands and ii) the interaction of family B1 GPCRs with accessory proteins.  相似文献   

9.
G protein-coupled receptors (GPCRs) represent a major class of signal transduction proteins that modulate various biological functions. GPCRs are one of the most common targets for drug development-currently, 39 of the top 100 marketed drugs in use act directly or indirectly through activation or blockade of GPCR-mediated receptors. Nearly 160 GPCRs have been identified based on their gene sequence and their ability to interact with known endogenous ligands. However, an estimated 500-800 additional GPCRs have been classified as "orphan" receptors (oGPCRs) because their endogenous ligands have not yet been identified. Given that known GPCRs have proven to be such clinically useful drug targets, these oGPCRs represent a rich group of receptor targets for the development of novel and improved medicines. To develop ligands for these potential drug targets requires the ability to identify groups or pools of GPCRs that are likely to be involved in a specific disease process (obesity, schizophrenia, depression, etc.) and to dissect out the pharmacological and signal transduction differences between these GPCR subtypes. It also requires the development of assays to detect ligands of GPCRs even when the endogenous ligands are unidentified. This paper will review novel strategies to identify clinically interesting oGPCRs and to screen for small molecules that act as ligands without prior knowledge of endogenous ligands. This involves the use of constitutively activated GPCRs, a technology that provides a unique opportunity to identify several classes of pharmacological agents, including agonists, inverse agonists and allosteric modulators.  相似文献   

10.
The pattern recognition formyl peptide receptors (FPRs) belong to the class of G‐protein‐coupled receptors (GPCRs), the largest group of cell surface receptors involved in a range of physiological processes and pathologies. The FPRs have regulatory function in the initiation as well as resolution of inflammatory reactions, making them highly interesting as targets for drug development. Recent research in the GPCR/FPR fields has uncovered novel receptor biology concepts, including biased signalling/functional selectivity, allosteric modulation, receptor reactivation and receptor cross‐talk. When it comes to allosteric modulators, ‘tailor‐made’ lipopeptides (pepducins and lipopeptoids) represent a novel concept of GPCR/FPR regulation. This MiniReview is focused on the basis for recognition of conventional ligands and immunomodulating lipopeptides, novel allosteric modulators for the FPRs, receptors that are highly expressed by both human and mouse neutrophils. The FPRs play key roles in host defence against microbial infections, tissue homeostasis and the initiation as well as resolution of inflammation but there are both similarities and differences in ligand recognition between mice and men. Thus, identification and functional characterization of activating and inhibiting ligands should provide insights into future design of FPR‐based animal models of human diseases and development of therapeutics for treating inflammatory diseases.  相似文献   

11.
G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Hence, an automated method was developed that allows a fast analysis and comparison of these generic ligand binding pockets across the entire GPCR family by providing the relevant information for all GPCRs in the same format. This methodology compiles amino acids lining the TM binding pocket including parts of the ECL2 loop in a so-called 1D ligand binding pocket vector and translates these 1D vectors in a second step into 3D receptor pharmacophore models. It aims to support various aspects of GPCR drug discovery in the pharmaceutical industry. Applications of pharmacophore similarity analysis of these 1D LPVs include definition of receptor subfamilies, prediction of species differences within subfamilies in regard to in vitro pharmacology and identification of nearest neighbors for GPCRs of interest to generate starting points for GPCR lead identification programs. These aspects of GPCR research are exemplified in the field of melanopsins, trace amine-associated receptors and somatostatin receptor subtype 5. In addition, it is demonstrated how 3D pharmacophore models of the LPVs can support the prediction of amino acids involved in ligand recognition, the understanding of mutational data in a 3D context and the elucidation of binding modes for GPCR ligands and their evaluation. Furthermore, guidance through 3D receptor pharmacophore modeling for the synthesis of subtype-specific GPCR ligands will be reported. Illustrative examples are taken from the GPCR family class C, metabotropic glutamate receptors 1 and 5 and sweet taste receptors, and from the GPCR class A, e.g. nicotinic acid and 5-hydroxytryptamine 5A receptor.  相似文献   

12.
Recent solved structures of G protein-coupled receptors (GPCRs) provide insights into variation of the structure and molecular mechanisms of GPCR activation. In this review, we provide evidence for the emerging paradigm of domain coupling facilitated by intrinsic disorder of the ligand-free state in GPCRs. The structure-function and dynamic studies suggest that ligand-bound GPCRs exhibit multiple active conformations in initiating cellular signals. Long-range intramolecular and intermolecular interactions at distant sites on the same receptor are crucial factors that modulate signaling function of GPCRs. Positive or negative coupling between the extracellular, the transmembrane and the intracellular domains facilitates cooperativity of activating 'switches' as requirements for the functional plasticity of GPCRs. Awareness that allosteric ligands robustly affect domain coupling provides a novel mechanistic basis for rational drug development, small molecule antagonism and GPCR regulation by classical as well as nonclassical modes.  相似文献   

13.
G蛋白偶联受体(GPCRs)介导多数激素及神经递质的细胞信号转导,同时也是最重要的药物作用靶点。相对于正位作用,对GPCRs别构调节具有能够达到高选择性、模拟生理性调制受体以及不易过度激活受体的特点而受到关注,A、B、C三族GPCRs均有别构调节剂被发现,有些已被用于临床。随着GPCRs别构理论研究的深入,若在别构调节剂开发策略指导下进行定向筛选和结构改造,将会获得更有前途的治疗药物。  相似文献   

14.
ABSTRACT

Introduction: G-protein-coupled receptors (GPCRs) mediate the effects of approximately 33% of all marketed drugs. The development of tools to study GPCR pharmacology is urgently needed as it can lead to the discovery of safer and more effective medications. Fluorescent GPCR ligands represent highly sensitive and safe small-molecule tools for real-time exploration of the life of the receptor, cellular signaling, and ligand–/receptor–receptor interactions in cellulo and/or in vivo.

Areas covered: This review summarizes relevant information from published literature and provides critical insights into the design of successful small-molecule fluorescent probes for Class A GPCRs as potential major targets for drug development.

Expert opinion: Considering the rapid progress of fluorescence technologies, effective small-molecule fluorescent probes represent valuable pharmacological tools for studying GPCRs. However, the design and development of such probes are challenging, largely due to the low affinity/specificity of the probe for its target, inadequate photophysical properties, extensive non-specific binding, and/or low signal-to-noise ratio. Generally speaking, fluorescent and luminescent small-molecule probes, receptors, and G proteins in combination with FRET and BRET technologies hold great promise for studying kinetic profiles of GPCR signaling.  相似文献   

15.
The G protein-coupled receptors (GPCRs) are the largest family of membrane proteins and represent some of the most important pharmaceutical targets. These receptors, encoded by several hundred genes, are activated by a wide variety of endogenous and synthetic ligands. The study of the signal transduction pathways activated by these receptors and the associated mechanisms controlling biological responses have been pivotal in identifying key intracellular molecules for regulating receptor responsiveness. The beta-arrestin proteins, which were initially discovered due to their role in GPCR desensitization, serve equally important roles in regulating internalization and alternative signaling events. This review focuses on the different functions of beta-arrestins to demonstrate how these proteins can help to identify new ligands for GPCRs and how they can serve as a platform for drug discovery.  相似文献   

16.
Family C of G-protein coupled receptors (GPCRs) from humans is constituted by eight metabotropic glutamate (mGlu(1-8)) receptors, two heterodimeric gamma-aminobutyric acid(B) (GABA(B)) receptors, a calcium-sensing receptor (CaR), three taste (T1R) receptors, a promiscuous L-alpha-amino acid receptor (GPRC6A), and five orphan receptors. Aside from the orphan receptors, the family C GPCRs are characterised by a large amino-terminal domain, which bind the endogenous orthosteric agonists. Recently, a number of allosteric modulators binding to the seven transmembrane domains of the receptors have also been reported. Family C GPCRs regulate a number of important physiological functions and are thus intensively pursued as drug targets. So far, two drugs acting at family C receptors (the GABA(B) agonist baclofen and the positive allosteric CaR modulator cinacalcet) have been marketed. Cinacalcet is the first allosteric GPCR modulator to enter the market, which demonstrates that the therapeutic principle of allosteric modulation can also be extended to this important drug target class. In this review we outline the structure and function of family C GPCRs with particular focus on the ligand binding sites, and we present the most important pharmacological agents and the therapeutic prospects of the receptors.  相似文献   

17.
The great versatility of G protein-coupled receptors (GPCRs), in terms of both their ability to bind different types of ligands and initiate a large number of distinct cellular signaling events, remains incompletely understood. In recent years, the classical view of the nature and consequences of ligand binding to GPCRs has dramatically changed. The notion of functional selectivity, achieved through both biased ligands and allosteric modulators, has brought substantial new insight into our comprehension of the pluridimensionality of signaling achieved by GPCRs. Moreover, receptor heterodimerization adds another important dimension to the diversity of cellular responses controlled by GPCRs. Here, we review these considerations and discuss how they will impact the design of improved therapeutics.  相似文献   

18.
Assay technologies that measure the activation of heterotrimeric (alphabetagamma) G proteins by G-protein-coupled receptors (GPCRs) are well established within the pharmaceutical industry, either for pharmacological characterization or for the identification of natural or surrogate receptor ligands. Despite recent evidence indicating that GPCR-linked signalling events might not be mediated exclusively by G proteins, G-protein activation remains a common benchmark for assessing GPCR family members. Thus, assay systems that translate ligand-mediated modulation of GPCRs into G-protein-dependent intracellular responses still represent key components of both basic research and the drug discovery process. In this article, the current knowledge and recent progress of integrating Galpha subunits into assay systems for GPCR drug discovery will be reviewed. Emphasis is given to novel promiscuous and chimeric Galpha proteins. Because of their ability to interact with a wide range of GPCRs, such novel G proteins are likely to be incorporated rapidly into drug discovery programmes.  相似文献   

19.
Clinical potential of GABAB receptor modulators   总被引:2,自引:0,他引:2  
Ong J  Kerr DI 《CNS drug reviews》2005,11(3):317-334
Metabotropic gamma-aminobutyric acid(B) (GABAB) receptors for the major inhibitory transmitter GABA, together with metabotropic glutamate (mGLuRs) receptors, the extracellular calcium-sensing receptors (CaSRs), some V2R pheromone receptors and T1R taste receptors, belong to the family of 3 G-protein-coupled receptors (GPCRs). GABAB receptors are known to control neuronal excitability and modulate synaptic neurotransmission, playing a very important role in many physiological activities. These receptors are widely expressed and distributed in the nervous system and have been implicated in a variety of neurodegenerative and pathophysiological disorders including epilepsy, spasticity, chronic pain, depression, schizophrenia and drug addiction. To form a functional receptor entity, GABAB receptors must exist as a heterodimer consisting of GABAB1 and GABAB2 receptor subtypes with two 7-transmembrane proteins, and these subunits arise from distinct genes. The GABAB1 subunit binds the endogenous ligand within its extracellular N-terminus, whilst the GABAB2 subunit is not only essential for the correct trafficking of the GABAB1 subunit to the cell surface, but is also responsible for the interaction of the receptor with its cognate G-protein. Allosteric modulation has recently been recognized as an alternative pharmacological approach to gain selectivity in drug action. It is now generally accepted that modulators acting at the allosteric sites provide a novel perspective for the development of subtype-selective agents acting at GPCRs. These agents interact with allosteric binding sites quite separate from the highly conserved agonist binding region. In this review, we present a new class of phenylalkylamines, based on the lead compound fendiline, that are potent positive potentiators of GABAB receptor-mediated function and discuss their putative clinical applications. It is proposed that these new modulators may have therapeutic value in GABAB receptor pharmacology and are capable of selectively modifying GABAB receptor function. The allosteric modulators are offering an attractive and novel means to identify new leads, that are devoid of side effects associated with GABAB receptor agonists, and may, therefore, represent a major advance in the drug discovery process.  相似文献   

20.
G protein coupled receptors (GPCRs) are extremely important drug targets and the beta-arrestin intracellular scaffolding and adaptor proteins regulate major aspects of their pharmacology. beta-arrestin binding to activated, GPCR kinase (GRK)-phosphorylated receptors has the capacity to terminate G protein coupling, internalize the receptors into clathrin-coated vesicles and establish a secondary signaling complex independent of G protein signaling. These events appear to be differentially regulated by GRK phosphorylation, ubiquitination and potentially beta-arrestin oligomerization, which are likely to be highly receptor and cell-type dependent. The role of beta-arrestins in switching from G-protein dependent to independent signaling places them in a pivotal position to dictate the downstream effects of ligand binding. Consequently, we must appreciate the functioning of these molecules as we strive to discover and optimize new GPCR drug therapies for endocrine, metabolic and immune disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号