首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The epigenetic phenomenon of genomic imprinting provides an additional level of gene regulation that is confined to a limited number of genes, frequently, but not exclusively, important for embryonic development. The evolution and maintenance of imprinting has been linked to the balance between the allocation of maternal resources to the developing fetus and the mother's well being. Genes that are imprinted in both the embryo and extraembryonic tissues show extensive conservation between a mouse and a human. Here we examine the human orthologues of mouse genes imprinted only in the placenta, assaying allele-specific expression and epigenetic modifications. The genes from the KCNQ1 domain and the isolated human orthologues of the imprinted genes Gatm and Dcn all are expressed biallelically in the human, from first-trimester trophoblast through to term. This lack of imprinting is independent of promoter CpG methylation and correlates with the absence of the allelic histone modifications dimethylation of lysine-9 residue of H3 (H3K9me2) and trimethylation of lysine-27 residue of H3 (H3K27me3). These specific histone modifications are thought to contribute toward regulation of imprinting in the mouse. Genes from the IGF2R domain show polymorphic concordant expression in the placenta, with imprinting demonstrated in only a minority of samples. Together these findings have important implications for understanding the evolution of mammalian genomic imprinting. Because most human pregnancies are singletons, this absence of competition might explain the comparatively relaxed need in the human for placental-specific imprinting.  相似文献   

3.
Human pluripotent stem cells (hPSCs) have been derived from the inner cell mass cells of blastocysts (embryonic stem cells) and primordial germ cells of the developing gonadal ridge (embryonic germ cells). Like their mouse counterparts, hPSCs can be maintained in culture in an undifferentiated state and, upon differentiation, generate a wide variety of cell types. Embryoid body (EB) formation is a requisite step in the process of in vitro differentiation of these stem cells and has been used to derive neurons and glia, vascular endothelium, hematopoietic cells, cardiomyocytes, and glucose-responsive insulin-producing cells from mouse PSCs. EBs generated from human embryonic germ cell cultures have also been found to contain a wide variety of cell types, including neural cells, vascular endothelium, muscle cells, and endodermal derivatives. Here, we report the isolation and culture of cells from human EBs as well as a characterization of their gene expression during growth in several different culture environments. These heterogeneous cell cultures are capable of robust and long-term [>70 population doublings (PD)] proliferation in culture, have normal karyotypes, and can be cryopreserved, clonally isolated, and stably transfected. Cell cultures and clonal lines retain a broad pattern of gene expression including simultaneous expression of markers normally associated with cells of neural, vascular/hematopoietic, muscle, and endoderm lineages. The growth and expression characteristics of these EB-derived cells suggest that they are relatively uncommitted precursor or progenitor cells. EB-derived cells may be suited to studies of human cell differentiation and may play a role in future transplantation therapies.  相似文献   

4.
5.
Large quantities of highly enriched populations of mast cells can be generated from mouse embryonic stem (ES) cells using an in vitro differentiation system. These embryonic stem cell-derived mast cells (ESMCs) exhibit many similarities to mouse bone marrow-derived cultured mast cells (BMCMCs), including the abilities to survive and to orchestrate immunologically specific immunoglobulin E (IgE)-dependent reactions in vivo after transplantation into genetically mast cell-deficient KitW/KitW-v mice. Coupled with the current spectrum of techniques for genetically manipulating ES cells, ESMCs represent a unique model system to analyze the effects of specific alterations in gene structure, expression, or function, including embryonic lethal mutations, on mast cell development, phenotype, and function in vitro and in vivo.  相似文献   

6.
Recent success with immunosuppression following islet cell transplantation offers hope that a cell transplantation treatment for type 1 (juvenile) diabetes may be possible if sufficient quantities of safe and effective cells can be produced. For the treatment of type 1 diabetes, the two therapeutically essential functions are the ability to monitor blood glucose levels and the production of corresponding and sufficient levels of mature insulin to maintain glycemic control. Stem cells can replicate themselves and produce cells that take on more specialized functions. If a source of stem cells capable of yielding glucose-responsive insulin-producing (GRIP) cells can be identified, then transplantation-based treatment for type 1 diabetes may become widely available. Currently, stem cells from embryonic and adult sources are being investigated for their ability to proliferate and differentiate into cells with GRIP function. Human embryonic pluripotent stem cells, commonly referred to as embryonic stem (ES) cells and embryonic germ (EG) cells, have received significant attention owing to their broad capacity to differentiate and ability to proliferate well in culture. Their application to diabetes research is of particular promise, as it has been demonstrated that mouse ES cells are capable of producing cells able to normalize glucose levels of diabetic mice, and human ES cells can differentiate into cells capable of insulin production. Cells with GRIP function have also been derived from stem cells residing in adult organisms, here referred to as endogenous stem cell sources. Independent of source, stem cells capable of producing cells with GRIP function may provide a widely available cell transplantation treatment for type 1 diabetes.  相似文献   

7.
Genomic material from chromosome band 13q14.3 distal to the retinoblastoma locus is recurrently lost in a variety of human neoplasms, indicating an as-yet-unidentified tumor-suppressor mechanism. No pathogenic mutations have been found in the minimally deleted region until now. However, in B cell chronic lymphocytic leukemia tumors with loss of one copy of the critical region, respective candidate tumor-suppressor genes are down-regulated by a factor >2, which would be expected by a normal gene-dosage effect. This finding points to an epigenetic pathomechanism. We find that the two copies of the critical region replicate asynchronously, suggesting differential chromatin packaging of the two copies of 13q14.3. Although we also detect monoallelic silencing of genes localized in the critical region, monoallelic expression originates from either the maternal or paternal copy, excluding an imprinting mechanism. DNA methylation analyses revealed one CpG island of the region to be methylated. DNA demethylation of this CpG island and global histone hyperacetylation induced biallelic expression, whereas replication timing was not affected. We propose that differential replication timing represents an early epigenetic mark that distinguishes the two copies of 13q14.3, resulting in differential chromatin packaging and monoallelic expression. Accordingly, deletion of the single active copy of 13q14.3 results in significant down-regulation of the candidate genes and loss of function, providing a model for the interaction of genetic lesions and epigenetic silencing at 13q14.3 in B cell chronic lymphocytic leukemia.  相似文献   

8.
Malignant transformation of normal hematopoietic progenitors is a multistep process that likely requires interaction between collaborating oncogenic signals at critical junctures. For instance, the MLL-AF9 fusion oncogene is thought to contribute to myeloid leukemogenesis by driving a hematopoietic stem cell-like "self-renewal" gene expression signature in committed myeloid progenitors. In addition, insulin-like growth factor (IGF) signaling has been implicated in self-renewal/pluripotency in hematopoietic and embryonic stem cell contexts and supports cell growth/survival by activation of downstream pathways, including phosphatidylinositol 3-kinase/Akt and Ras/Raf/extracellular signal-regulated kinase. We hypothesized that IGF signaling could be an important contributor in the process of cellular transformation and/or clonal propagation. Utilizing an MLL-AF9 mouse bone marrow transplantation model of acute myelogenous leukemia, we discovered that committed myeloid progenitor cells with genetically reduced levels of IGF1R were less susceptible to leukemogenic transformation due, at least in part, to a cell-autonomous defect in clonogenic activity. Rather unexpectedly, genetic deletion of IGF1R by inducible Cre recombinase had no effect on growth/survival of established leukemia cells. These findings suggest that IGF1R signaling contributes to transformation of normal myeloid progenitor cells, but is not required for propagation of the leukemic clone once it has become established. We also show that treatment of mouse MLL-AF9 acute myelogenous leukemia cells with BMS-536924, an IGF1R/insulin receptor-selective tyrosine kinase inhibitor, blocked cell growth, suggesting its efficacy in this model may be due to inhibition of insulin receptor and/or related tyrosine kinases, and raising the possibility that similar IGF1R inhibitors in clinical development may be acting through alternate/related pathways.  相似文献   

9.
Male germline stem cells--spermatogonial stem cells (SSCs)--self-renew and produce large numbers of differentiating germ cells that become spermatozoa throughout postnatal life and transmit genetic information to the next generation. SSCs are the only germline stem cells in adults, because all female germline stem cells cease proliferation before birth. In this article, we first summarize development of SSCs, and then the relation of SSCs to somatic stem cells in tissues and pluripotent stem cells in vitro, such as embryonic stem cells. Next, we describe a transplantation technique in which donor testis cells from a fertile male can be transplanted to the testes of an infertile male where they re-establish spermatogenesis and restore fertility. The transplantation technique has been used to study the biology of SSCs, which made possible the identification of external factors that support in vitro self-renewal and proliferation of mouse and rat SSCs. Since SSCs of all mammalian species examined, including human, can replicate in mouse seminiferous tubules following transplantation, the growth factors required for SSC self-renewal are probably conserved among mammalian species. Culture techniques should therefore soon be available for human SSCs. In the final section, we discuss current and potential approaches for using the transplantation technique and in vitro culture of SSCs in human medicine. Because assisted reproductive techniques to fertilize oocytes with round or elongated spermatids are available, clinical use of cultured human SSCs will be greatly facilitated by development of techniques for in vitro differentiation of SSCs to mature germ cells.  相似文献   

10.
Spermatogonial transplantation has demonstrated a unique opportunity for studying spermatogenesis and provided an assay for spermatogonial stem cells. However, it has remained unknown whether germ cells that matured in a xenogeneic environment are functionally normal. In this investigation, we demonstrate the successful production of xenogeneic offspring by using spermatogonial transplantation. Rat spermatogonial stem cells were collected from immature testis and transplanted into the seminiferous tubules of busulfan-treated nude mouse testis. Using rat spermatids or spermatozoa that developed in xenogeneic surrogate mice, rat offspring were born from fresh and cryopreserved donor cells after microinsemination with rat oocytes. These offspring were fertile and had a normal imprinting pattern. The xenogeneic offspring production by interspecies germ cell transplantation and in vitro microinsemination will become a powerful tool in animal transgenesis and species conservation.  相似文献   

11.
In most tissues IGF2 is expressed from the paternal allele while H19 is expressed from the maternal allele. We have previously shown that in some Wilms tumors the maternal IGF2 imprint is relaxed such that the gene is expressed biallelically. We have now investigated this subset of tumors further and found that biallelic expression of IGF2 was associated with undetectable or very low levels of H19 expression. The relaxation of IGF2 imprinting in Wilms tumors also involved a concomitant reversal in the patterns of DNA methylation of the maternally inherited IGF2 and H19 alleles. Furthermore, the only specific methylation changes that occurred in tumors with relaxation of IGF2 imprinting were solely restricted to the maternal IGF2 and H19 alleles. These data suggest that there has been an acquisition of a paternal epigenotype in these tumors as the result of a pathologic disruption in the normal imprinting of the IGF2 and H19 genes.  相似文献   

12.
Loss of imprinting is the silencing of active imprinted genes or the activation of silent imprinted genes, and it is one of the most common epigenetic changes associated with the development of a wide variety of tumors. Here, we have analyzed the effects that global imprinted gene expression has on cell proliferation and transformation. Primary mouse embryonic fibroblasts (MEFs), whose entire genome is either exclusively paternal (androgenetic) or maternal (parthenogenetic), exhibit dramatically contrasting patterns of growth. In comparison with biparental MEFs, andro-genetic proliferation is characterized by a shorter cell cycle, increased saturation density, spontaneous transformation, and formation of tumors at low passage number. Parthenogenetic MEFs reach a lower saturation density, senesce, and die. The maternally expressed imprinted genes p57kip2 and M6P/Igf2r retard proliferation and reduce the long-term growth of MEFs. In contrast, the paternally expressed growth factor Igf2 is essential for the long-term proliferation of all genotypes. Increased Igf2 expression in primary MEFs not only stimulates proliferation, but also results in their rapid conversion to malignancy with tumor formation of short latency. Our results reveal that paternally expressed imprinted genes, in the absence of maternal imprinted genes, predispose fibroblasts to rapid transformation. A potent factor in their transformation is IGF2, which on increased expression results in the rapid conversion of primary cells to malignancy. These results reveal a route by which malignant choriocarcinoma may arise from molar pregnancies. They also suggest that the derivation of stem cells from parthenogenetic embryos, for the purposes of therapeutic cloning, may be ineffective.  相似文献   

13.
Nuclear cloning of embryonal carcinoma cells   总被引:1,自引:0,他引:1       下载免费PDF全文
Embryonal carcinoma (EC) cells have served as a model to study the relationship between cancer and cellular differentiation given their potential to produce tumors and, to varying degrees, participate in embryonic development. Here, nuclear transplantation was used to assess the extent to which the tumorigenic and developmental potential of EC cells is governed by epigenetic as opposed to genetic alterations. Nuclei from three independent mouse EC cell lines (F9, P19, and METT-1) with differing developmental and tumorigenic potentials all were able to direct early embryo development, producing morphologically normal blastocysts that gave rise to nuclear transfer (NT)-derived embryonic stem (ES) cell lines at a high efficiency. However, when tested for tumor or chimera formation, the resulting NT ES cells displayed an identical potential as their respective donor EC cells, in stark contrast to previously reported NT ES cells derived from transfer of untransformed cells. Consistent with this finding, comparative genomic hybridization identified previously undescribed genetic lesions in the EC cell lines. Therefore, nonreprogrammable genetic modifications within EC nuclei define the developmental and tumorigenic potential of resulting NT ES cells. Our findings support the notion that cancer results from the deregulation of stem cells and further suggest that the genetics of ECs will reveal genes involved in stem cell self-renewal and pluripotency.  相似文献   

14.
Endothelial cells derived from human embryonic stem cells   总被引:68,自引:0,他引:68       下载免费PDF全文
Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.  相似文献   

15.
16.
Male germ-line stem cells are the only cell type in postnatal mammals that have the capability to self-renew and to contribute genes to the next generation. Genetic modification of these cells would provide an opportunity to study the biology of their complex self-renewal and differentiation processes, as well as enable the generation of transgenic animals in a wide range of species. Although retroviral vectors have been used as an efficient method to introduce genes into a variety of cell types, postnatal male germ-line stem cells have seemed refractory to direct infection by these viruses. In addition, expression of genes transduced into several types of stem cells, such as embryonic or hematopoietic, is often attenuated or silenced. We demonstrate here that in vitro retroviral-mediated gene delivery into spermatogonial stem cells of both adult and immature mice results in stable integration and expression of a transgene in 2-20% of stem cells. After transplantation of the transduced stem cells into the testes of infertile recipient mice, approximately 4.5% of progeny from these males are transgenic, and the transgene is transmitted to and expressed in subsequent generations. Therefore, there is no intrinsic barrier to retroviral transduction in this stem cell, and transgene expression is not extinguished after transmission to progeny.  相似文献   

17.
Primitive embryonic stem cells are an ideal starting cell population for studies of gene expression and lineage segregation during development. Despite their potential, it has been difficult to determine culture conditions that cause single-lineage differentiation of these pluripotent cells. Both genetic and epigenetic approaches have been taken to promote neuronal differentiation of embryonic stem cells, including aggregation, exposure to the nonspecific teratogen/morphogen retinoic acid, low-density culture, exposure to growth/differentiation factors, and forced differentiation following expression of lineage-restricted "developmental control" genes. In the current investigation, a hybrid approach involving genetic techniques of "lineage selection" or "forced differentiation" has been employed to develop primitive neural progenitor cell lines. These lines form an important starting point to examine the cascades of gene expression (and inhibition) during neuronal and glial lineage segregation, to study growth factor effects on neural differentiation, and ultimately to provide a source of cells for transplantation to a damaged nervous system.  相似文献   

18.
Establishment and segregation of distinct chromatin domains are essential for proper genome function. The insulator protein CCCTC-binding factor (CTCF) is involved in creating boundaries that segregate chromatin and functional domains and in organizing higher-order chromatin structures by promoting chromosomal loops across the vertebrate genome. Here, we investigate the insulation properties of CTCF at the human and mouse homeobox gene A (HOXA) loci. Although cohesin loading at the CTCF binding site is required for looping, we found that cohesin is dispensable for chromatin barrier activity at that site. Using mouse embryonic stem cells in both a pluripotent and differentiated neuronal progenitor state, we determined that embryonic stem cell pluripotency factor OCT4 antagonizes cohesin loading at the CTCF binding site. Loss of OCT4 in the committed and differentiated neuronal progenitor cells results in loading of cohesin and chromosome looping, which contributes to heterochromatin partitioning and selective gene activation across the HOXA locus. Our analysis reveals that chromatin barrier activity of CTCF is evolutionarily conserved and is responsible for the coordinated establishment of chromatin structure, higher-order architecture, and developmental expression of the HOXA locus.  相似文献   

19.
Pinto do O P  Richter K  Carlsson L 《Blood》2002,99(11):3939-3946
Hematopoietic stem cells (HSCs) are unique in their capacity to maintain blood formation following transplantation into immunocompromised hosts. Expansion of HSCs in vitro is therefore important for many clinical applications but has met with limited success because the mechanisms regulating the self-renewal process are poorly defined. We have previously shown that expression of the LIM-homeobox gene Lhx2 in hematopoietic progenitor cells derived from embryonic stem cells differentiated in vitro generates immortalized multipotent hematopoietic progenitor cell lines. However, HSCs of early embryonic origin, including those derived from differentiated embryonic stem cells, are inefficient in engrafting adult recipients upon transplantation. To address whether Lhx2 can immortalize hematopoietic progenitor/stem cells that can engraft adult recipients, we expressed Lhx2 in hematopoietic progenitor/stem cells derived from adult bone marrow. This approach allowed for the generation of immortalized growth factor-dependent hematopoietic progenitor/stem cell lines that can generate erythroid, myeloid, and lymphoid cells upon transplantation into lethally irradiated mice. When transplanted into stem cell-deficient mice, these cell lines can generate a significant proportion of circulating erythrocytes in primary, secondary, and tertiary recipients for at least 18 months. Thus, Lhx2 immortalizes multipotent hematopoietic progenitor/stem cells that can generate functional progeny following transplantation into lethally irradiated hosts and can long-term repopulate stem cell-deficient hosts.  相似文献   

20.
Liver transplantation is the only definitive treatment for end-stage cirrhosis and fulminant liver failure, but the lack of available donor livers is a major obstacle to liver transplantation. Recently, induced pluripotent stem cells (iPSCs) derived from the reprogramming of somatic fibroblasts, have been shown to resemble embryonic stem (ES) cells in that they have pluripotent properties and the potential to differentiate into all cell lineages in vitro, including hepatocytes. Thus, iPSCs could serve as a favorable cell source for a wide range of applications, including drug toxicity testing, cell transplantation, and patient-specific disease modeling. Here, we describe an efficient and rapid three-step protocol that is able to rapidly generate hepatocyte-like cells from human iPSCs. This occurs because the endodermal induction step allows for more efficient and definitive endoderm cell formation. We show that hepatocyte growth factor (HGF), which synergizes with activin A and Wnt3a, elevates the expression of the endodermal marker Foxa2 (forkhead box a2) by 39.3% compared to when HGF is absent (14.2%) during the endodermal induction step. In addition, iPSC-derived hepatocytes had a similar gene expression profile to mature hepatocytes. Importantly, the hepatocyte-like cells exhibited cytochrome P450 3A4 (CYP3A4) enzyme activity, secreted urea, uptake of low-density lipoprotein (LDL), and possessed the ability to store glycogen. Moreover, the hepatocyte-like cells rescued lethal fulminant hepatic failure in a nonobese diabetic severe combined immunodeficient mouse model. Conclusion: We have established a rapid and efficient differentiation protocol that is able to generate functional hepatocyte-like cells from human iPSCs. This may offer an alternative option for treatment of liver diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号