首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the presence of oxygen, ascorbic acid (AA) is unstable in aqueous media and oxidises to dehydroascorbate (DHA), generating reactive intermediates such as ascorbate free radical and H2O2. It is proposed that the cytotoxicity of AA is due to the extracellular production of H2O2 and that this is mediated by transition metal ions present in cell media. Here we investigate the role of extracellular H2O2 and metal ions in the genotoxicity of AA in cell culture models. Our preliminary results confirmed that physiological concentrations of AA were not toxic to confluent human fibroblasts, although they inhibited the proliferation of cells at low density. No inhibition was observed with ascorbic acid 2-phosphate (AA2P), a vitamin C derivative that remains stable in culture media. Furthermore, high concentrations of AA induced DNA strand breakage in a dose-dependent manner, whereas DHA and AA2P were not genotoxic. The genotoxic effect of AA was transient, required the formation of extracellular H2O2 and the presence of intracellular iron, but not of extracellular transition metal ions. These observations further clarify the pro-oxidant effect of AA solutions in cell culture models. The possibility that intravenous administration of high-dose AA may cause a similar genotoxic effect in vivo is discussed.  相似文献   

2.
It has been shown that ascorbate (AsA) and its stable derivative, ascorbic acid 2-O-alpha-glucoside (AA-2G), do not elicit neurite outgrowth in PC12 cells. However, these ascorbates are synergistically enhanced by both dibutyryl cyclic AMP (Bt(2)cAMP)- and nerve growth factor (NGF)-induced neurite outgrowth in this model. In the present study, the effects of a series of novel lipophilic ascorbate derivatives, 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), on neurite outgrowth induced by Bt(2)cAMP and NGF were examined in PC12 cells. We found that all the tested acylated ascorbate derivatives enhanced neurite formation induced by both agents in a dose-dependent manner. Of the 6-Acyl-AA-2G derivatives, 6-octanoyl ascorbic acid 2-O-alpha-glucoside (6-Octa-AA-2G) enhanced the Bt(2)cAMP-induced phosphorylated MAPK p44 and p42 expression. A alpha-glucosidase inhibitor, castanospermine, completely abrogated the promotion of neurite outgrowth and MAPK expression by 6-Octa-AA-2G. Addition of 6-Octa-AA-2G (0.5 mM) to PC12 cells caused a rapid and significant increase in intracellular AsA content, which reached a maximum and was maintained from 12 to 24 h after the culture. These findings suggest that 6-Acyl-AA-2G is rapidly hydrolyzed to AsA within the cell and enhances neurite differentiation through the interaction with the inducer-activated MAPK pathway.  相似文献   

3.
A stable ascorbic acid derivative, 2-O-α-glucopyranosyl-l-ascorbic acid (AA-2G), was evaluated and compared with ascorbic acid for its protective effect against cellular damage and senescence induced by hydrogen peroxide (H(2)O(2)). Pretreatment with AA-2G for 72 h promoted the proliferation of normal human dermal fibroblasts (NHDF) and protected against cell damage induced by H(2)O(2). In contrast, ascorbic acid increased the proliferation and protected against cell damage, only when culture medium containing ascorbic acid was replaced every 24 h during the pretreatment period. These results suggest that the effect of AA-2G is longer-lasting compared to that of ascorbic acid. Senescence associated-β-galactosidase (SA-β-gal) activity, a classical biomarker of cellular senescence, was increased in H(2)O(2)-exposed NHDF cells, but pretreatment or posttreatment with ascorbic acid or AA-2G significantly inhibited the increase in SA-β-gal levels. AA-2G was more potent than ascorbic acid in down-regulating SA-β-gal activity. Expression of SIRT1, which has attracted attention as an anti-aging factor in recent years, was significantly decreased in H(2)O(2)-exposed NHDF cells compared to untreated cells. However, pretreatment NHDF cells with AA-2G before H(2)O(2) exposure significantly inhibited this decrease in SIRT1 expression, whereas ascorbic acid had no effect. After H(2)O(2) exposure, the expression levels of p53 and p21 were increased in NHDF cells and pretreatment with AA-2G inhibited this increase. Together, these results suggest that AA-2G protects dermal fibroblasts from oxidative stress and cellular senescence. These characteristics indicate that AA-2G could become a promising material for its anti-aging properties.  相似文献   

4.
A series of novel monoacylated vitamin C derivatives were chemically synthesized with a stable ascorbate derivative, 2-O-alpha-D-glucopyranosyl-L-ascorbic acid (AA-2G), and acid anhydrides in pyridine. Their solubility in organic phase, thermal stability, radical scavenging activity, and in vitro skin permeability was evaluated. These monoacylated derivatives were identified as 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids (6-Acyl-AA-2G) by UV spectra, elemental analyses, and nuclear magnetic resonance spectroscopy. The reactions afforded 6-Acyl-AA-2G in high yields (30-60%). 6-Acyl-AA-2G exhibited satisfactory stability in neutral solution comparable to that of a typical stable derivative, AA-2G, and also showed the radical scavenging activity. The lipid solubility of 6-Acyl-AA-2G was increased with increasing length of their acyl group. Increased skin permeability was superior to those of AA-2G and ascorbic acid (AsA). 6-Acyl-AA-2G that is susceptible to enzymatic hydrolysis by tissue esterase and/or alpha-glucosidase produces AA-2G and AsA, which is in the skin tissues. Thus, these findings indicate that the novel vitamin C derivatives presented here, 6-Acyl-AA-2G, may be effective antioxidants in skin care and medicinal use.  相似文献   

5.
In vivo formation of ascorbic acid 2-O-alpha-glucoside (AA-2G) in guinea pigs and rats given ascorbic acid (AA) orally in combination with maltose was examined. A metabolite of AA which has the same HPLC retention characteristics as authentic AA-2G was detected in the blood, urine and liver of guinea pigs 1-2 hr after their administration. The metabolite was isolated from the urine by chromatographic procedures and identified as AA-2G by its UV spectrum, non-reducibility, susceptibility to alpha-glucosidase hydrolysis, HPLC profile and elementary analysis. The same glucoside was also synthesized by rats and found in the urine, although it could not be determined qualitatively in the blood. AA-2G-forming activities of tissue homogenates from both animals were apparently correlated with their alpha-glucosidase activities and, moreover, both activities were completely inhibited by a specific neutral alpha-glucosidase inhibitor. Thus, we conclude that AA-2G is a possible metabolite produced by enzymatic alpha-glucosidation after a combined administration of AA and maltose to guinea pigs and rats.  相似文献   

6.
The role of ascorbic acid in transferrin-independent ferric iron reduction and uptake was evaluated in cultured U-937 monocytic cells. Uptake of 55Fe by U-937 cells was doubled by 100 microM extracellular ascorbate, and by pre-incubation of cells with 100 microM dehydroascorbic acid, the two-electron-oxidized form of ascorbate. Reduction of extracellular ferric citrate also was enhanced by loading the cells with dehydroascorbic acid. Dehydroascorbic acid was taken up rapidly by the cells and reduced to ascorbate, such that the latter reached intracellular concentrations as high as 6 mM. However, some ascorbate did escape the cells and could be detected at concentrations of up to 1 microM in the incubation medium. Further, addition of ascorbate oxidase almost reversed the effects of dehydroascorbic acid on both 55Fe uptake and ferric citrate reduction. Thus, it is likely that extracellular ascorbate reduced ferric to ferrous iron, which was then taken up by the cells. This hypothesis also was supported by the finding that during loading with ferric citrate, only extracellular ascorbate increased the pool of intracellular ferrous iron that could be chelated with cell-penetrant ferrous iron chelators. In contrast to its inhibition of ascorbate-dependent ferric iron reduction, ascorbate oxidase was without effect on ascorbate-dependent reduction of extracellular ferricyanide. This indicates that the cells use different mechanisms for reduction of ferric iron and ferricyanide. Therefore, extracellular ascorbate derived from cells can enhance transferrin-independent iron uptake by reducing ferric to ferrous iron, but intracellular ascorbate neither contributes to this reduction nor modifies the redox status of intracellular free iron.  相似文献   

7.
The aim of this study was to characterize the antioxidant activity of three ascorbic acid (AA) derivatives O-substituted at the C-2 position of AA: ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S). The radical-scavenging activities of these AA derivatives and some common low molecular-weight antioxidants such as uric acid or glutathione against 1,1-diphenyl-picrylhydrazyl (DPPH) radical, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+), or galvinoxyl radical were kinetically and stoichiometrically evaluated under pH-controlled conditions. Those AA derivatives slowly and continuously reacted with DPPH radical and ABTS+, but not with galvinoxyl radical. They effectively reacted with DPPH radical under acidic conditions and with ABTS+ under neutral conditions. In contrast, AA immediately quenched all species of radicals tested at all pH values investigated. The reactivity of Trolox, a water-soluble vitamin E analogue, was comparable to that of AA in terms of kinetics and stoichiometrics. Uric acid and glutathione exhibited long-lasting radical-scavenging activity against these radicals under certain pH conditions. The radical-scavenging profiles of AA derivatives were closer to those of uric acid and glutathione rather than to that of AA. The number of radicals scavenged by one molecule of AA derivatives, uric acid, or glutathione was equal to or greater than that by AA or Trolox under the appropriate conditions. These data suggest the potential usage of AA derivatives as radical scavengers.  相似文献   

8.
The stability of Potassium Penicillin G, USP, when mixed with Ascorbic Acid Injection, USP, in 5% Dextrose Injection, USP, was studied. The change in concentration over an eight-hour period of potassium penicillin G in the admixture was determined by the hydroxylamine colorimetric assay method and the microbiological assay method. The stability of penicillin was not adversely affected by the presence of sodium ascorbate. Reports of incompatibilities between penicillin and ascorbic acid are a function of pH rather than a characteristic of the ascorbate ion. Articles reporting studies involving ascorbic acid should specify whether the work refers to the use of ascorbic acid or Ascorbic Acid Injection, USP. Confusion in the literature could be reduced by changing the official title from Ascorbic Acid Injection to Sodium Ascorbate Injection.  相似文献   

9.
The effects of diquat-induced redox cycling on the levels of cellular ascorbic acid and alpha-tocopherol were investigated in isolated rat hepatocytes. In untreated hepatocytes, the metabolism of 1 or 2 mM diquat resulted in the depletion of cellular ascorbic acid and glutathione, but not of alpha-tocopherol, in association with the induction of cell death during the experimental period. In 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) pretreated cells, 1 mM diquat induced cell death accompanied by glutathione was rapid (to 9% of controls by 15 min) and cell ascorbate was completely consumed by 2 hr of incubation. In contrast, cellular alpha-tocopherol levels were stable for the first 30 min, but were depleted in association with the onset of lipid peroxidation. Supplementation of 0.1 or 1.0 mM ascorbic acid in the incubation medium delayed the onset of diquat-induced alpha-tocopherol loss, lipid peroxidation and cytotoxicity. When the concentration of exogenous cellular ascorbic acid was consumed to below that of endogenous ascorbic acid, alpha-tocopherol loss and lipid peroxidation were initiated. The results indicate that untreated hepatocytes have an effective multicomponent antioxidant system against diquat-induced oxidative stress. However, when glutathione is depleted from hepatocytes by treatment with BCNU and diquat, ascorbic acid plays a vital role in maintaining cellular alpha-tocopherol levels and survival of the cell.  相似文献   

10.
目的验证维生素C对人类免疫缺陷病毒(HIV)的灭活作用,为生物制品提供一种安全可行的HIV灭活的方法。方法通过测半数组织培养感染剂量(TCID50),检测不同浓度维生素C在不同温度和作用时间下对HIV的灭活作用,并对有效剂量组进行MT4细胞毒性试验。结果500μg/ml维生素C在无血清状态下有灭活HIV作用,而此剂量对MT4细胞有不可逆转的毒性作用。结论维生素C不适宜用于血及血制品的HIV灭活。  相似文献   

11.
Requirement for GSH in recycling of ascorbic acid in endothelial cells.   总被引:4,自引:0,他引:4  
Ascorbic acid may be involved in the defense against oxidant stress in endothelial cells. Such a role requires that the cells effectively recycle the vitamin from its oxidized forms. In this work, we studied the ability of cultured bovine aortic endothelial cells (BAECs) to take up and reduce dehydroascorbic acid (DHA) to ascorbate, as well as the dependence of ascorbate recycling on intracellular GSH. BAECs took up and reduced DHA to ascorbate much more readily than they took up ascorbate. Although BAECs in culture did not contain ascorbate, ascorbate accumulated to concentrations of 2-3 mM in BAECs following incubation with 400 microM DHA. Extracellular ferricyanide oxidized intracellular ascorbate, which was recycled by the cells. Reduction of DHA, either when added to the cells or when generated in response to ferricyanide, caused significant decreases in intracellular GSH concentrations. Depletion of intracellular GSH with 1-chloro-2,4-dinitrobenzene, diethylmaleate, and diamide almost abolished the ability of the cells to reduce DHA to ascorbate. DHA reduction by thioredoxin reductase was evident in dialyzed cell extracts, but occurred at rates far lower than direct GSH reduction of DHA. These results suggest that maximal rates of DHA reduction, and thus recycling of ascorbate from DHA, are dependent upon GSH in these cells.  相似文献   

12.
The 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS (radical +)) decolorization assay was applied to evaluate the stoichiometric radical scavenging activity of ascorbic acid (AA) and two AA derivatives, 2-O-alpha-D-glucopyranosyl-L-ascorbic acid (AA-2G) and 2-O-alpha-D-glucopyranosyl-6-O-octanoyl-L-ascorbic acid (6-Octa-AA-2G). AA rapidly reacted with ABTS (radical +), and the reaction was completed within 10 min. In contrast, AA-2G and 6-Octa-AA-2G continuously reacted with ABTS (radical +), and the reaction was not completed after 2 h. The radical scavenging activity of AA-2G and 6-Octa-AA-2G in aqueous solutions at pH 4.0 and above was higher than that at pH 3.0, whereas AA showed no difference in the pH range 3 to 6. The amounts of ABTS (radical +) scavenged by one molecule of AA, AA-2G and 6-Octa-AA-2G after 2 h of reaction at pH 6.0 were approximately 2.0, 3.4 or 3.9 molecules, respectively. This study demonstrates that the quantity of ABTS (radical +) quenched by AA-2G and 6-Octa-AA-2G is superior to that of AA in a long-term reaction.  相似文献   

13.
The view that ascorbic acid indirectly benefits osteoclastogenesis through expression of receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) by osteoblasts is prevailing. In this study, we have examined the direct effect of ascorbic acid on osteoclastogenesis in cultured mouse osteoclasts differentiated from bone marrow precursors. The absence of alkaline phosphatase and osteoblastic marker genes validated the usefulness of isolation procedures. Sustained exposure to ascorbic acid, but not to dehydroascorbic acid, significantly reduced the number of multinucleated cells positive to tartrate-resistant acid phosphatase (TRAP) staining. In cultured osteoclasts, mRNA expression was seen for glucose transporter-1 involved in membrane transport of dehydroascorbic acid, but not for sodium-dependent vitamin C transporters-1 and -2 that are both responsible for the transport of ascorbic acid. The inhibition by ascorbic acid was completely prevented by catalase, while ascorbic acid or hydrogen peroxide drastically increased the number of cells stained with propidium iodide and the generation of reactive oxygen species, in addition to inducing mitochondrial membrane depolarization in cultured osteoclasts. In pre-osteoclastic cell line RAW264.7 cells, ascorbic acid similarly inhibited the formation of TRAP-positive multinucleated cells, with a significant decrease in RANKL-induced NF-kappaB transactivation. Moreover, co-culture with osteoblastic MC3T3-E1 cells significantly prevented the ascorbic acid-induced decrease in the number of TRAP-positive multinucleated cells in RAW264.7 cells. These results suggest that ascorbic acid may play a dual repulsive role in osteoclastogenesis toward bone remodeling through the direct cytotoxicity mediated by oxidative stress to osteoclasts, in addition to the indirect trophism mediated by RANKL from osteoblasts.  相似文献   

14.
The present study aims at evaluating the effect of the combination of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism. The rats were divided into eight groups: Control, isoproterenol, ferulic acid alone, ascorbic acid alone, ferulic acid+ascorbic acid, ferulic acid+isoproterenol, ascorbic acid+isoproterenol and ferulic acid+ascorbic acid+isoproterenol. Ferulic acid (20 mg/kg b.w.t.) and ascorbic acid (80 mg/kg b.w.t.) both alone and in combination was administered orally for 6 days and on the fifth and the sixth day, isoproterenol (150 mg/kg b.w.t.) was injected intraperitoneally to induce myocardial injury to rats. Induction of rats with isoproterenol resulted in a significant increase in the levels of triglycerides, total cholesterol, free fatty acids, free and ester cholesterol in both serum and cardiac tissue. A rise in the levels of phospholipids, lipid peroxides, low density lipoprotein and very low density lipoprotein-cholesterol was also observed in the serum of isoproterenol-intoxicated rats. Further, a decrease in the level of high density lipoprotein in serum and in the phospholipid levels, in the heart of isoproterenol-intoxicated rats was observed, which was paralleled by abnormal activities of lipid metabolizing enzymes: total lipase, cholesterol ester synthase, lipoprotein lipase and lecithin: cholesterol acyl transferase. Pre-cotreatment with the combination of ferulic acid and ascorbic acid significantly attenuated these alterations and restored the levels to near normal when compared to individual treatment groups. Histopathological observations were also in correlation with the biochemical parameters. These findings indicate the synergistic protective effect of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism.  相似文献   

15.
Clarithromycin (CAM) was co-ground with l-ascorbic acid 2-glucoside (AA-2G), a newly developed food additive, to improve the solubility characteristics. The complete solubilizing effect of AA-2G was observed for the ground mixture with 1:1 molar ratio. When ground mixtures of CAM and AA-2G (2:1) were dispersed into water, not only the solubilization of CAM was observed but also nanoparticle formation with a mean particle diameter of 280 nm. The CAM particles obtained in this manner were stable in suspension for at least 7 days. Zeta potential analysis showed that positive charges on the particle surface may be contributing to the stability of the suspension. 1H NMR spectrum of CAM dissolved in a phosphate buffer (pH 5.5) showed a signal derived from the N,N-dimethylamino group at 2.73 ppm, while that of an equimolar ground mixture of CAM with AA-2G in D2O (pH 5.5) showed clearly two signals at 2.65 and 2.77 ppm derived from the splitting of the two methyl groups. The 13C NMR spectrum of the equimolar ground mixture dissolved in D2O exhibited two signals derived from N,N-dimethyl carbons of desosamine group at 37.2 and 42.3 ppm, whereas unprocessed CAM showed no resonance signal arising from those carbons. Moreover, the carbon resonance at 163 and 173 ppm arising from the ketone group in the CAM lactone ring shifted downfield to 177 and 180 ppm after the co-grinding with AA-2G. The formation of nanoparticles was only observed when CAM was co-ground with AA-2G in the molar ratio of 2:1, which might be attributable to a grinding-induced interaction in the solid-state via the ketone group in lactone ring of CAM.  相似文献   

16.
Sodium selenite (Na2SeO3) is the selenium form used in the composition of dietary supplements, and diphenyl diselenide (PhSe)2 is an important intermediate in organic synthesis, which increases the risk of human exposure to this chemical in the workplace. These compounds have been reported to inhibit the cerebral and hepatic aminolevulinic acid dehydratase (ALA-D) in vitro, and now we show that ascorbic acid can reverse some alterations caused by in vivo selenium exposure, but not ALA-D inhibition. The effect of Na2SeO3 or (PhSe)2 and ascorbic acid on selenium distribution, total non-protein thiol, ascorbic acid content (liver and brain) and haemoglobin was also examined. Mice were exposed to 250 micromol/kg (PhSe)2, or 18.75 micromol/kg Na2SeO3 subcutaneously, and to ascorbic acid, twice a day, 1 mmol/kg intraperitonially, for 10 days. Hepatic ALA-D of mice treated with (PhSe)2 was inhibited about 58% and similar results were observed in the animals that received ascorbic acid supplementation (P<0.01, for (PhSe)2-treated and (PhSe)2+ascorbic acid-treated mice). The haemoglobin content decreased after treatment with (PhSe)2 (P<0.01). However, the haemoglobin content of the (PhSe)2+ascorbic acid group was significantly higher than in the (PhSe)2-treated mice (P<0.05), and similar to control (P>0.10). Ascorbic acid treatment decreased significantly the hepatic and cerebral deposition of Se in (PhSe)2-exposed mice (P<0.01). Hepatic non-protein thiol content was not changed by treatment with (PhSe)2, ascorbic acid or (PhSe)2+ascorbic acid. Hepatic content of ascorbic acid was twice that in mice that received (PhSe)2, independent of ascorbic acid treatment (P<0.001). The results of this study suggest that vitamin C may have a protective role in organodiselenide intoxication.  相似文献   

17.
Noh AL  Yim M 《Die Pharmazie》2011,66(3):195-200
Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.  相似文献   

18.
Chen P  Yu J  Chalmers B  Drisko J  Yang J  Li B  Chen Q 《Anti-cancer drugs》2012,23(4):437-444
Recent studies have revealed the scientific basis for the use of intravenous (i.v.) vitamin C or ascorbic acid (ascorbate) in treating cancers, and raised the possibility of using i.v. ascorbate as a prooxidant anticancer therapy. Through the production of H2O2, pharmacologic ascorbate can induce some cancer cell death in vitro and inhibit a number of types of tumor growth in animal models. However, the mechanism of cell death triggered by ascorbate is not well understood. In this study, we investigated the cytotoxicity of pharmacological concentrations of ascorbate to human prostate cancer cells and the mechanisms involved. The results showed that ascorbate in the millimolar range induced cytotoxicity in five of the six tested prostate cancer cell lines. The IC50 values in the sensitive prostate cancer cells ranged from 1.9 to 3.5 mmol/l, concentrations clinically achievable with i.v. ascorbate use. All tested androgen-independent cells were sensitive to ascorbate treatment. The ascorbate-insensitive cell line LaPC4 is hormonally dependent. Whereas the reasons for sensitivity/resistance to ascorbate treatment need to be investigated further, cell death in sensitive cells was dependent on H2O2. Ascorbate treatment depleted ATP and induced autophagy in sensitive prostate cancer cells, resulting in cell death. Taken together with previous studies, high-dose ascorbate has the potential to be a novel treatment option to hormone-refractory prostate cancer.  相似文献   

19.
Intestinal iron absorption is thought to proceed with iron mainly in the ferrous form, yet the novel iron complex, ferric maltol is an effective oral preparation. Although possessing a high oil: water partition coefficient, ferric maltol does not diffuse across the intestine but donates its iron to the endogenous uptake system. Reduction of the ferric iron in the gut lumen appears to precede iron uptake both from ferric maltol and from ferric nitrilotriacetic acid (NTA) which is a non-penetrating iron ligand. Uptake of radiolabelled iron (59Fe) into isolated fragments of rat small intestine was inhibited by the ferrous chelator, bathophenanthroline sulphonate (BPS) and enhanced at low concentrations by the reducing agent ascorbic acid. Spectrophotometric evidence was obtained that ferrous ions are generated from these ferric complexes in the presence of ascorbic acid and other reducing agents. The rate of ferrous ion formation was independent of ferric maltol concentration at low ascorbic acid levels and decreased with increasing ferric maltol concentration at higher levels of ascorbate. Maltol has a high affinity for ferric ions and may delay reduction at higher concentrations. By contrast, a higher rate of ferrous ion generation was seen with ferric NTA and this increased with iron ligand concentration. Washings from the intestinal lumen also brought about ferrous ion formation from these ferric ligands. Gel filtration revealed these reducing factors to be of low molecular weight. The washings, however, interfered with 59Fe uptake into the isolated fragments, but when reducing fractions only from the filtered washings were used, enhanced iron uptake was seen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The human myeloid leukemia cell line HL-60 transports the oxidized form of ascorbic acid, dehydroascorbic acid (DHA), and accumulates reduced ascorbic acid. We studied the effect of ascorbic acid loading on apoptosis induced by serum- and glucose-free culture and by oxidative stress induced by H2O2. Uptake accumulation studies indicated that incubation of HL-60 cells with DHA resulted in the accumulation of intracellular ascorbic acid which decreased with time when cells were incubated in DHA-free medium. Exposure of HL-60 cells to increasing concentrations of H2O2 resulted in dose-dependent intracellular accumulation of peroxides, as determined by the use of the oxidation-sensitive fluorescent probe 2',7'-dichlorofluorescin-diacetate (DCFH-DA), which was accompanied by a decrease in intracellular ascorbic acid and an increase in apoptosis. A dramatic decrease in intracellular ascorbic acid was noted when preloaded HL-60 cells were exposed to 150 microM H2O2 (the concentration dropped from 5.2 +/- 0.6 mM to 3.6 +/- 0.1 mM in cells preincubated with 150 microM DHA). A dose-dependent protective effect of DHA was observed. Ascorbic acid loading also provided strong protection from apoptosis associated with serum- and glucose-free culture. Flow cytometry studies showed that exposure of HL-60 cells to 150 microM H2O2 resulted in decreased Bcl-2 expression that was associated with enhanced apoptosis (up to 33.6 +/- 2.6%). No significant variation of Bcl-2 expression was measured following exposure of HL-60 cells, loaded with ascorbic acid, to 150 microM H2O2 and only a slight increase (up to 10.1 +/- 3.1%) in apoptosis. These findings indicate that ascorbic acid can inhibit apoptosis induced by oxidative stress in HL-60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号