首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary ATPase activity was investigated in sciatic and optic nerves of female mutant diabetic C57Bl/Ks (db/db) mice and age-matched control mice (db/m and m/m). Nerves from animals aged 50, 70, 125, 180 and 280 days were assayed in vitro for ATPase activity in the presence or absence of ouabain: the ouabain-sensitive fraction contained Na+,K+-ATPase. Enzymatic activity was compared within and between age-matched groups. No significant difference in Na+,K+-ATPase activity was detected between the diabetic and control mice, whether expressed as mol Pi/h–1 formed per gramme wet weight or per nerve (protein content). The activity decreased by about 25% in both the sciatic and optic nerves of the oldest animals. These results were strikingly similar in all groups, regardless of the type of nerve examined, confirming that the development of neuropathy in this animal model is unrelated to the postulated derangement of Na+,K+-ATPase activity. Among possible explanations, a lack of polyol pathway activation was investigated by staining the sciatic nerves of animals from all groups with the peroxidase-antiperoxidase procedure using a polyclonal antiserum raised against the enzyme aldose reductase. Histological sections of all nerves were consistently negative, suggesting that these animals actually lack the enzyme involved in activating the self-perpetuating metabolic cycle leading to deranged nerve function. The db/db mouse appears to present particular biochemical changes which merit attention with a view to clarifying the pathogenesis of diabetic neuropathy.  相似文献   

2.
BACKGROUND AND AIMS: Autoimmune gastritis is one of the most common autoimmune diseases and is caused by a CD4(+) T-cell response to the gastric H(+)/K(+) ATPase encoded by Atp4a and Atp4b (H(+)/K(+) ATPase). Here, we have elucidated events that result in immunological tolerance to the H(+)/K(+) ATPase and thus the prevention of autoimmune gastritis. METHODS: T cells from H(+)/K(+) ATPase-deficient mice and H(+)/K(+) ATPase-specific T-cell receptor transgenic mice were purified and transferred to wild-type (WT) or H(+)/K(+) ATPase-deficient recipients to assess the impact of exposure to antigen on pathogenicity. RESULTS: The CD4(+) T-cell population from H(+)/K(+) ATPase-deficient mice was highly effective at inducing gastritis when compared with T cells from WT mice and, as a population, was comparatively resistant to the suppressive activity of regulatory T cells. Exposing T cells from H(+)/K(+) ATPase-deficient mice to H(+)/K(+) ATPase in WT mice decreased their ability to induce gastritis and resulted in a population that could be more easily suppressed by T(reg) cells. Transfer of clonotypic antigen-inexperienced H(+)/K(+) ATPase-specific T cells into WT mice resulted in extra-thymic clonal deletion. CONCLUSIONS: Prevention of autoimmune gastritis requires the extra-thymic purging of highly autoaggressive H(+)/K(+) ATPase-specific T cells to produce a T-cell repertoire that is more susceptible to the suppressive activity of regulatory T cells. Taken together with recent published data describing the role of T-cell receptor signalling in the maintenance of regulatory T-cell populations, we propose that exposure of T cells to antigen in the periphery is able to both delete autoaggressive specificities and maintain regulatory T-cell activity, establishing a balance between pathogenicity and regulation.  相似文献   

3.
4.
BACKGROUND AND AIMS: Unlike the intestine of normal subjects, small-intestinal epithelia of cystic fibrosis patients and cystic fibrosis transmembrane conductance regulator protein-null (CFTR(-)) mice do not respond to stimulation of intracellular cyclic adenosine monophosphate with inhibition of electroneutral NaCl absorption. Because CFTR-mediated anion secretion has been associated with changes in crypt cell volume, we hypothesized that CFTR-mediated cell volume reduction in villus epithelium is required for intracellular cyclic adenosine monophosphate inhibition of Na(+)/H(+) exchanger (primarily Na(+)/H(+) exchanger 3) activity in the proximal small intestine. METHODS: Transepithelial (22)Na flux across the jejuna of CFTR(+), CFTR(-), the basolateral membrane Na(+)/K(+)/2Cl(-) co-transporter protein NKCC1(+), and NKCC1(-) mice were correlated with changes in epithelial cell volume of the midvillus region. RESULTS: Stimulation of intracellular cyclic adenosine monophosphate resulted in cessation of Na(+)/H(+) exchanger-mediated Na(+) absorption (J(ms)(NHE)) in CFTR(+) jejunum but had no effect on J(ms)(NHE) across CFTR(-) jejunum. Cell volume indices indicated an approximately 30% volume reduction of villus epithelial cells in CFTR(+) jejunum but no changes in CFTR(-) epithelium after intracellular cyclic adenosine monophosphate stimulation. In contrast, cell shrinkage induced by hypertonic medium inhibited J(ms)(NHE) in both CFTR(+) and CFTR(-) mice. Bumetanide treatment to inhibit Cl(-) secretion by blockade of the Na(+)/K(+)/2Cl(-) co-transporter, NKCC1, of stimulated CFTR(+) jejunum prevented maximal volume reduction of villus epithelium and recovered approximately 40% of J(ms)(NHE). Likewise, J(ms)(NHE) and cell volume were unaffected by intracellular cyclic adenosine monophosphate stimulation in NKCC1(-) jejuna. CONCLUSIONS: These findings show a previously unrecognized role of functional CFTR expressed in villus epithelium: regulation of Na(+)/H(+) exchanger 3-mediated Na(+) absorption by alteration of epithelial cell volume.  相似文献   

5.
BACKGROUND & AIMS: Changes in mitochondrial energy metabolism promoted by uncoupling proteins (UCPs) are often found in metabolic disorders. We have recently shown that hypertriglyceridemic (HTG) mice present higher mitochondrial resting respiration unrelated to UCPs. Here, we disclose the underlying mechanism and consequences, in tissue and whole body metabolism, of this mitochondrial response to hyperlipidemia. METHODS: Oxidative metabolism and its response to mitochondrial adenosine triphosphate (ATP)-sensitive K+ channel (mitoK(ATP)) agonists and antagonists were measured in isolated mitochondria, livers, and mice. RESULTS: Mitochondria isolated from the livers of HTG mice presented enhanced respiratory rates compared with those from wild-type mice. Changes in oxygen consumption were sensitive to adenosine triphosphate (ATP), diazoxide, and 5-hydroxydecanoate, indicating they are attributable to mitochondrial ATP-sensitive K+ channel (mitoK(ATP)) activity. Indeed, mitochondria from HTG mice presented enhanced swelling in the presence of K+ ions, sensitive to mitoK(ATP) agonists and antagonists. Furthermore, mitochondrial binding to fluorescent glibenclamide indicates that HTG mice expressed higher quantities of mitoK(ATP). The higher content and activity of liver mitoK(ATP) resulted in a faster metabolic state, as evidenced by increased liver oxygen consumption and higher body CO(2) release and temperature in these mice. In agreement with higher metabolic rates, food ingestion was significantly larger in HTG mice, without enhanced weight gain. CONCLUSIONS: These results show that primary hyperlipidemia leads to an elevation in liver mitoK(ATP) activity, which may represent a regulated adaptation to oxidize excess fatty acids in HTG mice. Furthermore, our data indicate that mitoK(ATP), in addition to UCPs, may be involved in the control of energy metabolism and body weight.  相似文献   

6.
7.
8.
BACKGROUND & AIMS: The plasma membrane-associated soluble N-ethylmaleimide-sensitive factors attachment protein receptors (SNAREs), synaptosome-associated protein of 25 kilodaltons (SNAP-25), and syntaxin 1A, have been found to physically interact with and functionally modify membrane-spanning ion channels. Studies were performed in cat esophageal body and lower esophageal sphincter (LES) smooth muscle to (1) show the presence of SNAP-25, and (2) determine whether SNAP-25 affects K+ channel activity. METHODS: Single circular muscle cells from the esophageal body and sphincter were studied. Cellular localization of SNAP-25 and K+ channel activity were assessed. RESULTS: SNAP-25 was found in the plasma membrane of all regions examined. Outward K+ currents in body circular muscle were mainly composed of large conductance Ca2+-activated channel currents (K(Ca), 40.1%) and delayed rectifier K+ channel currents (K(V), 54.2%). Microinjection of SNAP-25 into muscle cells caused a dose-dependent inhibition of both outward K+ currents, maximal 44% at 10(-8) mol/L. Cleavage of endogenous SNAP-25 by dialyzing botulinum neurotoxin A into the cell interior resulted in a 35% increase in outward currents. CONCLUSIONS: SNAP-25 protein is present in esophageal smooth muscle cells, and inhibits both K(V) and K(Ca) currents in circular muscle cells. The findings suggest a role for SNAP-25 in regulation of esophageal muscle cell excitability and contractility, and point to potential new targets for treatment of esophageal motor disorders.  相似文献   

9.
BACKGROUND & AIMS: Current therapy for primary sclerosing cholangitis is of limited efficacy. Multidrug resistance gene 2 knockout mice (Mdr2(-/-)) represent a well-characterized model for sclerosing cholangitis. Experiments were performed to test in such mice the therapeutic effects of 24-norUrsodeoxycholic acid, a C(23) homologue of ursodeoxycholic acid with 1 fewer methylene group in its side chain. METHODS:Mdr2(-/-) mice were fed a diet containing 24-norUrsodeoxycholic acid (0.5% wt/wt) or ursodeoxycholic acid (0.5% wt/wt) as a clinical comparator for 4 weeks; controls received standard chow. Effects on serum liver tests, liver histology, markers of inflammation and fibrosis, and bile acid transport and metabolism were compared. 24-norUrsodeoxycholic acid metabolism was studied in serum, liver, bile, and urine. RESULTS: 24-norUrsodeoxycholic acid markedly improved liver tests and liver histology and significantly reduced hydroxyproline content and the number of infiltrating neutrophils and proliferating hepatocytes and cholangiocytes. 24-norUrsodeoxycholic acid underwent extensive phase I/II metabolism (hydroxylation, sulfation, and glucuronidation), thereby increasing the hydrophilicity of biliary bile acid secretion. There was a coordinated induction of bile acid detoxifying enzymes (Cyp2b10, Cyp3a11, and Sult2a1) and efflux pumps (Mrp3 and Mrp4). Ursodeoxycholic acid, in contrast, increased alanine transaminase and alkaline phosphatase levels, had no significant effects on hydroxyproline content, and induced biliary transporters and detoxification enzymes to a much smaller extent than 24-norUrsodeoxycholic acid. CONCLUSIONS: 24-norUrsodeoxycholic acid ameliorates sclerosing cholangitis in Mdr2(-/-) mice. Its therapeutic mechanisms involve (1) increasing the hydrophilicity of biliary bile acids, (2) stimulating bile flow with flushing of injured bile ducts, and (3) inducing detoxification and elimination routes for bile acids.  相似文献   

10.
11.
12.
BACKGROUND & AIMS: During tumor necrosis factor alpha-mediated hepatocyte cytotoxicity, cathepsin B is released from lysosomes and contributes to apoptosis by indirectly promoting mitochondrial dysfunction. How this lysosomal pathway mediates mitochondrial dysfunction is unclear. Because Bcl-2 family proteins and caspase 2 have been implicated in proximal apoptosis-signaling pathways, we examined the role of these proteins in tumor necrosis factor alpha-induced lysosomal permeabilization and cathepsin B-mediated mitochondrial dysfunction. METHODS: Studies were performed in primary hepatocytes from wild-type cathepsin B knockout, Bid knockout, and caspase 2 knockout mice and in the rat hepatoma cell line McArdle7777 by using tumor necrosis factor alpha/actinomycin D. RESULTS: Studies in wild-type and Bid knockout hepatocytes showed that tumor necrosis factor alpha-mediated lysosomal permeabilization is Bid dependent. After tumor necrosis factor alpha/actinomycin D treatment, caspase 2 activity increased severalfold in wild-type hepatocytes, whereas minimal activity was observed in hepatocytes from cathepsin B knockout mice or in hepatoma cells treated with a cathepsin B inhibitor. In contrast, Bax was activated independently of cathepsin B. Pharmacological, genetic, or small interfering RNA-mediated inhibition of caspase 2 attenuated tumor necrosis factor alpha-mediated mitochondrial dysfunction, downstream caspase activation, and hepatocyte apoptosis. CONCLUSIONS: These data suggest that tumor necrosis factor alpha triggers Bid-dependent lysosomal permeabilization, followed by release of cathepsin B into the cytosol and activation of caspase 2. Caspase 2 then facilitates efficient mitochondrial cytochrome c release and apoptosis.  相似文献   

13.
14.
15.
16.
Lysophosphatidylcholine (LPC) is a bioactive phospholipid that accumulates rapidly in the ischemic myocardium. In recent years, it has been shown that some of the actions of LPC are mediated through the activation of the membrane G proteins. However, the precise mechanism(s) responsible for the LPC-related intracellular signaling in the regulation of cardiac ion channels are still poorly understood. The present study was undertaken to examine whether LPC regulates the slow component of the delayed rectifier K+ current (IKs) and, if so, what intracellular signals are important for this process. Isolated guinea pig cardiac myocytes were voltage-clamped using the whole-cell configuration of the patch-clamp method. The bath application of 1-palmitoyl-lysophosphatidylcholine (LPC-16) concentration-dependently (EC50 = 0.7 μM) and reversibly increased IKs in atrial cells, but failed to potentiate IKs in ventricular myocytes. In contrast, 1-oleoyl-lysophosphatidylcholine (LPC-18:1) only produced a slight IKs increase, and 1-caproyl-lysophosphatidylcholine (LPC-6) or the LPC-16 precursor (phosphatidylcholine) had no effect on IKs. Pretreatment of atrial cells with an antibody against the N-terminus of the G2A receptor significantly reduced the LPC-16-induced potentiation of IKs. The inhibition of heterotrimeric G protein, phospholipase C (PLC) and protein kinase C (PKC) significantly reduced LPC-16-induced enhancement of IKs. Moreover, the blockade of Rho and Rho-kinase by specific inhibitors also inhibited the activity of LPC-16. Immunohistochemical studies demonstrated that G2A was densely distributed in the plasma membrane of atrial myocytes. Therefore, the present study suggests that the activation of a G protein (probably Gαq) by LPC-16 potentiates IKs currents through the PLC-PKC and Rho-kinase pathways.  相似文献   

17.
18.
Prostaglandin E2 (PGE2) plays pleiotropic roles at fetal-maternal interface during establishment of pregnancy. The objectives of the study were to: (i) determine regulation of PGE2 receptors EP1, EP2, EP3, and EP4 in the endometrium during the estrous cycle and early pregnancy; and (ii) understand endometrial epithelial and stromal cell-specific hormonal regulation of EP2 and EP4 in sheep. Results indicate that: (i) early pregnancy induces expression of EP2 and EP4 but not EP1 and EP3 proteins in the endometrium on days 12-16 compared to that of estrous cycle; (ii) intrauterine infusion of interferon tau (IFNT) increases expression of EP2 and EP4 proteins in endometrium; and (iii) IFNT activates distinct epithelial and stromal cell-specific JAK, EGFR, ERK1/2, AKT, or JNK signaling module to regulate expression of EP2 and EP4 proteins in the ovine endometrium. Our results indicate a role for EP2 and EP4-mediated PGE2 signaling in endometrial functions and establishment of pregnancy in ruminants.  相似文献   

19.
20.
Aging is an inevitable process associated with immune imbalance, which is characterized by a progressive functional decline in major organs, including lung. However, effects of altered Th1/Th2 commitment on lung senescence are largely unknown. To examine effects of altered Th1/Th2 balance on lung aging, we measured proportions of Th1 and Th2 cells and expression of cytokines, chemokines, collagen deposition and other relevant physiological and pathological parameters in 2- and 20-months-old (mo) CXCR3-deficient (CXCR3−/−) C57BL/6J mice compared with wild-type (WT) mice. There was a significant weight-loss observed in 20-mo CXCR3−/− mice compared with the same aged WT group. Although lung function and structure changed with age in both groups, central airway resistance (Rn), tissue elastance (H) and damping (G) were significantly lower in 20-mo CXCR3−/− mice than those of WT mice. In contrast, the whole lung volume (VL), the mean linear intercept length of alveolar (Lm), and the total lung collagen content were significantly elevated in 20-mo CXCR3−/− mice. With aging, the lungs of WT mice had typical Th1-type status (increased population of Th1 cells and concentrations of cytokine IFN-γ and CXCR3 ligands) while CXCR3−/− mice showed Th2-type polarization (decreased proportion of Th1 cells and concentrations of CXCR3 ligands but increased level of IL-4). Our data suggest that Immunosenescence is associated with lung aging, and that altered Th1/Th2 imbalance favors Th2 predominance in CXCR3−/− mice, which contributes to the process of accelerated lung aging in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号