首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this multicenter study, we performed a tractography‐based parcellation of the thalamus and its white matter connections to investigate the relationship between thalamic connectivity abnormalities and cognitive impairment in multiple sclerosis (MS). Dual‐echo, morphological and diffusion tensor (DT) magnetic resonance imaging (MRI) scans were collected from 52 relapsing‐remitting MS patients and 57 healthy controls from six European centers. Patients underwent an extensive neuropsychological assessment. Thalamic connectivity defined regions (CDRs) were segmented based on their cortical connectivity using diffusion tractography‐based parcellation. Between‐group differences of CDRs and cortico‐thalamic tracts DT MRI indices were assessed. A vertex analysis of thalamic shape was also performed. A random forest analysis was run to identify the best imaging predictor of global cognitive impairment and deficits of specific cognitive domains. Twenty‐two (43%) MS patients were cognitively impaired (CI). Compared to cognitively preserved, CI MS patients had increased fractional anisotropy of frontal, motor, postcentral and occipital connected CDRs (0.002<P<0.02). They also experienced more pronounced atrophy in anterior thalamic regions and abnormal DT MRI indices of all cortico‐thalamic tracts. Damage of specific cortico‐thalamic tracts explained global cognitive dysfunction and impairment of selected cognitive domains better than all other MRI variables. Thalamic CDR DT MRI abnormalities were correlated with abnormalities of the corresponding cortico‐thalamic tracts. Cortico‐thalamic disconnection is, at various levels, implicated in cognitive dysfunction in MS. Thalamic involvement in CI MS patients is likely related to gray matter rather than white matter damage of thalamic subregions. Hum Brain Mapp 36:2809–2825, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
The purpose of this work was to evaluate changes in the connectivity patterns of a set of cognitively relevant, dynamically interrelated brain networks in association with cognitive deficits in Parkinson's disease (PD) using resting‐state functional MRI. Sixty‐five nondemented PD patients and 36 matched healthy controls were included. Thirty‐four percent of PD patients were classified as having mild cognitive impairment (MCI) based on performance in attention/executive, visuospatial/visuoperceptual (VS/VP) and memory functions. A data‐driven approach using independent component analysis (ICA) was used to identify the default‐mode network (DMN), the dorsal attention network (DAN) and the bilateral frontoparietal networks (FPN), which were compared between groups using a dual‐regression approach controlling for gray matter atrophy. Additional seed‐based analyses using a priori defined regions of interest were used to characterize local changes in intranetwork and internetwork connectivity. Structural group comparisons through voxel‐based morphometry and cortical thickness were additionally performed to assess associated gray matter atrophy. ICA results revealed reduced connectivity between the DAN and right frontoinsular regions in MCI patients, associated with worse performance in attention/executive functions. The DMN displayed increased connectivity with medial and lateral occipito‐parietal regions in MCI patients, associated with worse VS/VP performance, and with occipital reductions in cortical thickness. In line with data‐driven results, seed‐based analyses mainly revealed reduced within‐DAN, within‐DMN and DAN‐FPN connectivity, as well as loss of normal DAN‐DMN anticorrelation in MCI patients. Our findings demonstrate differential connectivity changes affecting the networks evaluated, which we hypothesize to be related to the pathophysiological bases of different types of cognitive impairment in PD. Hum Brain Mapp, 36:199–212, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The hippocampus is part of the default‐mode network (DMN) and is functionally hit early in multiple sclerosis (MS). Hippocampal and DMN dysfunctions have been associated with depression, both in patients with MS and in major depressive disorders. We hypothesized that white matter lesions may contribute, through a disconnection mechanism, to hippocampal dysfunction. To test this, we assessed the relationship between hippocampal resting‐state (RS) functional connectivity (FC) abnormalities with brain T2 lesion volumes and the presence and severity of depression. Structural and RS fMRI images were acquired from 69 patients with cognitively intact MS and 42 matched healthy controls (HC). Depression was quantified using the Montgomery–Asberg Depression Rating Scale. Seed‐voxel hippocampal RS FC was assessed. SPM8 was used for between‐group comparisons and correlation analysis between RS FC abnormalities with clinical and structural MRI variables. Compared to HC, patients with MS showed a significant atrophy of the whole brain and left hippocampus (P < 0.001), and a distributed pattern of decreased RS FC between the hippocampi and several cortical–subcortical regions, which were mostly located within the DMN. Reduced hippocampal RS FC with regions of the DMN was strongly correlated with higher T2 lesion volume, longer disease duration, and the severity of depression and disability. In patients with cognitively preserved MS, brain focal WM lesions are related to the functional integration of the hippocampus to other brain regions of the DMN, suggesting a disconnection syndrome. Such a disruption of hippocampal RS FC is likely to contribute to the occurrence of depression and to clinical disability. Hum Brain Mapp 36:5051–5063, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
In a multicenter setting, we applied voxel‐based methods to different structural MR imaging modalities to define the relative contributions of focal lesions, normal‐appearing white matter (NAWM), and gray matter (GM) damage and their regional distribution to cognitive deficits as well as impairment of specific cognitive domains in multiple sclerosis (MS) patients. Approval of the institutional review boards was obtained, together with written informed consent from all participants. Standardized neuropsychological assessment and conventional, diffusion tensor and volumetric brain MRI sequences were collected from 61 relapsing‐remitting MS patients and 61 healthy controls (HC) from seven centers. Patients with ≥2 abnormal tests were considered cognitively impaired (CI). The distribution of focal lesions, GM and WM atrophy, and microstructural WM damage were assessed using voxel‐wise approaches. A random forest analysis identified the best imaging predictors of global cognitive impairment and deficits of specific cognitive domains. Twenty‐three (38%) MS patients were CI. Compared with cognitively preserved (CP), CI MS patients had GM atrophy of the left thalamus, right hippocampus and parietal regions. They also showed atrophy of several WM tracts, mainly located in posterior brain regions and widespread WM diffusivity abnormalities. WM diffusivity abnormalities in cognitive‐relevant WM tracts followed by atrophy of cognitive‐relevant GM regions explained global cognitive impairment. Variable patterns of NAWM and GM damage were associated with deficits in selected cognitive domains. Structural, multiparametric, voxel‐wise MRI approaches are feasible in a multicenter setting. The combination of different imaging modalities is needed to assess and monitor cognitive impairment in MS. Hum Brain Mapp 37:1627‐1644, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
The task-positive network (TPN) is anticorrelated with activity in the default mode network (DMN), and possibly reflects competition between the processing of external and internal information, while the salience network (SN) is pivotal in regulating TPN and DMN activity. Because abnormal functional connectivity in these networks has been related to schizophrenia, we tested whether alterations are also evident in subjects at risk for psychosis. Resting-state functional magnetic resonance imaging was tested in 28 subjects with basic symptoms reporting subjective cognitive-perceptive symptoms; 19 with attenuated or brief, limited psychotic symptoms; and 29 matched healthy controls. We characterized spatial differences in connectivity patterns, as well as internetwork connectivity. Right anterior insula (rAI) was selected as seed region for identifying the SN; medioprefrontal cortex (MPFC) for the DMN and TPN. The 3 groups differed in connectivity patterns between the MPFC and right dorsolateral prefrontal cortex (rDLPFC), and between the rAI and posterior cingulate cortex (PCC). In particular, the typically observed antagonistic relationship in MPFC-rDLPFC, rAI-PCC, and internetwork connectivity of DMN-TPN was absent in both at-risk groups. Notably, those connectivity patterns were associated with symptoms related to reality distortions, whereas enhanced connectivity strengths of MPFC-rDLPFC and TPN-DMN were related to poor performance in cognitive functions. We propose that the loss of a TPN-DMN anticorrelation, accompanied by an aberrant spatial extent in the DMN, TPN, and SN in the psychosis risk state, reflects the confusion of internally and externally focused states and disturbance of cognition, as seen in psychotic disorders.Key words: resting-state fMRI, schizophrenia, anticorrelated networks, functional connectivity, central executive network, anterior insula, prodrome, intrinsic connectivity, brain  相似文献   

6.

Introduction

The aim of this study was to investigate, using resting state (RS) functional magnetic resonance imaging (fMRI), the functional connectivity within and among brain networks in patients with the behavioral variant of frontotemporal dementia (bvFTD), compared with healthy controls and patients with probable Alzheimer's disease (pAD).

Methods

Twelve bvFTD patients were compared with 30 controls and 18 pAD patients. Functional connectivity within the salience, default mode (DMN), executive (EXN), attention/working memory (ATT/WM), and dorsal attentional networks was assessed using independent component analysis. The temporal associations among RS networks (RSNs) were explored using the functional network connectivity toolbox.

Results

A decreased dorsal salience network (DSN) connectivity, mainly involving the anterior cingulum, was observed in bvFTD versus controls and pAD. BvFTD was also characterized by a decreased ventral salience network connectivity in the basal ganglia, and divergent connectivity effects versus controls in the dorsolateral prefrontal cortex (decreased) and precuneus (enhanced) within the right ATT/WM network. The dorsal attentional network had a decreased connectivity with the DMN and EXN in bvFTD versus controls, and a decreased connectivity with the DSN versus pAD.

Conclusions

RSN functional abnormalities occur in bvFTD, involving not only the salience network, but also the DMN and fronto-parietal network associated with ATT and WM modulation. The pattern of functional changes differs from that seen in pAD. The altered interactions among RSN observed in bvFTD and pAD may provide a new venue to explore the functional correlates of cognitive abnormalities in neurodegenerative and psychiatric disorders.  相似文献   

7.
Objective : To investigate whether cognitive impairment in multiple sclerosis (MS) patients is associated to different patterns of gray matter (GM) atrophy and T2‐visible lesion distribution according to the clinical phenotype. Experimental Design: Twenty‐two relapsing remitting (RR), 29 secondary progressive (SP), and 22 primary progressive (PP) MS patients, and 39 healthy controls underwent high‐field structural magnetic resonance imaging and an extensive neuropsychological battery. Voxel‐wise distribution of GM damage and T2‐lesions was compared between cognitively impaired (CI) and cognitively preserved (CP) patients according to their clinical phenotype. Principal Observations: Thirty‐nine MS patients were CI. In all MS groups, regional GM loss was correlated with cognitive impairment. Different patterns of regional distribution of GM atrophy and T2‐visible lesions were found between CI vs. CP MS patients, according to their clinical phenotype. No areas were significantly more atrophied in CI SPMS vs. CI RRMS patients. Conversely, compared with CI PPMS, CI SPMS patients had a significant GM loss in several regions of the fronto‐temporal lobes, the left hypothalamus and thalami. While in RRMS and SPMS patients there was a correspondence between presence of T2 visible lesions and GM atrophy in several areas, this was not the case in PPMS patients. Conclusion: Distinct patterns of regional distribution of GM damage and T2‐visible lesions are associated with cognitive impairment in MS patients with different clinical phenotypes. The correspondence between lesion formation and GM atrophy distribution varies in the different forms of MS. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Memory deficits are highly prevalent in multiple sclerosis (MS). As the hippocampus is crucial to memory processing, a functional magnetic resonance imaging (fMRI) task was used to investigate changes in hippocampal function in MS patients with and without cognitive decline. Fifty patients with MS, (34 cognitively preserved (CP) and 16 cognitively impaired (CI)) and 30 healthy controls completed an episodic memory fMRI task (encoding and retrieval) that was used to specifically activate the hippocampus. During encoding of correctly remembered items, increased brain activation was seen in the parahippocampal areas bilaterally and in the left anterior cingulate gyrus in the CP patients compared to the controls (unclustered, Z ≥ 3.1, P ≤ 0.001). No brain areas showed less activation. In CI patients the right (para)hippocampal areas and the prefrontal cortex showed less brain activation compared to controls (cluster-corrected, P < 0.05). The posterior cingulate gyrus and the left precuneus showed increased activation in CI patients when compared to controls (unclustered Z ≥ 3.1, P ≤ 0.001). No significant differences were found on structural MRI measures between the CP and CI patients. These results suggest the presence of functional adaptation in the memory network before cognitive decline becomes evident in MS, as displayed by the increased brain activation in the hippocampal-cingulate memory system in CP patients. Interestingly, CI patients showed less activation in the hippocampal network during correct encoding. These findings are important for future cognitive therapeutic studies, since cognitive intervention might be most effective before cognitive impairment is present and when adaptive changes of the brain are most prominent.  相似文献   

9.
Regions within the default mode network (DMN) are particularly vulnerable to Alzheimer's disease pathology and mechanisms of DMN disruption in mild cognitive impairment (MCI) are still unclear. White matter lesions are presumed to be mechanistically linked to vascular dysfunction whereas cortical atrophy may be related to neurodegeneration. We examined associations between DMN seed‐based connectivity, white matter lesion load, and cortical atrophy in MCI and cognitively healthy controls. MCI showed decreased functional connectivity (FC) between the precuneus‐seed and bilateral lateral temporal cortex (LTC), medial prefrontal cortex (mPFC), posterior cingulate cortex, and inferior parietal lobe compared to those with controls. When controlling for white matter lesion volume, DMN connectivity differences between groups were diminished within bilateral LTC, although were significantly increased in the mPFC explained by significant regional associations between white matter lesion volume and DMN connectivity only in the MCI group. When controlling for cortical thickness, DMN FC was similarly decreased across both groups. These findings suggest that white matter lesions and cortical atrophy are differentially associated with alterations in FC patterns in MCI. Associations between white matter lesions and DMN connectivity in MCI further support at least a partial but important vascular contribution to age‐associated neural and cognitive impairment.  相似文献   

10.
Multiple large‐scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self‐referential thinking have been linked to the default‐mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive‐control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial‐prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual‐regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames compared to gain frames—was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal‐parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. Hum Brain Mapp 36:2743–2755, 2015. © 2015 Wiley Periodicals, Inc .  相似文献   

11.
Active motor functional magnetic resonance imaging (fMRI) studies have shown that pediatric multiple sclerosis (MS) patients have a strictly lateralized pattern of activations and a preserved functional connectivity (FC) within the motor system when compared to age‐matched healthy controls. However, it is still not clear whether a preserved FC in pediatric MS is present only in the motor system, or involves other relevant functional system. Resting‐state (RS) fMRI is a valuable tool for an unbiased investigation of FC abnormalities of multiple networks. This study explored abnormalities of RS FC within and between large‐scale neuronal networks from 44 pediatric MS patients and 27 controls and their correlation with clinical, neuropsychological, and conventional MRI measures. Compared to controls, pediatric MS patients had a decreased FC of several regions of the sensorimotor, secondary visual, default‐mode (DMN), executive control, and bilateral working memory (WMN) networks. They also experienced an increased FC in the right medial frontal gyrus of the attention network, which was correlated with T2 lesion volume. Cognitively impaired patients had decreased RS FC of the right precuneus of the left WMN. An increased FC between the sensorimotor network and the DMN, and between the L WMN and the attention network as well as a decreased FC between L WMN and the DMN were also found. A distributed pattern of FC abnormalities within large‐scale neuronal networks occurs in pediatric MS patients, contributes to their cognitive status, and is partially driven by focal white matter lesions. Internetwork connectivity is relatively preserved in these patients. Hum Brain Mapp 35:4180–4192, 2014. © 2014 Wiley Periodicals, Inc .  相似文献   

12.
The default-mode network (DMN) is vital in the neurobiology of schizophrenia, and the cerebellum participates in the high-order cognitive network such as the DMN. However, the specific contribution of the cerebellum to the DMN abnormalities remains unclear in unaffected siblings of schizophrenia patients. Forty-six unaffected siblings of schizophrenia patients and 46 healthy controls were recruited for a resting-state scan. The images were analyzed using the functional connectivity (FC) method. The siblings showed significantly increased FCs between the left Crus I and the left superior medial prefrontal cortex (MPFC), as well as between the lobule IX and the bilateral MPFC (orbital part) and right superior MPFC compared with the controls. No significantly decreased FC was observed in the siblings relative to the controls. The analyses were replicated in 49 first-episode, drug-naive patients with schizophrenia, and the results showed that the siblings and the patients shared increased FCs between the left Crus I and the left superior MPFC, as well as between the lobule IX and the left MPFC (orbital part) compared with the controls. These findings suggest that increased cerebellar-DMN connectivities emerge earlier than illness onset, which highlight the contribution of the cerebellum to the DMN alterations in unaffected siblings. The shared increased cerebellar-DMN connectivities between the patients and the siblings may be used as candidate endophenotypes for schizophrenia.Key words: unaffected siblings of schizophrenia patients, schizophrenia, cerebellum, functional connectivity, default-mode network  相似文献   

13.
《Clinical neurophysiology》2020,131(5):1021-1029
ObjectiveThe functional connectivity of the brain in chronic pancreatitis (CP) remains unknown. This study aimed to investigate functional connectivity in CP patients using resting state functional magnetic resonance imaging (fMRI) and explore the associations to clinical parameters and altered cerebral metabolites.MethodsSeed-based and ROI-to-ROI analyses were performed to assess connectivity within and between the default mode network (DMN) and salience network (SN). Additionally, functional connectivity in these networks were investigated in relation to clinical parameters (CP etiology, pain, medication, etc.) and cerebral glutamate/creatine level in the anterior cingulate cortex.ResultsThirty CP patients and 23 healthy controls were analyzed. CP patients showed hyper-connectivity in DMN and SN as compared to healthy controls. Furthermore, CP patients had reduced anti-correlated functional connectivity between DMN and SN (all P ≤ 0.009). The altered DMN connectivity correlated to glutamate/creatine level (r = 0.503, P = 0.020) in patients with pain, but not to the clinical parameters.ConclusionsCP patients had altered functional connectivity within and between brain networks. Altered DMN functional connectivity had an association to cerebral metabolic changes.SignificanceAltered functional connectivity in CP share similarities with other chronic pain conditions, and support our understanding of altered brain circuitry associated with the CP disease.  相似文献   

14.
Idiopathic generalized epilepsy (IGE) is associated with widespread cortical network abnormalities on electroencephalography. Resting state functional connectivity (RSFC), based on fMRI, can assess the brain's global functional organization and its disruption in clinical conditions. We compared RSFC associated with the 'default mode network' (DMN) between people with IGE and healthy controls. Strength of functional connectivity within the DMN associated with seeds in the posterior cingulate cortex (PCC) and medial prefrontal cortices (MPFC) was compared between people with IGE and healthy controls and was correlated with seizure duration, age of seizure onset and age at scan. Those with IGE showed markedly reduced functional network connectivity between anterior and posterior cortical seed regions. Seizure duration positively correlates with RSFC between parahippocampal gyri and the PCC but negatively correlates with connectivity between the PCC and frontal lobe. The observed pattern of disruption provides evidence for integration- and segregation-type network abnormalities and supports aberrant network organization among people with IGE.  相似文献   

15.
Wu X  Li R  Fleisher AS  Reiman EM  Guan X  Zhang Y  Chen K  Yao L 《Human brain mapping》2011,32(11):1868-1881
A number of functional magnetic resonance imaging (fMRI) studies reported the existence of default mode network (DMN) and its disruption due to the presence of a disease such as Alzheimer's disease (AD). In this investigation, first, we used the independent component analysis (ICA) technique to confirm the DMN difference between patients with AD and normal control (NC) reported in previous studies. Consistent with the previous studies, the decreased resting-state functional connectivity of DMN in AD was identified in posterior cingulated cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal cortex (IPC), inferior temporal cortex (ITC), and hippocampus (HC). Moreover, we introduced Bayesian network (BN) to study the effective connectivity of DMN and the difference between AD and NC. When compared the DMN effective connectivity in AD with the one in NC using a nonparametric random permutation test, we found that connections from left HC to left IPC, left ITC to right HC, right HC to left IPC, to MPFC and to PCC were all lost. In addition, in AD group, the connection directions between right HC and left HC, between left HC and left ITC, and between right IPC and right ITC were opposite to those in NC group. The connections of right HC to other regions, except left HC, within the BN were all statistically in-distinguishable from 0, suggesting an increased right hippocampal pathological and functional burden in AD. The altered effective connectivity in patients with AD may reveal more characteristics of the disease and may serve as a potential biomarker.  相似文献   

16.
In this multicenter study, we applied functional magnetic resonance imaging (fMRI) to define the functional correlates of cognitive dysfunction in patients with multiple sclerosis (MS). fMRI scans during the performance of the N‐back task were acquired from 42 right‐handed relapsing remitting (RR) MS patients and 52 sex‐matched right‐handed healthy controls, studied at six European sites using 3.0 Tesla scanners. Patients with at least two abnormal (<2 standard deviations from the normative values) neuropsychological tests at a standardized evaluation were considered cognitively impaired (CI). FMRI data were analyzed using the SPM8 software, modeling regions showing load‐dependent activations/deactivations with increasing task difficulty. Twenty (47%) MS patients were CI. During the N‐back load condition, compared to controls and CI patients, cognitively preserved (CP) patients had increased recruitment of the right dorsolateral prefrontal cortex. As a function of increasing task difficulty, CI MS patients had reduced activations of several areas located in the fronto‐parieto‐temporal lobes as well as reduced deactivations of regions which are part of the default mode network compared to the other two groups. Significant correlations were found between abnormal fMRI patterns of activations and deactivations and behavioral measures, cognitive performance, and brain T2 and T1 lesion volumes. This multicenter study supports the theory that a preserved fMRI activity of the frontal lobe is associated with a better cognitive profile in MS patients. It also indicates the feasibility of fMRI to monitor disease evolution and treatment effects in future studies. Hum Brain Mapp 35:5799–5814, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Objectives: Research suggests that the majority of mild traumatic brain injury (mTBI) patients exhibit both cognitive and emotional dysfunction within the first weeks of injury, followed by symptom resolution 3–6 months postinjury. The neuronal correlates of said dysfunction are difficult to detect with standard clinical neuroimaging, complicating differential diagnosis and early identification of patients who may not recover. This study examined whether resting state functional magnetic resonance imaging (fMRI) provides objective markers of injury and predicts cognitive, emotional, and somatic complaints in mTBI patients semiacutely (<3 weeks postinjury) and in late recovery (3–5 month) phases. Methods: Twenty‐seven semiacute mTBI patients and 26 gender, age, and education‐matched controls were studied. Fifteen of 27 patients returned for a follow‐up visit 3–5 months postinjury. The main dependent variables were spontaneous fluctuations (temporal correlation) in the default‐mode (DMN) and fronto‐parietal task‐related networks as measured by fMRI. Results: Significant differences in self‐reported cognitive, emotional, and somatic complaints were observed (all P < 0.05), despite normal clinical (T1 and T2) imaging and neuropsychological testing results. Mild TBI patients demonstrated decreased functional connectivity within the DMN and hyper‐connectivity between the DMN and lateral prefrontal cortex. Measures of functional connectivity exhibited high levels of sensitivity and specificity for patient classification and predicted cognitive complaints in the semi‐acute injury stage. However, no changes in functional connectivity were observed across a 4‐month recovery period. Conclusions: Abnormal connectivity between the DMN and frontal cortex may provide objective biomarkers of mTBI and underlie cognitive impairment. Hum Brain Mapp, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
Brain imaging reveals schizophrenia as a disorder of macroscopic brain networks. In particular, default mode and salience network (DMN, SN) show highly consistent alterations in both interacting brain activity and underlying brain structure. However, the same networks are also altered in major depression. This overlap in network alterations induces the question whether DMN and SN changes are different across both disorders, potentially indicating distinct underlying pathophysiological mechanisms. To address this question, we acquired T1-weighted, diffusion-weighted, and resting-state functional MRI in patients with schizophrenia, patients with major depression, and healthy controls. We measured regional gray matter volume, inter-regional structural and intrinsic functional connectivity of DMN and SN, and compared these measures across groups by generalized Wilcoxon rank tests, while controlling for symptoms and medication. When comparing patients with controls, we found in each patient group SN volume loss, impaired DMN structural connectivity, and aberrant DMN and SN functional connectivity. When comparing patient groups, SN gray matter volume loss and DMN structural connectivity reduction did not differ between groups, but in schizophrenic patients, functional hyperconnectivity between DMN and SN was less in comparison to depressed patients. Results provide evidence for distinct functional hyperconnectivity between DMN and SN in schizophrenia and major depression, while structural changes in DMN and SN were similar. Distinct hyperconnectivity suggests different pathophysiological mechanism underlying aberrant DMN-SN interactions in schizophrenia and depression.  相似文献   

19.
The Inferior parietal cortex (IPC), including the intraparietal sulcus (IPS), angular gyrus (AG), and supramarginal gyrus (SG), plays an important role in episodic memory, and is considered to be one of the specific neuroimaging markers in predicting the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD). However, it is still unclear whether the connectivity of the IPC is impaired in MCI patients. In the present study, we used resting state fMRI to examine the functional connectivity of the three subdivisions of the IPC in MCI patients after controlling the impact of regional grey matter atrophy. It was found that, using IPS, AG, and SG as seeds of functional connectivity, three canonical functional networks could be correspondingly traced, i.e., executive control network (ECN), default mode network (DMN), and salience network (SN), and the three networks are differently altered in MCI patients. In contrast to the healthy controls, it was found that in MCI patients: 1) AG connectivity was significantly reduced within the DMN; 2) IPS showed decreased connectivity with the right inferior frontal gyrus while showing increased connectivity with the left frontal regions within the ECN; and 3) SG displayed decreased connectivity with a distribution of regions including the frontal and parietal regions, and increased connectivity with some sub-cortical areas within the SN. Moreover, the connectivity within the three networks was correlated with episodic memory and general cognitive impairment in MCI patients. These results extend well beyond the DMN, and further suggest that MCI is associated with alteration of large-scale functional brain networks.  相似文献   

20.

Background

Dysfunction in the default mode network (DMN), a group of cortical areas more active during the resting state, has been linked to attentional deficits and symptoms associated with attention-deficit/hyperactivity disorder (ADHD). Prior imaging studies have shown decreased functional connectivity between DMN nodes in patients with ADHD, primarily between anterior and posterior regions. Using magnetoencephalography (MEG), we evaluated phase coherence (i.e., functional connectivity) among regions of the DMN in healthy controls and adults with ADHD before and after stimulant therapy.

Methods

We obtained a resting-state MEG recording for all participants. Magnetoencephalography data were transformed into a ~30 node regional source model using inverse spatial filtering, including regions corresponding to the DMN. We computed the zero-lag phase coherence between these regions pairwise for 5 distinct frequency bands, and we assessed group and medication effects.

Results

Twelve adults with and 13 without ADHD participated in our study. Functional connectivity was stronger between particular node pairs and showed frequency-specific effects. Unmedicated patients showed reduced phase locking between posterior cingulate/precuneus regions (PCC) and right inferior parietal cortices (RIPL), and between medial prefrontal regions (MPFC) and the left inferior parietal region (LIPL) and the PCC. Unmedicated patients had increased phase locking between the RIPL and LIPL regions compared with controls. Administration of stimulants improved phase locking abnormalities along the MPFC–PCC and LIPL–RIPL pathways in patients with ADHD.

Limitations

Modest sample size and lack of duration of patient treatment history may limit the generalizability of our findings.

Conclusion

Adults with ADHD exhibit hyper- and hypoconnectivity between regions of the DMN during rest, which were suppressed after stimulant medication administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号