首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal–ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior–anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top–down modulation of modality‐specific information to occur within higher‐order cortex. This could provide a potentially faster and more efficient pathway by which top–down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long‐range connections to sensory cortices. Hum Brain Mapp 38:255–270, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
A fundamental question with regard to perceptual development is how multisensory information is processed in the brain during the early stages of development. Although a growing body of evidence has shown the early emergence of modality‐specific functional differentiation of the cortical regions, the interplay between sensory inputs from different modalities in the developing brain is not well understood. To study the effects of auditory input during audio‐visual processing in 3‐month‐old infants, we evaluated the spatiotemporal cortical hemodynamic responses of 50 infants while they perceived visual objects with or without accompanying sounds. The responses were measured using 94‐channel near‐infrared spectroscopy over the occipital, temporal, and frontal cortices. The effects of sound manipulation were pervasive throughout the diverse cortical regions and were specific to each cortical region. Visual stimuli co‐occurring with sound induced the early‐onset activation of the early auditory region, followed by activation of the other regions. Removal of the sound stimulus resulted in focal deactivation in the auditory regions and reduced activation in the early visual region, the association region of the temporal and parietal cortices, and the anterior prefrontal regions, suggesting multisensory interplay. In contrast, equivalent activations were observed in the lateral occipital and lateral prefrontal regions, regardless of sound manipulation. Our findings indicate that auditory input did not generally enhance overall activation in relation to visual perception, but rather induced specific changes in each cortical region. The present study implies that 3‐month‐old infants may perceive audio‐visual multisensory inputs by using the global network of functionally differentiated cortical regions. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
The human capacity to integrate sensory signals has been investigated with respect to different sensory modalities. A common denominator of the neural network underlying the integration of sensory clues has yet to be identified. Additionally, brain imaging data from patients with autism spectrum disorder (ASD) do not cover disparities in neuronal sensory processing. In this fMRI study, we compared the underlying neural networks of both olfactory–visual and auditory–visual integration in patients with ASD and a group of matched healthy participants. The aim was to disentangle sensory‐specific networks so as to derive a potential (amodal) common source of multisensory integration (MSI) and to investigate differences in brain networks with sensory processing in individuals with ASD. In both groups, similar neural networks were found to be involved in the olfactory–visual and auditory–visual integration processes, including the primary visual cortex, the inferior parietal sulcus (IPS), and the medial and inferior frontal cortices. Amygdala activation was observed specifically during olfactory–visual integration, with superior temporal activation having been seen during auditory–visual integration. A dynamic causal modeling analysis revealed a nonlinear top‐down IPS modulation of the connection between the respective primary sensory regions in both experimental conditions and in both groups. Thus, we demonstrate that MSI has shared neural sources across olfactory–visual and audio–visual stimulation in patients and controls. The enhanced recruitment of the IPS to modulate changes between areas is relevant to sensory perception. Our results also indicate that, with respect to MSI processing, adults with ASD do not significantly differ from their healthy counterparts.  相似文献   

4.
Coordinated attention to information from multiple senses is fundamental to our ability to respond to salient environmental events, yet little is known about brain network mechanisms that guide integration of information from multiple senses. Here we investigate dynamic causal mechanisms underlying multisensory auditory–visual attention, focusing on a network of right‐hemisphere frontal–cingulate–parietal regions implicated in a wide range of tasks involving attention and cognitive control. Participants performed three ‘oddball’ attention tasks involving auditory, visual and multisensory auditory–visual stimuli during fMRI scanning. We found that the right anterior insula (rAI) demonstrated the most significant causal influences on all other frontal–cingulate–parietal regions, serving as a major causal control hub during multisensory attention. Crucially, we then tested two competing models of the role of the rAI in multisensory attention: an ‘integrated’ signaling model in which the rAI generates a common multisensory control signal associated with simultaneous attention to auditory and visual oddball stimuli versus a ‘segregated’ signaling model in which the rAI generates two segregated and independent signals in each sensory modality. We found strong support for the integrated, rather than the segregated, signaling model. Furthermore, the strength of the integrated control signal from the rAI was most pronounced on the dorsal anterior cingulate and posterior parietal cortices, two key nodes of saliency and central executive networks respectively. These results were preserved with the addition of a superior temporal sulcus region involved in multisensory processing. Our study provides new insights into the dynamic causal mechanisms by which the AI facilitates multisensory attention.  相似文献   

5.
The insular cortex is located in the centre of the cerebral hemisphere, having connections with the primary and secondary somatosensory areas, anterior cingulate cortex, amygdaloid body, prefrontal cortex, superior temporal gyrus, temporal pole, orbitofrontal cortex, frontal and parietal opercula, primary and association auditory cortices, visual association cortex, olfactory bulb, hippocampus, entorhinal cortex, and motor cortex. Accordingly, dense connections exist among insular cortex neurons. The insular cortex is involved in the processing of visceral sensory, visceral motor, vestibular, attention, pain, emotion, verbal, motor information, inputs related to music and eating, in addition to gustatory, olfactory, visual, auditory, and tactile data. In this article, the literature on the relationship between the insular cortex and neuropsychiatric disorders was summarized following a computer search of the Pub-Med database. Recent neuroimaging data, including voxel based morphometry, PET and fMRI, revealed that the insular cortex was involved in various neuropsychiatric diseases such as mood disorders, panic disorders, PTSD, obsessive-compulsive disorders, eating disorders, and schizophrenia. Investigations of functions and connections of the insular cortex suggest that sensory information including gustatory, olfactory, visual, auditory, and tactile inputs converge on the insular cortex, and that these multimodal sensory information may be integrated there.  相似文献   

6.
Sustained responsiveness to external stimulation is fundamental to many time-critical interactions with the outside world. We used functional magnetic resonance imaging during speeded stimulus detection to identify convergent and divergent neural correlates of maintaining the readiness to respond to auditory, tactile, and visual stimuli. In addition, using a multimodal condition, we investigated the effect of making stimulus modality unpredictable. Relative to sensorimotor control tasks, all three unimodal detection tasks elicited stronger activity in the right temporo-parietal junction, inferior frontal cortex, anterior insula, dorsal premotor cortex, and anterior cingulate cortex as well as bilateral mid-cingulum, midbrain, brainstem, and medial cerebellum. The multimodal detection condition additionally activated left dorsal premotor cortex and bilateral precuneus. Modality-specific modulations were confined to respective sensory areas: we found activity increases in relevant, and decreases in irrelevant sensory cortices. Our findings corroborate the modality independence of a predominantly right-lateralized core network for maintaining an alert (i.e., highly responsive) state and extend previous results to the somatosensory modality. Monitoring multiple sensory channels appears to induce additional processing, possibly related to stimulus-driven shifts of intermodal attention. The results further suggest that directing attention to a given sensory modality selectively enhances and suppresses sensory processing-even in simple detection tasks, which do not require inter- or intra-modal selection.  相似文献   

7.
Laughter is a multifaceted signal, which can convey social acceptance facilitating social bonding as well as social rejection inflicting social pain. In the current study, we addressed the neural correlates of social intent attribution to auditory or visual laughter within an fMRI study to identify brain areas showing linear increases of activation with social intent ratings. Negative social intent attributions were associated with activation increases within the medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC). Interestingly, negative social intent attributions of auditory laughter were represented more rostral than visual laughter within this area. Our findings corroborate the role of the mPFC/ACC as key node for processing “social pain” with distinct modality‐specific subregions. Other brain areas that showed an increase of activation included bilateral inferior frontal gyrus and right superior/middle temporal gyrus (STG/MTG) for visually presented laughter and bilateral STG for auditory presented laughter with no overlap across modalities. Similarly, positive social intent attributions were linked to hemodynamic responses within the right inferior parietal lobe and right middle frontal gyrus, but there was no overlap of activity for visual and auditory laughter. Our findings demonstrate that social intent attribution to auditory and visual laughter is located in neighboring, but spatially distinct neural structures.  相似文献   

8.
Visual stimuli activate auditory cortex in deaf subjects: evidence from MEG   总被引:5,自引:0,他引:5  
Studies using fMRI have demonstrated that visual stimuli activate auditory cortex in deaf subjects. Given the low temporal resolution of fMRI, it is uncertain whether this activation is associated with initial stimulus processing. Here, we used MEG in deaf and hearing subjects to evaluate whether auditory cortex, devoid of its normal input, comes to serve the visual modality early in the course of stimulus processing. In line with previous findings, visual activity was observed in the auditory cortex of deaf, but not hearing, subjects. This activity occurred within 100-400 ms of stimulus presentation and was primarily over the right hemisphere. These results add to the mounting evidence that removal of one sensory modality in humans leads to neural reorganization of the remaining modalities.  相似文献   

9.
Recent literature suggests that the brain in multiple sclerosis (MS) undergoes reorganization that subserves the performance of visual and motor tasks. We identified sites of cerebral activity in 16 MS patients while performing a covert attention (CA) task, presented in the auditory modality. Positron emission tomography (PET) revealed activation of rostral/dorsal anterior cingulate cortex (ACC) in normal subjects studied previously. Activity in this region was not significant in MS patients, but there was a large region of activity in superior temporal cortex. Decreased activation of frontal attentional networks and greater activity in sensory/perceptual cortical areas (auditory association cortex) suggests a reduction of transmission along white matter tracts connecting these regions. This study demonstrates cingulate hypoactivity and cerebral reorganization during auditory attention in MS.  相似文献   

10.
The ability to inhibit responses is a central sensorimotor function but only recently the importance of sensory processes for motor inhibition mechanisms went more into the research focus. In this regard it is elusive, whether there are differences between sensory modalities to trigger response inhibition processes. Due to functional neuroanatomical considerations strong differences may exist, for example, between the visual and the tactile modality. In the current study we examine what neurophysiological mechanisms as well as functional neuroanatomical networks are modulated during response inhibition. Therefore, a Go/NoGo‐paradigm employing a novel combination of visual, tactile, and visuotactile stimuli was used. The data show that the tactile modality is more powerful than the visual modality to trigger response inhibition processes. However, the tactile modality loses its efficacy to trigger response inhibition processes when being combined with the visual modality. This may be due to competitive mechanisms leading to a suppression of certain sensory stimuli and the response selection level. Variations in sensory modalities specifically affected conflict monitoring processes during response inhibition by modulating activity in a frontal parietal network including the right inferior frontal gyrus, anterior cingulate cortex and the temporoparietal junction. Attentional selection processes are not modulated. The results suggest that the functional neuroanatomical networks involved in response inhibition critically depends on the nature of the sensory input. Hum Brain Mapp 38:1941–1951, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
There are ongoing debates on whether object concepts are coded as supramodal identity‐based or modality‐specific representations in the human brain. In this fMRI study, we adopted a cross‐modal “prime–neutral cue–target” semantic priming paradigm, in which the prime‐target relationship was manipulated along both the identity and the modality dimensions. The prime and the target could refer to either the same or different semantic identities, and could be delivered via either the same or different sensory modalities. By calculating the main effects and interactions of this 2 (identity cue validity: “Identity_Cued” vs. “Identity_Uncued”) × 2 (modality cue validity: “Modality_Cued” vs. “Modality_Uncued”) factorial design, we aimed at dissociating three neural networks involved in creating novel identity‐specific representations independent of sensory modality, in creating modality‐specific representations independent of semantic identity, and in evaluating changes of an object along both the identity and the modality dimensions, respectively. Our results suggested that bilateral lateral occipital cortex was involved in creating a new supramodal semantic representation irrespective of the input modality, left dorsal premotor cortex, and left intraparietal sulcus were involved in creating a new modality‐specific representation irrespective of its semantic identity, and bilateral superior temporal sulcus was involved in creating a representation when the identity and modality properties were both cued or both uncued. In addition, right inferior frontal gyrus showed enhanced neural activity only when both the identity and the modality of the target were new, indicating its functional role in novelty detection. Hum Brain Mapp 35:4002–4015, 2014. © 2014 Wiley Periodicals, Inc .  相似文献   

12.
In the present study, we were interested in distinguishing the cortical representations of within-modal and cross-modal divided attention tasks by using functional magnetic resonance imaging. Sixteen healthy male subjects aged between 21 and 30 years underwent two within-modal (auditory/auditory, visual/visual) and one cross-modal (auditory/visual) divided attention task, as well as related selective attention control conditions. After subtraction of the corresponding control task the three divided attention tasks, irrespective of sensory modality, revealed significant activation in a predominantly right hemisphere network involving the prefrontal cortex, the inferior parietal cortex, and the claustrum. Under the cross-modal condition, however, the frontal and parietal activation was more extended and more bilateral and there also was stronger right hemisphere activation of the anterior cingulate cortex and the thalamus. In comparison to the within-modal conditions additional bilateral frontal and left inferior parietal activation was found for the cross-modal condition. The supplementary fronto-parietal, anterior cingulate cortex, and thalamus activation in the auditory/visual condition could be argued to reflect an additional demand for coordination of two ongoing cross-modal cognitive processes.  相似文献   

13.
Several theories of brain function emphasize distinctions between sensory and cognitive systems. We hypothesized, instead, that sensory and cognitive systems interact to instantiate the task at the neural level. We tested whether input modality interacts with working memory operations in that, despite similar cognitive demands, differences in the anatomical locations or temporal dynamics of activations following auditory or visual input would not be limited to the sensory cortices. We recorded event-related brain potentials (ERPs) while participants performed simple short-term memory tasks involving visually or auditorily presented bandpass-filtered noise stimuli. Our analyses suggested that working memory operations in each modality had a very similar spatial distribution of current sources outside the sensory cortices, but differed in terms of time course. Specifically, information for visual processing was updated and held online in a manner that was different from auditory processing, which was done mostly after the offset of the final stimulus. Our results suggest that the neural networks that support working memory operations have different temporal dynamics for auditory and visual material, even when the stimuli are matched in term of discriminability, and are designed to undergo very similar transformations when they are encoded and retrieved from memory.  相似文献   

14.
The purpose of this study was to identify and compare the afferent projections to the primary visual cortex in intact and enucleated C57BL/6 mice and in ZRDCT/An anophthalmic mice. Early loss of sensory‐driven activity in blind subjects can lead to activations of the primary visual cortex by haptic or auditory stimuli. This intermodal activation following the onset of blindness is believed to arise through either unmasking of already present cortical connections, sprouting of novel cortical connections or enhancement of intermodal cortical connections. Studies in humans have similarly demonstrated heteromodal activation of visual cortex following relatively short periods of blindfolding. This suggests that the primary visual cortex in normal sighted subjects receives afferents, either from multisensory association cortices or from primary sensory cortices dedicated to other modalities. Here cortical afferents to the primary visual cortex were investigated to determine whether the visual cortex receives sensory input from other modalities, and whether differences exist in the quantity and/or the structure of projections found in sighted, enucleated and anophthalmic mice. This study demonstrates extensive direct connections between the primary visual cortex and auditory and somatosensory areas, as well as with motor and association cortices in all three animal groups. This suggests that information from different sensory modalities can be integrated at early cortical stages and that visual cortex activations following visual deprivations can partly be explained by already present intermodal corticocortical connections.  相似文献   

15.
Cross‐modal reorganization following the loss of input from a sensory modality can recruit sensory‐deprived cortical areas to process information from the remaining senses. Specifically, in early‐deaf cats, the anterior auditory field (AAF) is unresponsive to auditory stimuli but can be activated by somatosensory and visual stimuli. Similarly, AAF neurons respond to tactile input in adult‐deafened animals. To examine anatomical changes that may underlie this functional adaptation following early or late deafness, afferent projections to AAF were examined in hearing cats, and cats with early‐ or adult‐onset deafness. Unilateral deposits of biotinylated dextran amine were made in AAF to retrogradely label cortical and thalamic afferents to AAF. In early‐deaf cats, ipsilateral neuronal labeling in visual and somatosensory cortices increased by 329% and 101%, respectively. The largest increases arose from the anterior ectosylvian visual area and the anterolateral lateral suprasylvian visual area, as well as somatosensory areas S2 and S4. Consequently, labeling in auditory areas was reduced by 36%. The age of deafness onset appeared to influence afferent connectivity, with less marked differences observed in late‐deaf cats. Profound changes to visual and somatosensory afferent connectivity following deafness may reflect corticocortical rewiring affording acoustically deprived AAF with cross‐modal functionality. J. Comp. Neurol. 523:1925–1947, 2015 © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Atomoxetine improves inhibitory control and visual processing in healthy volunteers and adults with attention‐deficit/hyperactivity disorder (ADHD). However, little is known about the neural correlates of these two functions after chronic treatment with atomoxetine. This study aimed to use the counting Stroop task with functional magnetic resonance imaging (fMRI) and the Cambridge Neuropsychological Test Automated Battery (CANTAB) to investigate the changes related to inhibitory control and visual processing in adults with ADHD. This study is an 8‐week, placebo‐controlled, double‐blind, randomized clinical trial of atomoxetine in 24 drug‐naïve adults with ADHD. We investigated the changes of treatment with atomoxetine compared to placebo‐treated counterparts using the counting Stroop fMRI and two CANTAB tests: rapid visual information processing (RVP) for inhibitory control and delayed matching to sample (DMS) for visual processing. Atomoxetine decreased activations in the right inferior frontal gyrus and anterior cingulate cortex, which were correlated with the improvement in inhibitory control assessed by the RVP. Also, atomoxetine increased activation in the left precuneus, which was correlated with the improvement in the mean latency of correct responses assessed by the DMS. Moreover, anterior cingulate activation in the pre‐treatment was able to predict the improvements of clinical symptoms. Treatment with atomoxetine may improve inhibitory control to suppress interference and may enhance the visual processing to process numbers. In addition, the anterior cingulate cortex might play an important role as a biological marker for the treatment effectiveness of atomoxetine. Hum Brain Mapp 38:4850–4864, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

17.
Although some brain areas preferentially process information from a particular sensory modality, these areas can also respond to other modalities. Here we used fMRI to show that such responsiveness to tactile stimuli depends on the temporal frequency of stimulation. Participants performed a tactile threshold-tracking task where the tip of either their left or right middle finger was stimulated at 3, 20, or 100 Hz. Whole-brain analysis revealed an effect of stimulus frequency in two regions: the auditory cortex and the visual cortex. The BOLD response in the auditory cortex was stronger during stimulation at hearable frequencies (20 and 100 Hz) whereas the response in the visual cortex was suppressed at infrasonic frequencies (3 Hz). Regardless of which hand was stimulated, the frequency-dependent effects were lateralized to the left auditory cortex and the right visual cortex. Furthermore, the frequency-dependent effects in both areas were abolished when the participants performed a visual task while receiving identical tactile stimulation as in the tactile threshold-tracking task. We interpret these findings in the context of the metamodal theory of brain function, which posits that brain areas contribute to sensory processing by performing specific computations regardless of input modality.  相似文献   

18.
Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor‐preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface‐based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory‐motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory‐motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M‐I. Hum Brain Mapp 37:2784–2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc .  相似文献   

19.
There are limited resting‐state functional magnetic resonance imaging (fMRI) studies in major depressive disorder (MDD). Of these studies, functional connectivity analyses are mostly used. However, a new method based on the magnitude of low frequency fluctuation (LFF) during resting‐state fMRI may provide important insight into MDD. In this study, we examined the amplitude of LFF (ALFF) within the whole brain during resting‐state fMRI in 30 treatment‐naïve MDD subjects and 30 healthy control (HC) subjects. When compared with HC, MDD subjects showed increased ALFF in the frontal cortex (including the bilateral ventral/dorsal anterior cingulate cortex, orbitofrontal cortex, premotor cortex, ventral prefrontal cortex, left dorsal lateral frontal cortex, left superior frontal cortex), basal ganglia (including the right putamen and left caudate nucleus), left insular cortex, right anterior entorhinal cortex and left inferior parietal cortex, together with decreased ALFF in the bilateral occipital cortex, cerebellum hemisphere, and right superior temporal cortex. These findings may relate to characteristics of MDD, such as excessive self‐referential processing and deficits in cognitive control of emotional processing, which may contribute to the persistent and recurrent nature of the disorder. Hum Brain Mapp 35:4979–4988, 2014. © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.  相似文献   

20.
According to most behavioural, electrophysiological, and clinical studies, the cingulate gyrus is widely thought to be involved in regulation of emotional life, reactivity to painful stimuli, memory processing, and attention to sensory stimuli. Anatomically the cingulate cortex is composed of two distinct areas numbered 24 and 23 in Brodmann's classification. We have investigated the connections of the cingulate gyrus in monkeys, using horseradish peroxydase and radioautographic techniques, in order to verify the hypothesis of an anatomical complementarity of these cytoarchitectonic subdivisions. The posterior cingulate gyrus (area 23) is specifically connected with the associative temporal cortex, the medial temporal and orbitofrontal cortices, and with the medial pulvinar. The anterior cingulate gyrus (area 24) is related to the intralaminar, mediodorsal, and ventral anterior thalamic nuclei, the amygdala, and the nucleus accumbens septi. The two cingulate areas were found to be interconnected and to have, in common, connections with the 'limbic' thalamic nuclei (AM, AV, LD), the caudate nucleus, the claustrum, the lateral frontal and the posterior parietal (area 7) cortices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号