首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Based on prior animal and computational models, we propose a double dissociation between the associative learning deficits observed in patients with medial temporal (hippocampal) damage versus patients with Parkinson's disease (basal ganglia dysfunction). Specifically, we expect that basal ganglia dysfunction may result in slowed learning, while individuals with hippocampal damage may learn at normal speed. However, when challenged with a transfer task where previously learned information is presented in novel recombinations, we expect that hippocampal damage will impair generalization but basal ganglia dysfunction will not. We tested this prediction in a group of healthy elderly with mild-to-moderate hippocampal atrophy, a group of patients with mild Parkinson's disease, and healthy controls, using an "acquired equivalence" associative learning task. As predicted, Parkinson's patients were slower on the initial learning but then transferred well, while the hippocampal atrophy group showed the opposite pattern: good initial learning with impaired transfer. To our knowledge, this is the first time that a single task has been used to demonstrate a double dissociation between the associative learning impairments caused by hippocampal versus basal ganglia damage/dysfunction. This finding has implications for understanding the distinct contributions of the medial temporal lobe and basal ganglia to learning and memory.  相似文献   

2.
Four experiments examined the roles of the basolateral amygdala and orbitofrontal cortex in the formation of sensory-specific associations in conditioned flavor preference and conditioned magazine approach paradigms using unconditioned stimulus (US) devaluation and selective Pavlovian-instrumental transfer procedures in Long Evans rats. Experiment 1 found that pre-training amygdala and orbitofrontal cortex lesions had no detectable effect on the formation or flexible use of sensory-specific flavor-nutrient associations in a US devaluation task, where flavor cues were paired either simultaneously or sequentially with nutrient rewards in water-deprived subjects. In Experiment 2, pre-training amygdala and orbitofrontal cortex lesions both attenuated outcome-specific Pavlovian-instrumental transfer. Experiment 3 indicated that amygdala lesions have no effect on the formation of sensory-specific flavor-nutrient associations in a US devaluation task in food-deprived subjects. Finally, Experiment 4 demonstrated that the outcomes used in Experiment 3 were sufficiently motivationally significant to support conditioned flavor preference. These findings suggest that, although both orbitofrontal cortex and amygdala lesions attenuate the acquisition of sensory-specific associations in magazine approach conditioning, neither lesion reduces the ability to appropriately respond to a flavor cue that was paired with a devalued outcome.  相似文献   

3.
The dorsal striatum (DS) has been implicated in instrumental learning but its role in the acquisition of stimulus‐driven behaviour is not clear. To explore the contribution of the DS to both response‐outcome (R‐O) and stimulus‐outcome (S‐O) associative learning, we pharmacologically inactivated subregions (dorsolateral, anterior dorsomedial and posterior dorsomedial) of the DS during acquisition sessions in which subjects acquired two unique, novel R‐O pairs or two unique, novel S‐O pairs. To test whether specific R‐O or S‐O associations were learned under inactivation, rats were tested following selective‐satiety devaluation of one outcome under drug‐free conditions. In the instrumental task, control rats and rats with dorsolateral striatum (DLS) inactivation during learning responded less on the lever that had earned the devalued outcome than on the alternative lever at test, indicating that the DLS is not critical for the formation of R‐O associations. In contrast, rats with inactivation of the medial DS (DMS) (either anterior or posterior) during learning responded indiscriminately, suggesting failure to acquire the novel R‐O associations. In the Pavlovian task, both controls and rats with anterior DMS inactivation during learning responded less in the presence of the stimulus predicting the devalued outcome, whereas rats with DLS or posterior DMS inactivation during learning responded equally to the stimuli, indicating that they had not acquired the novel S‐O associations. These data confirm that the DLS and anterior region DMS mediate different aspects of reward‐related learning, and suggest that the posterior DMS may mediate a function common to both forms of learning (R‐O and S‐O). Finally, we demonstrate that both S‐O and R‐O associations are required for selective Pavlovian‐instrumental transfer.  相似文献   

4.
The hippocampus has been implicated in integrating information across separate events in support of mnemonic generalizations. These generalizations may be underpinned by processes at both encoding (linking similar information across events) and retrieval (“on‐the‐fly” generalization). However, the relative contribution of the hippocampus to encoding‐ and retrieval‐based generalizations is poorly understood. Using fMRI in humans, we investigated the hippocampal role in gradually learning a set of spatial discriminations and subsequently generalizing them in an acquired equivalence task. We found a highly significant correlation between individuals’ performance on a generalization test and hippocampal activity during the test, providing evidence that hippocampal processes support on‐the‐fly generalizations at retrieval. Within the same hippocampal region there was also a correlation between activity during the final stage of learning (when all associations had been learnt but no generalization was required) and subsequent generalization performance. We suggest that the hippocampus spontaneously retrieves prior events that share overlapping features with the current event. This process may also support the creation of generalized representations during encoding. These findings are supportive of the view that the hippocampus contributes to both encoding‐ and retrieval‐based generalization via the same basic mechanism; retrieval of similar events sharing common features. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

5.
It has been proposed that reversal learning is impaired following damage to the orbitofrontal and ventromedial frontal cortex (OFC/VMFC) and to the medial temporal lobe (MTL), including the hippocampal formation. However, the exact characteristics of the MTL-associated reversal learning deficit are not known. To investigate this issue, we assessed 30 newly diagnosed patients with amnestic mild cognitive impairment (aMCI) and 30 matched healthy controls. All patients fulfilled the aMCI criteria of the Mayo Clinic Alzheimer's Disease Research Center and underwent head magnetic resonance imaging that confirmed MTL atrophy. Reversal learning was assessed using a novel reinforcement learning task. Participants first acquired and then reversed stimulus-outcome associations based on negative and positive feedback (losing and gaining points). Stimuli consisted of a cue (geometric shapes) and a spatial context (background color or pattern). Neuropsychological assessment included tasks related to the MTL (paired associates learning), dorsolateral prefrontal cortex (DLPFC) (extradimensional shift, One-touch Stockings of Cambridge), and OFC/VMFC (Holiday Apartment Task). Results revealed that, relative to controls, patients with aMCI exhibited a marked reversal learning deficit, which was highly selective for the reversal of context. The acquisition of stimulus-outcome associations and cue reversal learning were spared. Performance on the context reversal learning task significantly correlated with the right hippocampal volume. In addition, patients with aMCI had deficits on tests related to DLPFC but not to OFC/VMFC. However, DLPFC dysfunctions were not associated with context reversal learning. These results suggest that MTL deficits in aMCI selectively affect context reversal learning when OFC/VMFC functions are spared. This deficit is not influenced by the valence of the outcome (positive or negative feedback) and by executive dysfunctions.  相似文献   

6.
Animal experiments provide evidence that learning to associate an auditory stimulus with a reward causes representational changes in auditory cortex. However, most studies did not investigate the temporal formation of learning‐dependent plasticity during the task but rather compared auditory cortex receptive fields before and after conditioning. We here present a functional magnetic resonance imaging study on learning‐related plasticity in the human auditory cortex during operant appetitive conditioning. Participants had to learn to associate a specific category of frequency‐modulated tones with a reward. Only participants who learned this association developed learning‐dependent plasticity in left auditory cortex over the course of the experiment. No differential responses to reward predicting and nonreward predicting tones were found in auditory cortex in nonlearners. In addition, learners showed similar learning‐induced differential responses to reward‐predicting and nonreward‐predicting tones in the ventral tegmental area and the nucleus accumbens, two core regions of the dopaminergic neurotransmitter system. This may indicate a dopaminergic influence on the formation of learning‐dependent plasticity in auditory cortex, as it has been suggested by previous animal studies. Hum Brain Mapp 34:2841–2851, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The purpose of this study was to investigate basal ganglia (BG) and medial temporal lobe (MTL) dependent learning in patients with schizophrenia. Acquired equivalence is a phenomenon in which prior training to treat two stimuli as equivalent (if two stimuli are associated with the same response) increases generalization between them. The learning of stimulus-response pairs is related to the BG, whereas the MTL system participates in stimulus generalization. Forty-three patients with DSM-IV schizophrenia and 28 matched healthy controls participated. Volunteers received the Rutgers acquired equivalence task (face-fish task) by [Myers, C.E., Shohamy, D., Gluck, M.A. et al., 2003. Dissociating hippocampal versus basal ganglia contributions to learning and transfer. J. Cogn. Neurosci. 15, 185-193.], the California Verbal Learning Test (CVLT), and the n-back working memory test. The Rutgers acquired equivalence task investigates BG-dependent processes (stimulus-response learning) and MTL-dependent processes (stimulus generalization) with a single test. Results revealed that patients with schizophrenia showed a selective deficit on stimulus generalization, whereas stimulus-response learning was spared. The stimulus generalization deficit correlated with the CVLT performance (total scores from trials 1-5 and long-delay recall), but not with the n-back test performance. The number of errors during stimulus-response learning correlated with the daily chlorpromazine-equivalent dose of antipsychotics. In conclusion, this is the first study to show that patients with schizophrenia exhibit deficits during MTL-dependent learning, but not during BG-dependent learning within a single task. High-dose first generation antipsychotics may disrupt BG-dependent learning by blocking dopaminergic neurotransmission in the nigro-stiratal system.  相似文献   

8.
9.
Older people with declining cognitive function typically display deficits in declarative memory processes, often most evident on tests of associative learning (AL). The hippocampal formation (HF) is thought to be critically involved in the encoding and retrieval of such associations, consistent with neuroimaging findings that the HF is damaged in early stages of neurodegenerative disease and in older people with AL impairments. In the clinic, older people with cognitive decline commonly report difficulties associating names with faces. However, we have observed that such people are particularly impaired on tests requiring the association of novel stimuli. In Experiment 1, a series of AL tasks were administered to older people with cognitive decline to determine whether they were impaired at simply making associations, or at making associations between novel stimuli. In Experiment 2, we measured HF function in these subjects by administering an AL task designed to differentiate between HF-damaged and HF-intact individuals. Our experimental protocols were guided by a computational model of HF function in AL described by Gluck and Myers (1997). Older people with cognitive decline displayed impaired performance on tasks designed to be highly dependent upon intact HF function, including a task in which novel patterns and spatial locations were to be associated. These results suggest that the AL impairments observed in older people with cognitive decline may be due to HF dysfunction.  相似文献   

10.
Recent evidence suggests that orbitofrontal cortex lesions cause an inability to withhold inappropriate responses particularly when learned behavior must be modified to reflect changes in the likely outcome or consequence of responding. By this account, orbitofrontal cortex should not be necessary for acquisition of simple discrimination problems, but should be critical for acquiring reversals of those problems. However, previous work in rats has shown orbitofrontal cortex to be critical for withholding responses even in a simple go, no-go discrimination task. Here we have reexamined the contribution of rat orbitofrontal cortex to acquisition and reversal of go, no-go odor discrimination problems. Contrary to prior reports, we found that rats with lesions of the orbitofrontal cortex acquired novel discrimination problems at the same rate as controls. Impairments were evident in lesioned rats when the response contingencies of the odors in the discrimination problem were reversed. These findings suggest that orbitofrontal cortex is not necessary for inhibiting responses unless responses must be altered to reflect changing relationships between cues and outcomes.  相似文献   

11.
Elevated β‐amyloid and impaired synaptic function in hippocampus are among the earliest manifestations of Alzheimer's disease (AD). Most cognitive assessments employed in both humans and animal models, however, are insensitive to this early disease pathology. One critical aspect of hippocampal function is its role in episodic memory, which involves the binding of temporally coincident sensory information (e.g., sights, smells, and sounds) to create a representation of a specific learning epoch. Flexible associations can be formed among these distinct sensory stimuli that enable the “transfer” of new learning across a wide variety of contexts. The current studies employed a mouse analog of an associative “transfer learning” task that has previously been used to identify risk for prodromal AD in humans. The rodent version of the task assesses the transfer of learning about stimulus features relevant to a food reward across a series of compound discrimination problems. The relevant feature that predicts the food reward is unchanged across problems, but an irrelevant feature (i.e., the context) is altered. Experiment 1 demonstrated that C57BL6/J mice with bilateral ibotenic acid lesions of hippocampus were able to discriminate between two stimuli on par with control mice; however, lesioned mice were unable to transfer or apply this learning to new problem configurations. Experiment 2 used the APPswePS1 mouse model of amyloidosis to show that robust impairments in transfer learning are evident in mice with subtle β‐amyloid‐induced synaptic deficits in the hippocampus. Finally, Experiment 3 confirmed that the same transfer learning impairments observed in APPswePS1 mice were also evident in the Tg‐SwDI mouse, a second model of amyloidosis. Together, these data show that the ability to generalize learned associations to new contexts is disrupted even in the presence of subtle hippocampal dysfunction and suggest that, across species, this aspect of hippocampal‐dependent learning may be useful for early identification of AD‐like pathology. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
The authors propose a computational theory of the hippocampal region's function in mediating stimulus representations. The theory assumes that the hippocampal region develops new stimulus representations that enhance the discriminability of differentially predictive cues while compressing the representation of redundant cues. Other brain regions, including cerebral and cerebellar cortices, are presumed to use these hippocampal representations to recode their own stimulus representations. In the absence of an intact hippocmpal region, the theory implies that other brain regions will attempt to learn associations using previously established fixed representations. Instantiated as a connectionist network model, the theory provides a simple and unified interpretation of the functional role of the hippocampal region in a wide range of conditioning paradigms, including stimulus discrimination, reversal learning, stimulus generalization, latent inhibition, sensory preconditioning, and contextual sensitivity. The theory makes novel predictions regarding the effects of hippocampal lesions on easy-hard transfer and compound preexposure. Several prior qualitative characterizations of hippocampal function–including stimulus selection, chunking, cue configuration, and cotextual coding–are identified as task-specific special cases derivable from this more general theory. The theory suggests that a profitable direction for future empirical and theoretical research will be the study of learning tasks in which both intact and lesioned animals exhibit similar initial learning behaviors but differ on subsequent transfer and generalization tasks.  相似文献   

13.
The hippocampus and adjacent structures in the medial temporal lobe are essential for establishing new associative memories. Despite this knowledge, it is not known whether the hippocampus proper is essential for establishing such memories, nor is it known whether adjacent regions like the entorhinal cortex might contribute. To test the contributions of these regions to the formation of new associative memories, we trained rhesus monkeys to rapidly acquire arbitrary visuomotor associations, i.e., associations between visual stimuli and spatially directed actions. We then assessed the effects of reversible inactivations of either the hippocampus (Experiment 1) or entorhinal cortex (Experiment 2) on the within‐session rate of learning. For comparison, we also evaluated the effects of the inactivations on performance of problems of the same type that had been well learned prior to any inactivations. We found that inactivation of the entorhinal cortex but not hippocampus produced impairments in acquiring novel arbitrary associations. The impairment did not extend to the familiar, previously established associations. These data indicate that the entorhinal cortex is causally involved in establishing new associations, as opposed to retrieving previously learned associations. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

14.
Value-associated cues in the environment often enhance subsequent goal-directed behaviors in adults, a phenomenon supported by the integration of motivational and cognitive neural systems. Given that the interactions among these systems change throughout adolescence, we tested when the beneficial effects of value associations on subsequent cognitive control performance emerge during adolescence. Participants (N = 81) aged 13–20 completed a reinforcement learning task with four cue-incentive pairings that could yield high gain, low gain, high loss, or low loss outcomes. Next, participants completed a Go/NoGo task during fMRI where the NoGo targets comprised the previously learned cues, which tested how prior value associations influence cognitive control performance. Improved accuracy for previously learned high gain relative to low gain cues emerged with age. Older adolescents exhibited enhanced recruitment of the dorsal striatum and ventrolateral prefrontal cortex during cognitive control execution to previously learned high gain relative to low gain cues. Older adolescents also expressed increased coupling between the dorsal striatum and dorsolateral prefrontal cortex for high gain cues, whereas younger adolescents expressed increased coupling between the striatum and ventromedial prefrontal cortex. These findings reveal that learned high value cue-incentive associations enhance cognitive control in late adolescence in parallel with value-selective recruitment of corticostriatal systems.  相似文献   

15.
When navigating our world we often first plan or retrieve an ideal route to our goal, avoiding alternative paths that lead to other destinations. The medial temporal lobe (MTL) has been implicated in processing contextual information, sequence memory, and uniquely retrieving routes that overlap or “cross paths.” However, the identity of subregions of the hippocampus and neighboring cortex that support these functions in humans remains unclear. The present study used high‐resolution functional magnetic resonance imaging (hr‐fMRI) in humans to test whether the CA3/DG hippocampal subfield and parahippocampal cortex are important for processing spatial context and route retrieval, and whether the CA1 subfield facilitates prospective planning of mazes that must be distinguished from alternative overlapping routes. During hr‐fMRI scanning, participants navigated virtual mazes that were well‐learned from prior training while also learning new mazes. Some routes learned during scanning shared hallways with those learned during pre‐scan training, requiring participants to select between alternative paths. Critically, each maze began with a distinct spatial contextual Cue period. Our analysis targeted activity from the Cue period, during which participants identified the current navigational episode, facilitating retrieval of upcoming route components and distinguishing mazes that overlap. Results demonstrated that multiple MTL regions were predominantly active for the contextual Cue period of the task, with specific regions of CA3/DG, parahippocampal cortex, and perirhinal cortex being consistently recruited across trials for Cue periods of both novel and familiar mazes. During early trials of the task, both CA3/DG and CA1 were more active for overlapping than non‐overlapping Cue periods. Trial‐by‐trial Cue period responses in CA1 tracked subsequent overlapping maze performance across runs. Together, our findings provide novel insight into the contributions of MTL subfields to processing spatial context and route retrieval, and support a prominent role for CA1 in distinguishing overlapping episodes during navigational “look‐ahead” periods. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
In order to analyze the function of the hippocampus in learning, the activity of single neurons was recorded while monkeys learned a task of the type known to be impaired by damage to the hippocampus. In the conditional response task, the monkey had to learn to make one response when one stimulus was shown, and a different response when a different stimulus was shown. It had previously been shown that there are neurons in the hippocampal formation that respond in this task, to, for example, a combination of a particular visual stimulus that had been associated in previous learning with a particular behavioral response. In the present study, it was found that during such conditional response learning, the activity of 22% of the neurons in the hippocampus and parahippocampal gyrus with activity specifically related to the task altered their responses so that their activity, which was initially equal to the two new stimuli, became progressively differential to the two stimuli when the monkey learned to make different responses to the two stimuli. These changes occurred for different neurons just before, at, or just after the time when the monkey learned the correct response to make to the stimuli. In addition to these neurons, which had differential responses that were sustained for as long as the recordings continued, another population of neurons (45% of those with activity specifically related to the task) developed differential activity to the two new stimuli, yet showed such differential responses transiently for only a small number of trials at about the time when the monkey learned. These findings are consistent with the hypothesis that some synapses on hippocampal neurons modify during this type of learning so that some neurons come to respond to particular stimulus-response associations that are being learned. Further, the finding that many hippocampal neurons started to reflect the new learning, but then stopped responding differentially (the transient neurons), is consistent with the hypothesis that the hippocampal neurons with large sustained changes in their activity inhibited the transient neurons, which then underwent reverse learning, thus providing a competitive mechanism by which not all neurons are allocated to any one learned association or event.  相似文献   

17.
Social status is a salient cue that shapes our perceptions of other people and ultimately guides our social interactions. Despite the pervasive influence of status on social behavior, how information about the status of others is represented in the brain remains unclear. Here, we tested the hypothesis that social status information is embedded in our neural representations of other individuals. Participants learned to associate faces with names, job titles that varied in associated status, and explicit markers of reputational status (star ratings). Trained stimuli were presented in an functional magnetic resonance imaging experiment where participants performed a target detection task orthogonal to the variable of interest. A network of face‐selective brain regions extending from the occipital lobe to the orbitofrontal cortex was localized and served as regions of interest. Using multivoxel pattern analysis, we found that face‐selective voxels in the lateral orbitofrontal cortex – a region involved in social and nonsocial valuation, could decode faces based on their status. Similar effects were observed with two different status manipulations – one based on stored semantic knowledge (e.g., different careers) and one based on learned reputation (e.g., star ranking). These data suggest that a face‐selective region of the lateral orbitofrontal cortex may contribute to the perception of social status, potentially underlying the preferential attention and favorable biases humans display toward high‐status individuals.  相似文献   

18.
The human cortex can accommodate overlapping semantic information, such as synonyms, homonyms, or overlapping concepts. However, neuronal models of cortical networks predict Catastrophic Interference in conditions of overlapping information, obliterating old associations and sometimes preventing formation of new ones. It has been proposed that Catastrophic Interference in declarative memory is never observed in biological systems because of hippocampal pattern separation of competing associations. Here, we tested neocortical Catastrophic Interference during acquisition of overlapping associations through Fast Mapping; an incidental, exclusion based learning mechanism, that can support hippocampal‐independent learning. Young adults acquired picture‐label associations, either through explicit encoding or through Fast Mapping and were tested after 24 h. Overlapping/competing associations were presented either minutes (Early), or 22 h (Delayed) after learning. Catastrophic Interference was evident only following Fast Mapping, and only in the Delayed competition. In a follow‐up experiment, Medial Temporal Lobe (MTL) amnesic patients demonstrated retroactive Catastrophic Interference after the Early competition, despite normal memory for noninterfered Fast Mapping associations. Thus, following Fast Mapping, a biological system demonstrated susceptibility to Catastrophic Interference, as predicted by the neuronal‐model. Early retroactive Interference, however, can be prevented by MTL integrity. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Evidence suggests that dopaminergic mechanisms in the basal ganglia (BG) are important in the learning of sequential associations. To test the specificity of this hypothesis, we assessed never-medicated patients with Parkinson's disease (PD) and amnestic mild cognitive impairment (aMCI) using a chaining task. In the training phase of the chaining task, each link in a sequence of stimuli leading to reward is trained step-by-step using feedback after each decision, until the complete sequence is learned. In the probe phase of the chaining task, the context of stimulus-response associations must be used (the position of the associations in the sequence). Results revealed that patients with PD showed impaired learning during the training phase of the chaining task, but their performance was spared in the probe phase. In contrast, patients with aMCI with prominent medial temporal lobe (MTL) dysfunctions showed intact learning during the training phase of the chaining task, but their performance was impaired in the probe phase of the chaining task. These results indicate that when dopaminergic mechanisms in the BG are dysfunctional, series of stimulus-response associations are less efficiently acquired, but their sequential manner is maintained. In contrast, MTL dysfunctions may result in a non-sequential learning of associations, which may indicate a loss of contextual information.  相似文献   

20.
Nonhuman research has implicated developmental processes within the hippocampus in the emergence and early development of episodic memory, but research in humans has been constrained by the difficulty of examining hippocampal function during early development. In the present study, we assessed 48 2-year-olds with a novel paradigm in which participants completed two games on a tablet that required remembering associations between unique characters, the places they visited, and the temporal order with which they did so. At the completion of each game, a unique, novel song played. Toddlers remembered spatial locations better than temporal order during an immediate test, after a 20-minute delay, and after a week delay. After the last behavioral session, toddlers underwent an fMRI task during natural nocturnal sleep evaluating hippocampal activation in response to learned and novel songs. We found that the extent of hippocampal activation for learned songs compared to novel songs during sleep was correlated with memory for temproal order across all time delays, but not with memory for spatial locations. The results confirm that that the functional contribution of the hippocampus to early memory can be assessed during sleep and suggest that assessment of temporal aspects of memory in the current task best capture this contribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号