首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adhesion of osteoclasts (OCs) to bone and bone resorption require the assembly of specific F‐actin adhesion structures, the podosomes, and their dense packing into a sealing zone. The OC‐specific formation of the sealing zone requires the interaction of microtubule (MT) + ends with podosomes. Here, we deleted cofilin, a cortactin (CTTN)‐ and actin‐binding protein highly expressed in OCs, to determine if it acts downstream of the MT‐CTTN axis to regulate actin polymerization in podosomes. Conditional deletion of cofilin in OCs in mice, driven by the cathepsin K promoter (Ctsk‐Cre), impaired bone resorption in vivo, increasing bone density. In vitro, OCs were not able to organize podosomes into peripheral belts. The MT network was disorganized, MT stability was decreased, and cell migration impaired. Active cofilin stabilizes MTs and allows podosome belt formation, whereas MT disruption deactivates cofilin via phosphorylation. Cofilin interacts with CTTN in podosomes and phosphorylation of either protein disrupts this interaction, which is critical for belt stabilization and for the maintenance of MT dynamic instability. Accordingly, active cofilin was required to rescue the OC cytoskeletal phenotype in vitro. These findings suggest that the patterning of podosomes into a sealing zone involves the dynamic interaction between cofilin, CTTN, and the MTs + ends. This interaction is critical for the functional organization of OCs and for bone resorption. © 2016 American Society for Bone and Mineral Research.  相似文献   

2.
Fibroblast growth factor receptor 3 (FGFR3) participates in bone remodeling. Both Fgfr3 global knockout and activated mice showed decreased bone mass with increased osteoclast formation or bone resorption activity. To clarify the direct effect of FGFR3 on osteoclasts, we specifically deleted Fgfr3 in osteoclast lineage cells. Adult mice with Fgfr3 deficiency in osteoclast lineage cells (mutant [MUT]) showed increased bone mass. In a drilled‐hole defect model, the bone remodeling of the holed area in cortical bone was also impaired with delayed resorption of residual woven bone in MUT mice. In vitro assay demonstrated that there was no significant difference between the number of tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclasts derived from wild‐type and Fgfr3‐deficient bone marrow monocytes, suggesting that FGFR3 had no remarkable effect on osteoclast formation. The bone resorption activity of Fgfr3‐deficient osteoclasts was markedly decreased accompanying with downregulated expressions of Trap, Ctsk, and Mmp 9. The upregulated activity of osteoclastic bone resorption by FGF2 in vitro was also impaired in Fgfr3‐deficient osteoclasts, indicating that FGFR3 may participate in the regulation of bone resorption activity of osteoclasts by FGF2. Reduced adhesion but not migration in osteoclasts with Fgfr3 deficiency may be responsible for the impaired bone resorption activity. Our study for the first time genetically shows the direct positive regulation of FGFR3 on osteoclastic bone resorption. © 2016 American Society for Bone and Mineral Research.  相似文献   

3.
目的研究致敏淋巴细胞对破骨细胞分化及骨吸收功能的影响.方法从被骨水泥单体甲基丙烯酸甲酯(MMA)致敏的新西兰兔外周血中分离淋巴细胞并提取培养介质(LCM),分离培养兔颅骨成骨细胞和兔骨髓细胞,通过抗酒石酸酸性磷酸酶(TrACP)染色和骨磨片扫描电镜观察对破骨细胞进行鉴定.在成骨细胞与骨髓细胞的培养体系中,分别在无LCM,未经MMA刺激的LCM和经MMA刺激的LCM等3种情况下,进行成熟破骨细胞计数和TrACP活性检测.结果骨髓细胞能够分化成破骨细胞并且能在骨磨片上形成骨吸收陷窝,致敏淋巴细胞培养介质能够明显促进破骨细胞数量的增加和TrACP的分泌,在加入MMA刺激后,这种作用更加显著.结论致敏淋巴细胞能够促进骨髓破骨细胞的分化和骨吸收能力.  相似文献   

4.
CTLA4-Ig (cytotoxic T-lymphocyte antigen 4-immunoglobulin; Abatacept) is a biologic drug for rheumatoid arthritis. CTLA4 binds to the CD80/86 complex of antigen-presenting cells and blocks the activation of T cells. Although previous reports showed that CTLA4-Ig directly inhibited osteoclast differentiation, the whole inhibitory mechanism of CTLA4-Ig for osteoclast differentiation is unclear. Bone marrow macrophages (BMMs) from WT mice were cultured with M-CSF and RANKL with or without the recombinant mouse chimera CTLA4-Ig. Intracellular calcium oscillations of BMMs with RANKL were detected by staining with calcium indicator fura-2 immediately after administration of CTLA4-Ig or after one day of treatment. Calcium oscillations were analyzed using Fc receptor gamma- (FcRγ-) deficient BMMs. CTLA4-Ig inhibited osteoclast differentiation and reduced the expression of the nuclear factor of activated T cells NFATc1 in BMMs in vitro. Calcium oscillations in BMMs were suppressed by CTLA4-Ig both immediately after administration and after one day of treatment. CTLA4-Ig did not affect osteoclastogenesis and did not cause remarkable changes in calcium oscillations in FcRγ-deficient BMMs. Finally, to analyze the effect of CTLA4-Ig in vivo, we used an LPS-induced osteolysis model. CTLA4-Ig suppressed LPS-induced bone resorption in WT mice, not in FcRγ-deficient mice. In conclusion, CTLA4-Ig inhibits intracellular calcium oscillations depending on FcRγ and downregulates NFATc1 expression in BMMs. © 2019 American Society for Bone and Mineral Research.  相似文献   

5.
It is well known that bone remodeling starts with a resorption event and ends with bone formation. However, what happens in between and how resorption and formation are coupled remains mostly unknown. Remodeling is achieved by so‐called basic multicellular units (BMUs), which are local teams of osteoclasts, osteoblasts, and reversal cells recently proven identical with osteoprogenitors. Their organization within a BMU cannot be appropriately analyzed in common histology. The originality of the present study is to capture the events ranging from initiation of resorption to onset of formation as a functional continuum. It was based on the position of specific cell markers in longitudinal sections of Haversian BMUs generating new canals through human long bones. It showed that initial resorption at the tip of the canal is followed by a period where newly recruited reversal/osteoprogenitor cells and osteoclasts alternate, thus revealing the existence of a mixed “reversal‐resorption” phase. Three‐dimensional reconstructions obtained from serial sections indicated that initial resorption is mainly involved in elongating the canal and the additional resorption events in widening it. Canal diameter measurements show that the latter contribute the most to overall resorption. Of note, the density of osteoprogenitors continuously grew along the “reversal/resorption” surface, reaching at least 39 cells/mm on initiation of bone formation. This value was independent of the length of the reversal/resorption surface. These observations strongly suggest that bone formation is initiated only above a threshold cell density, that the length of the reversal/resorption period depends on how fast osteoprogenitor recruitment reaches this threshold, and thus that the slower the rate of osteoprogenitor recruitment, the more bone is degraded. They lead to a model where the newly recognized reversal/resorption phase plays a central role in the mechanism linking osteoprogenitor recruitment and the resorption‐formation switch. © 2017 American Society for Bone and Mineral Research.  相似文献   

6.
Osteoblast‐mediated bone formation is coupled to osteoclast‐mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age‐related bone loss. Osteoclasts release and activate TGF‐β from the bone matrix. Here we show that osteoclast‐specific inhibition of TGF‐β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF‐β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF‐β receptor signaling. Osteoclasts in aged murine bones had lower TGF‐β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF‐β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF‐β availability with age. Therefore, osteoclast responses to TGF‐β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age‐related bone loss. © 2015 American Society for Bone and Mineral Research.  相似文献   

7.
8.
Legg-Calvé-Perthes disease (LCPD) is a juvenile form of ischemic femoral head osteonecrosis, which produces chronic hip synovitis, permanent femoral head deformity, and premature osteoarthritis. Currently, there is no medical therapy for LCPD. Interleukin-6 (IL-6) is significantly elevated in the synovial fluid of patients with LCPD. We hypothesize that IL-6 elevation promotes chronic hip synovitis and impairs bone healing after ischemic osteonecrosis. We set out to test if anti-IL-6 therapy using tocilizumab can decrease hip synovitis and improve bone healing in the piglet model of LCPD. Fourteen piglets were surgically induced with ischemic osteonecrosis and assigned to two groups: the no treatment group (n = 7) and the tocilizumab group (15 to 20 mg/kg, biweekly intravenous injection, n = 7). All animals were euthanized 8 weeks after the induction of osteonecrosis. Hip synovium and femoral heads were assessed for hip synovitis and bone healing using histology, micro-CT, and histomorphometry. The mean hip synovitis score and the number of synovial macrophages and vessels were significantly lower in the tocilizumab group compared with the no treatment group (p < .0001, p = .01, and p < .01, respectively). Micro-CT analysis of the femoral heads showed a significantly higher bone volume in the tocilizumab group compared with the no treatment group (p = .02). The histologic assessment revealed a significantly lower number of osteoclasts per bone surface (p < .001) in the tocilizumab group compared with the no treatment group. Moreover, fluorochrome labeling showed a significantly higher percent of mineralizing bone surface (p < .01), bone formation rate per bone surface (p < .01), and mineral apposition rate (p = .04) in the tocilizumab group. Taken together, tocilizumab therapy decreased hip synovitis and osteoclastic bone resorption and increased new bone formation after ischemic osteonecrosis. This study provides preclinical evidence that tocilizumab decreases synovitis and improves bone healing in a large animal model of LCPD. © 2020 American Society for Bone and Mineral Research (ASBMR).  相似文献   

9.
Aseptic loosening and periprosthetic infection leading to inflammatory osteolysis is a major complication associated with total joint arthroplasty (TJA). The liberation of bacterial products and/or implant‐derived wear particles activates immune cells that produce pro‐osteoclastogenic cytokines that enhance osteoclast recruitment and activity, leading to bone destruction and osteolysis. Therefore, agents that prevent the inflammatory response and/or attenuate excessive osteoclast (OC) formation and bone resorption offer therapeutic potential by prolonging the life of TJA implants. Alexidine dihydrochloride (AD) is a bisbiguanide compound commonly used as an oral disinfectant and in contact lens solutions. It possesses antimicrobial, anti‐inflammatory and anticancer properties; however, its effects on OC biology are poorly described. Here, we demonstrate that AD inhibits OC formation and bone resorption in vitro and exert prophylatic protection against LPS‐induced osteolysis in vivo. Biochemical analysis demonstrated that AD suppressed receptor activator of NF‐κB ligand (RANKL)‐induced activation of mitogen‐activated protein kinases (ERK, p38, and JNK), leading to the downregulation of NFATc1. Furthermore, AD disrupted F‐actin ring formation and attenuated the ability of mature OC to resorb bone. Collectively, our findings suggest that AD may be a promising prophylactic anti‐osteoclastic/resorptive agent for the treatment of osteolytic diseases caused by excessive OC formation and function. © 2015 American Society for Bone and Mineral Research.  相似文献   

10.
p130Cas, Crk‐associated substrate (Cas), is an adaptor/scaffold protein that plays a central role in actin cytoskeletal reorganization. We previously reported that p130Cas is not tyrosine‐phosphorylated in osteoclasts derived from Src‐deficient mice, which are congenitally osteopetrotic, suggesting that p130Cas serves as a downstream molecule of c‐Src and is involved in osteoclastic bone resorption. However, the physiological role of p130Cas in osteoclasts has not yet been confirmed because the p130Cas‐deficient mice displayed embryonic lethality. Osteoclast‐specific p130Cas conditional knockout (p130CasΔOCL–) mice exhibit a high bone mass phenotype caused by defect in multinucleation and cytoskeleton organization causing bone resorption deficiency. Bone marrow cells from p130CasΔOCL– mice were able to differentiate into osteoclasts and wild‐type cells in vitro. However, osteoclasts from p130CasΔOCL– mice failed to form actin rings and resorb pits on dentine slices. Although the initial events of osteoclast attachment, such as β3‐integrin or Src phosphorylation, were intact, the Rac1 activity that organizes the actin cytoskeleton was reduced, and its distribution was disrupted in p130CasΔOCL– osteoclasts. Dedicator of cytokinesis 5 (Dock5), a Rho family guanine nucleotide exchanger, failed to associate with Src or Pyk2 in osteoclasts in the absence of p130Cas. These results strongly indicate that p130Cas plays pivotal roles in osteoclastic bone resorption. © 2013 American Society for Bone and Mineral Research.  相似文献   

11.
12.
13.
Odanacatib (ODN) is a selective and reversible inhibitor of cathepsin K (CatK) currently being developed as a once‐weekly treatment for osteoporosis. In this study, we evaluated the effects of ODN on bone turnover, bone mineral density (BMD), and bone strength in the lumbar spine of estrogen‐deficient, skeletally mature rhesus monkeys. Ovariectomized (OVX) monkeys were treated in prevention mode for 21 months with either vehicle, ODN 6 mg/kg, or ODN 30 mg/kg (p.o., q.d.) and compared with intact animals. ODN treatment persistently suppressed the bone resorption markers (urinary NTx [75% to 90%] and serum CTx [40% to 55%]) and the serum formation markers (BSAP [30% to 35%] and P1NP [60% to 70%]) versus vehicle‐treated OVX monkeys. Treatment with ODN also led to dose‐dependent increases in serum 1‐CTP and maintained estrogen deficiency–elevated Trap‐5b levels, supporting the distinct mechanism of CatK inhibition in effectively suppressing bone resorption without reducing osteoclast numbers. ODN at both doses fully prevented bone loss in lumbar vertebrae (L1 to L4) BMD in OVX animals, maintaining a level comparable to intact animals. ODN dose‐dependently increased L1 to L4 BMD by 7% in the 6 mg/kg group (p < 0.05 versus OVX‐vehicle) and 15% in the 30 mg/kg group (p < 0.05 versus OVX‐vehicle) from baseline. Treatment also trended to increase bone strength, associated with a positive and highly significant correlation (R = 0.838) between peak load and bone mineral content of the lumbar spine. Whereas ODN reduced bone turnover parameters in trabecular bone, the number of osteoclasts was either maintained or increased in the ODN‐treated groups compared with the vehicle controls. Taken together, our findings demonstrated that the long‐term treatment with ODN effectively suppressed bone turnover without reducing osteoclast number and maintained normal biomechanical properties of the spine of OVX nonhuman primates. © 2012 American Society for Bone and Mineral Research  相似文献   

14.
Treatment with the cathepsin K (CatK) inhibitor odanacatib (ODN) protects against bone loss and maintains normal biomechanical properties in the spine and hip of ovariectomized (OVX) preclinical models. Here, we characterized the effects of ODN on the dynamics of cortical modeling and remodeling, and dimension and strength of the central femur in adult OVX‐rhesus monkeys. Animals were treated with vehicle or ODN (6 or 30 mg/kg, once per day [q.d., p.o.]) in prevention mode for 21 months. Calcein and tetracycline double‐labeling were given at 12 and 21 months, and the femoral cross‐sections were subjected to dynamic histomorphometric and cement line analyses. ODN treatment significantly increased periosteal and endocortical bone formation (BFR/BS), accompanied with an increase in endocortical mineralizing surface (102%, p < 0.01) with the 6 mg/kg dose. ODN at both doses reduced remodeling hemiosteon numbers by 51% and 66% (p < 0.05), respectively, and ODN 30 mg/kg numerically reduced activation frequency without affecting wall thickness. On the same endocortical surface, ODN increased all modeling‐based parameters, while reducing intracortical remodeling, consistent with the observed no treatment effects on cortical porosity. ODN 30 mg/kg markedly increased cortical thickness (CtTh, p < 0.001) and reduced marrow area (p < 0.01). Lastly, ODN treatment increased femoral structural strength (p < 0.001). Peak load was positively correlated with the increases in bone mineral content (BMC) (r2 = 0.9057, p < 0.0001) and CtTh (r2 = 0.6866, p < 0.0001). Taken together, by reducing cortical remodeling‐based and stimulating modeling‐based bone formation, ODN significantly improved cortical dimension and strength in OVX monkeys. This novel mechanism of CatK inhibition in stimulating cortical formation suggests that ODN represents a novel therapeutic approach for the treatment of osteoporosis. © 2014 American Society for Bone and Mineral Research.  相似文献   

15.
The development of the potential of osteoblasts to support bone resorption by osteoclasts in response to roughness on bone slices was examined in the co-incubation cell system of immature osteoclasts and osteoblastic cells. The immature osteoclasts, which need alkaline phospatase (ALP)-positive osteoblastic cells for bone resorption, were generated in mouse spleen cultures with 1, 25-dihydroxyvitamin D3 and prostaglandin E2. ALP-negative osteoblastic cells from mouse calvaria were incubated on rough surfaced bone slices for 3 days. The number of ALP-positive cells increased greatly on the rough surface, but little on the smooth surface. When immature osteoclasts were added and incubated for 1 more day, the resorption pit number and the total pit areas on the smooth surface were not much different from those before incubation but were approximately four times higher on the rough surface. Received: 21 July 1998 / Accepted: 12 March 1999  相似文献   

16.
The effects of nitrogen-containing bisphosphonates (N-BPs) on osteoclasts (Ocs) may differ with dose and regimen. N-BPs reduce Oc bone resorption by inhibiting the enzyme farnesyl diphosphate synthase (FPPS), an effect counteracted by geranylgeraniol (GGOH), which restores geranylgeranylation downstream of FPPS. We assessed GGOH effects on inhibition of bone resorption by the N-BPs alendronate (ALN), ibandronate (IBN), and zoledronate (ZOL) in an assay of rabbit Oc resorption of bovine cortical bone. GGOH blocked inhibition of resorption at low, but not high, N-BP concentrations, with a 14- to 20-fold increase in IC50 values for each N-BP. In vivo, growing male rats were administered doses calculated to mimic bioavailable exposures in daily (ALN, IBN), weekly (ALN), monthly (IBN), and yearly (ZOL) clinical regimens. Tibiae were harvested at 48 h, and metaphyses were analyzed. With lower ALN and IBN doses, Oc numbers rose by 26–48 %, morphology was normal, and there was no increase in apoptotic Ocs. In contrast, with higher IBN and ZOL doses, bone-associated Ocs were generally rounded in appearance and numbers of nuclei/Oc versus vehicle increased 42 and 31 %, respectively (P < 0.05). With ZOL, there was no rise in Oc number, but there was a 6.5-fold increase in apoptotic Ocs versus vehicle and a ≥13.5-fold increase versus lower-dose ALN or IBN (P < 0.05). With higher-dose IBN there was no rise in Oc number but 7- and 14-fold increases in Oc apoptosis versus low-dose ALN and IBN (P < 0.02). These results suggest that different mechanisms may come into play across the dosing spectrum of N-BPs.  相似文献   

17.
Osteopetrosis is a group of rare inherited skeletal disorders characterized by a marked increase in bone density due to deficient bone resorption. Pathogenic variants in several genes involved in osteoclast differentiation and/or function have been reported to cause osteopetrosis. Solute carrier family 4 member 2 (SLC4A2, encoding anion exchanger 2) plays an important role in osteoclast differentiation and function by exchange of Cl with HCO3. Biallelic Slc4a2 loss-of-function mutations in mice and cattle lead to osteopetrosis with osteoclast deficiency; however, pathogenic SLC4A2 variants in humans have not been reported. In this study, we describe a patient with autosomal recessive osteopetrosis due to biallelic pathogenic variants in SLC4A2. We identified novel compound heterozygous variants in SLC4A2 (NM_003040.4: c.556G>A [p.A186T] and c.1658T>C [p.V553A]) by exome sequencing. The measurement of intracellular Cl showed that the variants decrease the anion exchange activity of SLC4A2. The impact of the variants on osteoclast differentiation was assessed by a gene knockout-rescue system using a mouse macrophage cell line, RAW 264.7. The Slc4a2-knockout cells show impaired osteoclastogenesis, which was rescued by the wild-type SLC4A2, but not by the mutant SLC4A2s. Immunofluorescence and pit assay revealed that the mutant SLC4A2s leads to abnormal podosome belt formation with impaired bone absorption. This is the first report on an individual affected by SLC4A2-associated osteopetrosis (osteopetrosis, Ikegawa type). With functional studies, we prove that the variants lead to SLC4A2 dysfunction, which altogether supports the importance of SLC4A2 in human osteoclast differentiation. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

18.
Bone remodeling involves old bone resorption by osteoclasts and new bone formation by osteoblasts. However, the precise cellular mechanisms underlying these consecutive events remain obscure. To address this question in vitro, we have established a cell culture model in which the resorption lacunae are first created by osteoclasts and osteoblast-like cells accomplish the subsequent bone formation. We isolated osteoclasts from rat bone marrow and cultured them on bovine bone slices for 48 hours to create resorption lacunae. After removing osteoclasts, confluent differentiated primary osteoblast cultures were trypsinized and the cells were replaced on the resorbed bone slices for up to 14 days. The cultures were then examined by confocal microscopy, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Our data suggest that after osteoclastic bone resorption, osteoblast-like cells, not macrophages, remove the remaining organic matrix in the lacuna. After cleaning the lacuna, osteoblast-like cells deposit new collagen fibrils at the bottom of the lacuna and calcify the newly formed matrix only, as visualized by labeled tetracycline accumulation merely in the lacuna during the osteoblast culture. Furthermore, an electron-dense layer rich in osteopontin separates the old and new matrices suggesting formation of the cement line. Since the morphology of the newly formed matrix is similar to the natural bone with respect to the cement line and osteoid formation as well as matrix mineralization, the present method provides for the first time a powerful in vitro method to study the cellular mechanisms leading to bone remodeling also in vivo.  相似文献   

19.
ObjectivesMicroRNAs play important roles in cancer. In many cancers, miR-145 acts as a tumor suppressor, and it is down-regulated in bladder cancer. In the present study, we explored the modulation of oncogenic gene PAK1 by miR-145 in bladder cancer.Material and methodsExpression of miR-145 was detected in bladder cancer tissues and cell lines by quantitative real-time polymerase chain reaction. Through the bioinformatics approach, PAK1 has been predicted to be a direct target of miR-145 and was confirmed by the PAK1 messenger RNA 3′-untranslated region luciferase activity assay. To investigate whether miR-145 regulates PAK1 expression, it was overexpressed in J82 and T24 bladder cancer cells. In 10 paired bladder normal and tumor tissues, we determined the relationship between miR-145 and PAK1 through quantitative real-time polymerase chain reaction and western blot. By using transwell invasion assay and western blotting analysis, we investigated the effects of miR-145 and PAK1 on bladder cancer cell invasion and expression of invasion marker genes.ResultsThe level of miR-145 decreases and PAK1 protein expression up-regulates in bladder cancer tissue, as compared with the paired normal bladder tissue. Moreover, miR-145 directly targets PAK1 in bladder cancer cells. The level of miR-145 negatively correlates with PAK1 protein expression in bladder cancer. In addition, PAK1 promotes invasion and enhances the expression and activity of MMP-9, whereas miR-145 inhibits bladder cancer cell invasion and expressions of PAK1 and MMP-9.ConclusionsOur results indicate that miR-145 inhibits bladder cancer cell invasion, at least partly through targeting PAK1. Restoration or replacement of miR-145 could be an efficient approach to inhibit PAK1 and bladder cancer development in the tumor therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号