首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Recent studies show that Janus Fe3O4‐TiO2 nanoparticles (NPs) have potential applications as a multifunctional agent of magnetic resonance imaging (MRI) and photodynamic therapy (PDT) for the diagnosis and therapy of cancer. However, little work has been done on their biological effects. To evaluate the toxicity and underlying molecular mechanisms of Janus Fe3O4‐TiO2 nanoparticles, an in vitro study using a human liver cell line HL‐7702 cells was conducted. For comparison, the Janus Fe3O4‐TiO2 NPs parent material TiO2 NPs was also evaluated. Results showed that both Fe3O4‐TiO2 NPs and TiO2 NPs decreased cell viability and ATP levels when applied in treatment, but increased malonaldehyde (MDA) and reactive oxygen species (ROS) generation. Mitochondria JC‐1 staining assay showed that mitochondrial membrane permeability injury occurred in both NPs treated cells. Cell viability analysis showed that TiO2 NPs induced slightly higher cytotoxicity than Fe3O4‐TiO2 NPs in HL7702 cells. Western blotting indicated that both TiO2 NPs and Fe3O4‐TiO2 NPs could induce apoptosis, inflammation, and carcinogenesis related signal protein alterations. Comparatively, Fe3O4‐TiO2 NPs induced higher signal protein expressions than TiO2 NPs under a high treatment dose. However, under a low dose (6.25 μg/cm2), neither NPs had any significant toxicity on HL7702 cells. In addition, our results suggest both Fe3O4‐TiO2 NPs and TiO2 NPs could induce oxidative stress and have a potential carcinogenetic effect in vitro. Further studies are needed to elaborate the detailed mechanisms of toxicity induced by a high dose of Fe3O4‐TiO2 NPs.  相似文献   

2.
Therapeutic cancer vaccines promote immune responses by delivering tumour‐specific antigens. Recently, we developed iron oxide (Fe3O4)–zinc oxide (ZnO) core‐shell nanoparticles (CSNPs) as carriers for antigen delivery into dendritic cells (DCs), and the CSNPs were injected subcutaneously into C57BL/6 mice to examine the systemic toxicity, tissue distribution and excretion of the CSNPs. The doses injected were 0, 4, 20 and 200 mg kg–1 weekly for 4 weeks. No significant changes were observed after the CSNPs administration with respect to mortality, clinical observations, body weight, food intake, water consumption, urinalysis, haematology, serum biochemistry,and organ weights. A dose‐dependent increase in granulomatous inflammation was observed at the injection site of the CSNP‐treated animals, but no other histopathological lesions in other organs could be attributed to the CSNPs. The Zn concentration, which is an indicator for CSNPs, was not significantly higher in the sampled tissues, urine, or faeces after the CSNP injection. In contrast, the Zn concentration at the subcutaneous skin of the site injected with the CSNPs increased in a dose‐dependent manner, along with a macroscopic deposition of the CSNPs. The CSNP residue at the injection site resulted in a foreign body response with the appearance of macrophage infiltration, but otherwise did not show any systemic distribution or toxicity at up to 200 mg kg–1 during this study. In conclusion, CSNPs could be used as good antigen carriers for DC‐based immunotherapy, although further study is needed to completely clear the residue of the CSNPs at the injection site. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The increasing application of silver nanoparticles (AgNPs) has been raising concerns about their potential adverse effects to human and the environment. However, the knowledge on the systemic toxicity of AgNPs in mammalian systems is still limited. The present study investigated the toxicity of PVP‐coated AgNPs in rats treated with repeated oral administration, and compared that with equivalent dose of AgNO3. Specifically, one hundred male and female rats were orally administrated with particulate or ionic forms of silver (Ag) separately at doses of 0.5 and 1 mg kg?1 body weight daily for 28 days. The results reveal no significant toxic effects of AgNPs and AgNO3 up to 1 mg kg?1 body weight, with respect to the body weight, organ weight, food intake, and histopathological examination. Ag distribution pattern in organs of rats treated with AgNPs was similar to that of AgNO3 treated rats, showing liver and kidneys are the main target organs followed by testis and spleen. The total Ag contents in organs were significantly lower in the AgNPs treated rats than those in the AgNO3 treated rats. However, the comparisons between AgNPs and AgNO3 treatments further indicated more potent of AgNPs in biochemical and hematological parameters in rats, including red blood cell count (RBC), platelet count (PLT), white blood cell count (WBC) and aspartate transaminase (AST). Results of this study suggested that particulate Ag at least partially contributed to the observed toxicity of AgNPs, and both ionic and particulate Ag should be taken into consideration in toxicological evaluation of AgNPs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 609–618, 2017.  相似文献   

4.
The increasing use of yttrium oxide (Y2O3) nanoparticles (NPs) entails an improved understanding of their potential impact on the environmental and human health. In the present study, the acute oral toxicity of Y2O3 NPs and their microparticles (MPs) was carried out in female albino Wistar rats with 250, 500 and 1000 mg kg−1 body weight doses. Before the genotoxicity evaluation, characterization of the particles by transmission electron microscopy, dynamic light scattering and laser Doppler velocimetry was performed. The genotoxicity studies were conducted using micronucleus and comet assays. Results showed that Y2O3 NP‐induced significant DNA damage at higher dose (1000 mg kg−1 body weight) in peripheral blood leukocytes and liver cells, micronucleus formation in bone marrow and peripheral blood cells. The findings from biochemical assays depicted significant alterations in aspartate transaminase, alanine transaminase, alkaline phosphatase, malondialdehyde, superoxide dismutase, reduced glutathione, catalase and lactate dehydrogenase levels in serum, liver and kidneys at the higher dose only. Furthermore, tissue biodistribution of both particles was analyzed by inductively coupled plasma optical emission spectrometry. Bioaccumulation of yttrium (Y) in all tissues was significant and dose‐, time‐ and organ‐dependent. Moreover, Y2O3 NP‐treated rats exhibited higher tissue distribution along with greater clearance through urine whereas Y2O3 MP‐dosed animals depicted the maximum amount of Y in the feces. Hence, the results indicated that bioaccumulation of Y2O3 NPs via its Y ions may induce genotoxic effects.  相似文献   

5.
In the near future, nanotechnology is envisaged for large‐scale use. Hence health and safety issues of nanoparticles (NPs) should be promptly addressed. Twenty‐eight‐day oral toxicity, genotoxicity, biochemical alterations, histopathological changes and tissue distribution of nano and microparticles (MPs) of manganese oxide (MnO2) in Wistar rats was studied. Genotoxicity was assessed using comet, micronucleus and chromosomal aberration assays. The results demonstrated a significant increase in DNA damage in leukocytes, micronuclei and chromosomal aberrations in bone marrow cells after exposure of MnO2‐NPs at 1000, 300 mg kg–1 bw per day and MnO2‐MPs at the dose of 1000 mg kg–1 bw per day. Our findings showed acetylcholinestrase inhibition at 1000 as well as at 300 mg kg–1 bw per day in blood and with all the doses in the brain indicating the toxicity of MnO2‐NPs. Further, the doses significantly inhibited different ATPases in the brain P2 fraction. Significant changes were observed in aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in the liver, kidney and serum in a dose‐dependent manner. MnO2‐MPs at 1000 mg kg–1 bw per day were found to induce significant alterations in biochemical enzymes. A significant distribution was found in all the tissues in a dose‐dependent manner. MnO2‐NPs showed a much higher absorptivity and tissue distribution as compared with MnO2‐MPs. A large fraction of MnO2‐NPs and MnO2‐MPs was cleared by urine and feces. Histopathological analysis revealed that MnO2‐NPs caused alterations in liver, spleen, kidney and brain. The MnO2‐NPs induced toxicity at lower doses compared with MnO2‐MPs. Further, this study did not display gender differences after exposure to MnO2‐NPs and MnO2‐MPs. Therefore, the results suggested that prolonged exposure to MnO2 has the potential to cause genetic damage, biochemical alterations and histological changes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Microglia as the resident macrophage-like cells in the central nervous system (CNS) play a pivotal role in the innate immune responses of CNS. Understanding the reactions of microglia cells to nanoparticle exposure is important in the exploration of neurobiology of nanoparticles. Here we provide a systemic mapping of microglia and the corresponding pathological changes in olfactory-transport related brain areas of mice with Fe2O3-nanoparticle intranasal treatment. We showed that intranasal exposure of Fe2O3 nanoparticle could lead to pathological alteration in olfactory bulb, hippocampus and striatum, and caused microglial proliferation, activation and recruitment in these areas, especially in olfactory bulb. Further experiments with BV2 microglial cells showed the exposure to Fe2O3 nanoparticles could induce cells proliferation, phagocytosis and generation of ROS and NO, but did not cause significant release of inflammatory factors, including IL-1β, IL-6 and TNF-α. Our results indicate that microglial activation may act as an alarm and defense system in the processes of the exogenous nanoparticles invading and storage in brain.  相似文献   

7.
Nano-silicon dioxide (SiO2) is used nowadays in several biomedical applications such as drug delivery and cancer therapy, and is produced on an industrial scale as additive to paints and coatings, cosmetics and food. Data regarding the long-term biokinetics of SiO2 engineered nanoparticles (ENPs) is lacking. In this study, the whole-body biodistribution of SiO2 core-shell ENPs containing a paramagnetic core of Fe3O4 was investigated after a single exposure via intravenous injection or intratracheal instillation in mice. The distribution and accumulation in different organs was evaluated for a period of 84 days using several techniques, including magnetic resonance imaging, inductively coupled plasma mass spectrometry, X-ray fluorescence and X-ray absorption near edge structure spectroscopy. We demonstrated that intravenously administered SiO2 ENPs mainly accumulate in the liver, and are retained in this tissue for over 84 days. After intratracheal instillation, an almost complete particle clearance from the lung was seen after 84 days with distribution to spleen and kidney. Furthermore, we have strong evidence that the ENPs retain their original core-shell structure during the whole observation period. This work gives an insight into the whole-body biodistribution of SiO2 ENPs and will provide guidance for further toxicity studies.  相似文献   

8.
《Inhalation toxicology》2013,25(4):348-354
Inhalation toxicity and exposure assessment studies for nonfibrous particulates have traditionally been conducted using particle mass measurements as the preferred dose metric (i.e., mg or μg/m3). However, currently there is a debate regarding the appropriate dose metric for nanoparticle exposure assessment studies in the workplace. The objectives of this study were to characterize aerosol exposures and toxicity in rats of freshly generated amorphous silica (AS) nanoparticles using particle number dose metrics (3.7?×?107 or 1.8?×?108 particles/cm3) for 1- or 3-day exposures. In addition, the role of particle size (d50?=?37 or 83?nm) on pulmonary toxicity and genotoxicity endpoints was assessed at several postexposure time points. A nanoparticle reactor capable of producing, de novo synthesized, aerosolized amorphous silica nanoparticles for inhalation toxicity studies was developed for this study. SiO2 aerosol nanoparticle synthesis occurred via thermal decomposition of tetraethylorthosilicate (TEOS). The reactor was designed to produce aerosolized nanoparticles at two different particle size ranges, namely d50?=?~30?nm and d50?=?~80?nm; at particle concentrations ranging from 107 to 108 particles/cm3. AS particle aerosol concentrations were consistently generated by the reactor. One- or 3-day aerosol exposures produced no significant pulmonary inflammatory, genotoxic, or adverse lung histopathological effects in rats exposed to very high particle numbers corresponding to a range of mass concentrations (1.8 or 86?mg/m3). Although the present study was a short-term effort, the methodology described herein can be utilized for longer-term inhalation toxicity studies in rats such as 28-day or 90-day studies. The expansion of the concept to subchronic studies is practical, due, in part, to the consistency of the nanoparticle generation method.  相似文献   

9.
Metal oxide nanoparticles are often used as industrial catalysts and elevated levels of these particles have been clearly demonstrated at sites surrounding factories. To date, limited toxicity data on metal oxide nanoparticles are available. To understand the impact of these airborne pollutants on the respiratory system, airway epithelial (HEp-2) cells were exposed to increasing doses of silicon oxide (SiO2), ferric oxide (Fe2O3) and copper oxide (CuO) nanoparticles, the leading metal oxides found in ambient air surrounding factories. CuO induced the greatest amount of cytotoxicity in a dose-dependent manner; while even high doses (400 μg/cm2) of SiO2 and Fe2O3 were non-toxic to HEp-2 cells. Although all metal oxide nanoparticles were able to generate ROS in HEp-2 cells, CuO was better able to overwhelm antioxidant defenses (e.g. catalase and glutathione reductase). A significant increase in the level of 8-isoprostanes and in the ratio of GSSG to total glutathione in cells exposed to CuO suggested that ROS generated by CuO induced oxidative stress in HEp-2 cells. Co-treatment of cells with CuO and the antioxidant resveratrol increased cell viability suggesting that oxidative stress may be the cause of the cytotoxic effect of CuO. These studies demonstrated that there is a high degree of variability in the cytotoxic effects of metal oxides, that this variability is not due to the solubility of the transition metal, and that this variability appears to involve sustained oxidative stress possibly due to redox cycling.  相似文献   

10.
Berberine, an bioactive isoquinolin alkaloid from traditional Chinese herbs, is considered to be a promising agent based on its remarkable activity against hepatocellular carcinoma. However, the clinical application of this nature compound had been hampered owing to its properties such as poor aqueous solubility, low gastrointestinal absorption, and reduced bioavailability. Therefore, we developed Janus magnetic mesoporous silica nanoparticles (Fe3O4‐mSiO2 NPs) consisting of a Fe3O4 head for magnetic targeting and a mesoporous SiO2 body for berberine delivery. A pH‐sensitive group was introduced on the surface of mesoporous silica for berberine loading to develop a tumor microenvironment‐responsive nanocarrier, which exhibited uniform morphology, good superparamagnetic properties, high drug‐loading amounts, superior endocytic ability, and low cytotoxicity. Berberine‐loaded Fe3O4‐mSiO2 NPs exerted extraordinarily high specificity for hepatocellular carcinoma cells, which was due to the pH‐responsive berberine release, as well as higher endocytosis capacity in hepatocellular carcinoma cells rather than normal liver cells. More importantly, an external magnetic field could significantly improve antitumor activity of Ber‐loaded Fe3O4‐mSiO2 NPs through enhancing berberine internalization. Taken together, our results suggest that Janus nanocarriers driven by the magnetic field may provide an effective and safe way to facilitate clinical use of berberine against hepatocellular carcinoma.  相似文献   

11.

Purpose

Tumor targeting could greatly promote the performance of magnetic nanomaterials as MRI (Magnetic Resonance Imaging) agent for tumor diagnosis. Herein, we reported a novel magnetic nanoparticle modified with PLA (poly lactic acid)-PEG (polyethylene glycol)-DG (D-glucosamine) as Tumor-targeted MRI Contrast Agent.

Methods

In this work, we took use of the D-glucose passive targeting on tumor cells, combining it on PLA-PEG through amide reaction, and then wrapped the PLA-PEG-DG up to the Fe3O4@OA NPs. The stability and anti phagocytosis of Fe3O4@OA@PLA-PEG-DG was tested in vitro; the MRI efficiency and toxicity was also detected in vivo.

Results

These functional magnetic nanoparticles demonstrated good biocompatibility and stability both in vitro and in vivo. Cell experiments showed that Fe3O4@OA@PLA-PEG-DG nanoparticles exist good anti phagocytosis and high targetability. In vivo MRI images showed that the contrast effect of Fe3O4@OA@PLA-PEG-DG nanoparticles prevailed over the commercial non tumor-targeting magnetic nanomaterials MRI agent at a relatively low dose.

Conclusions

The DG can validly enhance the tumor-targetting effect of Fe3O4@OA@PLA-PEG nanoparticle. Maybe MRI agents with DG can hold promise as tumor-targetting development in the future.
  相似文献   

12.
This study investigated the oxidative stress induced after acute oral treatment with 500, 1000 and 2000 mg kg?1 doses of Al2O3‐30 and ?40 nm and bulk Al2O3 in Wistar rats. Both the nanomaterials induced significant oxidative stress in a dose‐dependent manner in comparison to the bulk. There was no significant difference between the two nanomaterials. However, the effect decreased with increase with time after treatment. The histopathological examination showed lesions only in liver with Al2O3 nanomaterials at 2000 mg kg?1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The aim of this study was to determine whether repeated exposure to iron oxide nanoparticles (Fe2O3‐NPs) could be toxic to mice testis. Fe2O3‐NPs (25 and 50 mg/kg) were intraperitoneally administered into mice once a week for 4 weeks. Our study showed that Fe2O3‐NPs have the ability to cross the blood‐testis barrier to get into the testis. The findings showed that exposure resulted in the accumulation of Fe2O3‐NPs which was evidenced from the iron content and accumulation in the testis. Furthermore, 25 and 50 mg/kg Fe2O3‐NPs administration increased the reactive oxygen species, lipid peroxidation, protein carbonyl content, glutathione peroxidase activity, and nitric oxide levels with a concomitant decrease in the levels of antioxidants—superoxide dismutase, catalase, glutathione, and vitamin C. Increased expression of Bax, cleaved‐caspase‐3, and cleaved‐PARP confirms apoptosis. Serum testosterone levels increased with increased concentration of Fe2O3‐NPs exposure. In addition, the histopathological lesions like vacuolization, detachment, and sloughing of germ cells were also observed in response to Fe2O3‐NPs treatment. The data from our study entailed that testicular toxicity caused by Fe2O3‐NPs exposure may be associated with Fe2O3‐NPs accumulation leading to oxidative stress and apoptosis. Therefore, precautions should be taken in the safe use of Fe2O3‐NPs to avoid complications in the fertility of males. Further research will unravel the possible molecular mechanisms on testicular toxicity of Fe2O3‐NPs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 594–608, 2017.  相似文献   

14.
15.
The use of engineered nanoparticles (NPs) across multiple fields and applications has rapidly increased over the last decade owing to their unusual properties. However, there is an increased need in understanding their toxicological effect on human health. Particularly, iron oxide (Fe3O4) have been used in various sectors, including biomedical, food, and agriculture, but the current understanding of their impact on human health is inadequate. In this investigation, we assessed the toxic effect of Fe3O4 NPs on human mesenchymal stem cells (hMSCs) adopting cell viability, cellular morphological changes, mitochondrial transmembrane potential, and cell‐cycle progression assessment methodologies. Furthermore, the expression of oxidative stress, cell death, and cell‐cycle regulatory genes was assessed using quantitative polymerase chain reaction. The Fe3O4 NPs induced cytotoxicity and nuclear morphological changes in hMSCs by dose and time exposure. Cell‐cycle analysis indicated that Fe3O4 NPs altered the cell‐cycle progression through a decrease in the proportion of cells in the G0–G1 phase. The hMSC mitochondrial membrane potential loss increased with an increase in the concentration of Fe3O4 NPs exposure. The observed expression levels of the CYP1A, TNF3, TNFSF10, E2F1, and CCNC genes were significantly upregulated in hMSCs in response to Fe3O4 NPs exposure. Our findings suggest that Fe3O4 NPs caused metabolic stress through altered cell cycle, oxidative stress, and cell death regulatory gene expression in hMSCs. The results of this investigation revealed that Fe3O4 NPs exhibited moderate toxicity on hMSCs and that Fe3O4 NPs may have biomedical applications at low concentrations. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 901–912, 2016.  相似文献   

16.
The facile synthesis of core–shell magnetic mesoporous silica nanoparticles (Fe3O4@mSiO2 NPs) was reported in aqueous phase using cetyltrimethylammonium bromide as a template under alcohol‐free conditions. Compared to the conventional synthesis method for core–shell Fe3O4@mSiO2 NPs, the approach in this study is rapid (only 5‐min reaction time), cheap (without using organic agents), and environmentally friendly (one‐step synthesis in alcohol‐free medium). Doxorubicin (DOX)‐loaded Fe3O4@mSiO2 NPs exert extraordinarily high specificity for liver cancer cells, which was due to the pH‐sensitive doxorubicin release, as well as higher endocytosis capacity in liver cancer cells rather than normal liver cells. The potential advantages of using such Fe3O4@mSiO2 NPs as the vehicle of anticancer drugs were that the Fe3O4@mSiO2 NPs exhibit good biocompatibility, high loading and protection of the guest molecules, selective killing effect, and efficient cellular uptake. The exciting pH‐dependent release properties of doxorubicin‐loaded Fe3O4@mSiO2 NPs make their use a promising strategy for enhancing efficient therapy toward tumors, while reducing the cytotoxicity of doxorubicin to human normal neutral tissue or cells.  相似文献   

17.
It is predicted that the toxicity of nanoparticles may be different depending on the properties of the nanoparticles and biological system being tested. However, the factors that influence the toxicity of nanoparticles have not been adequately investigated. In this study, we characterized two types of TiO2 nanorods, anatase (ATO) and brookite (BTO), and compared their toxicity in vivo and in vitro. ATO and BTO differed from each other most notably in their surface areas. Treatment with the two TiO2 nanorods (10 µg ml–1) produced similar effects on the cell cycle in eight cell lines which are derived from potential target organs of nanoparticles, with the BTO eliciting stronger responses than ATO in all cell lines, among the cell lines, H9C2 showed the maximal change. Similarly, when mice were exposed to two TiO2 nanorods (1 mg kg–1), BTO induced clearer histopathological lesions and triggered a more robust secretion of inflammatory cytokines than ATO. Furthermore, we compared the cellular response of both TiO2 nanorods using BEAS‐2B cells, the human bronchial epithelial cell line. Both nanorods induced cell death by increasing the formation of autophagosome‐like vacuoles. The mitochondrial calcium concentration decreased by exposure of both types, but the distribution of lysosome and endoplasmic reticulum (ER) showed a clear difference between the two nanorods. Thus, we conclude that the surface area acts as an important factor which depends on toxicity of nanorod type‐TiO2 nanoparticles. Furthermore, the toxicity of nanoparticles varies according to the type of cells tested, and that the assembly of autophagosome‐like vacuoles is a critical part of the cellular response to nanoparticle exposure. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Magnetic iron oxide nanoparticles with appropriate surface chemistry have been widely used with potential new applications in biomedical industry. Therefore, the aim of this study was to assess the size-, dose-, and time-dependent effects, after acute oral exposure to iron oxide-30 NP (Fe2O3-30), on various biochemical enzyme activities of clinical significances in a female Wistar rat model. Rats were exposed to three different doses (500, 1,000, and 2,000?mg/kg) of Fe2O3-30 and Fe2O3-Bulk along with control. Fe2O3-30 had no effect on growth, behavior, and nutritional performance of animals. Fe2O3-30 caused significant inhibition of acetylcholinestrase in red blood cells as well as in brains of treated rats. Further, more than 50% inhibition of total, Na+-K+, Mg2+, and Ca2+-ATPases activities, as observed in brains of exposed female rats, may be the result of disturbances in cellular physiology and the iono-regulatory process. Activation of the hepatotoxicity marker enzymes, aspartate aminotransferase and alanine aminotransferase, was recorded in serum and liver, whereas inhibition was observed in kidney. Similarly, enhancement of lactate dehydrogenase activity was observed in serum and liver; however, a decrease in enzyme levels was observed in kidneys of Fe2O3-30-treated rats. On the other hand, Fe2O3-Bulk did not depict any significant changes in these biochemical parameters, and alterations were near to control. Therefore, this study suggests that exposure to nanosize particles at acute doses may cause adverse changes in animal biochemical profiles. The use of the rat model signifies the correlation with the human system.  相似文献   

19.
《Nanotoxicology》2013,7(3):432-444
Abstract

The purpose of this study was to investigate the effect of surface coating on the toxicity of silver nanoparticles (Ag NPs) soil. Earthworms (Eisenia fetida) were exposed to AgNO3 and Ag NPs with similar size ranges coated with either polyvinylpyrrolidone (hydrophilic) or oleic acid (amphiphilic) during a standard sub-chronic reproduction toxicity test. No significant effects on growth or mortality were observed within any of the test treatments. Significant decreases in reproduction were seen in earthworms exposed to AgNO3, (94.21 mg kg-1) as well as earthworms exposed to Ag NPs with either coating (727.6 mg kg-1 for oleic acid and 773.3 mg kg-1 for polyvinylpyrrolidone). The concentrations of Ag NPs at which effects were observed are much higher than predicted concentrations of Ag NPs in sewage sludge amended soils; however, the concentrations at which adverse effects of AgNO3 were observed are similar to the highest concentrations of Ag presently observed in sewage sludge in the United States. Earthworms accumulated Ag in a concentration-dependent manner from all Ag sources, with more Ag accumulating in tissues from AgNO3 compared to earthorms exposed to equivalent concentrations of Ag NPs. No differences were observed in Ag accumulation or toxicity between earthworms exposed to Ag NPs with polyvinylpyrrolidone or oleic acid coatings.  相似文献   

20.
Magnetic silver nanoparticles (MNPAg) are interesting nanotechnology materials with borderless environmental science, that can be used to disinfect water contaminated with pathogenic bacteria. The use of MNPAg leads to increased risk of nanomaterial contamination in the environment, especially natural water sources, with harmful effects on the ecosystem. This study investigating survival and enzyme activity of magnetic O-carboxymethylchitosan loaded silver nanoparticle on Artemia salina. The results showed that mortality increased with increasing concentrations of MNPAg. O-Carboxymethylchitosan loaded silver nanoparticles were found to be more toxic, with a LC50 of 902.1 mg/L for γ-Fe2O3/Ag without reducing agent. Accumulation of silver on Artemia salina depends on the type of nanoparticle. Accumulation of nanoparticle containing polymers (carboxymethylchitosan/γ-Fe2O3/Ag without reducing agent, carboxymethylchitosan/γ-Fe2O3/Ag reduced with sucrose and carboxymethylchitosan/γ-Fe2O3/Ag reduced with NaBH4) were found to be higher than γ-Fe2O3/Ag reduced with NaBH4, γ-Fe2O3/Ag reduced with sucrose and γ-Fe2O3/Ag without reducing agent under the same experimental conditions. The antioxidant enzyme (CAT, SOD and GST) activities increased slightly following exposure, indicating that the toxic effects are related to oxidative stress. The combined results so far indicate that MNPA does not have the potential to affect aquatic organisms when released into the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号