首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND PURPOSE: Three-dimensional time-of-flight (TOF) MR angiography is used routinely in stroke workup to detect arterial occlusions, but a major drawback is its inadequate depiction of vessels with slow or in-plane flow. We hypothesized that the use of contrast-enhanced MR angiography improves delineation of vessels with diminished or absent flow on precontrast MR angiograms. METHODS: Pre- and postcontrast 3D TOF MR angiograms were acquired in 55 consecutive patients with acute stroke. Patency of 480 intracranial vessels was assessed on both the pre- and postcontrast angiograms. Diffusion-weighted (DW) and perfusion-weighted (PW) imaging data were also obtained and results correlated with those of pre- and postcontrast MR angiography. RESULTS: For 50 abnormal vessel segments seen on precontrast MR angiograms, postcontrast MR angiograms resulted in change in the vascular signal intensity in 70% (35 vessel segments); 94% of these changes showed a greater extent of vessel patency. Venous and soft-tissue contrast enhancement had no effect on assessment in 95% of all 480 vessels examined. Interobserver reliability was moderate, with postcontrast interpretation (kappa = 0.48) showing a slight improvement over precontrast interpretation (kappa = 0.41). Good agreement was found between the TOF results and the pooled DW and PW imaging results. CONCLUSIONS: Compared with precontrast 3D TOF MR angiograms, postcontrast 3D TOF angiograms improve assessment of intracranial vessel patency in acutely ischemic vascular territories. In some patients, an improved understanding of acute ischemic stroke was obtained by viewing the pre- and postcontrast images. Postcontrast MR angiography should be included in the MR evaluation of acute stroke.  相似文献   

2.
3.
OBJECTIVE: The purpose of this study was to compare the diagnostic utility of 3D time-of-flight (TOF) MR angiography and MR digital subtraction angiography in patients with angiographically proven moderate- to high-flow intracranial dural arteriovenous fistula. MATERIALS AND METHODS: Two neuroradiologists, unaware of patients' histories and angiographic findings, retrospectively reviewed 17 MR angiograms with 3D TOF MR angiography and MR digital subtraction angiography in 15 patients with dural arteriovenous fistula and also reviewed 35 MR angiograms in control patients without findings of dural arteriovenous fistula on angiography. Disagreements were resolved by consensus. RESULTS: In patients with dural arteriovenous fistula, source images of 3D TOF MR angiography showed two abnormal findings: multiple high-intensity curvilinear or nodular structures adjacent to the sinus wall and high-intensity areas in the venous sinus. Findings of multiple high-intensity structures adjacent to the sinus wall were observed in all cases of dural arteriovenous fistula. Findings of high-intensity areas in the venous sinus were observed in 13 of 17 cases of dural arteriovenous fistula. Findings of multiple high-intensity structures adjacent to the sinus wall were not observed in any control subjects. Findings of high-intensity areas within the venous sinus were observed in five of 35 control subjects. Findings of MR digital subtraction angiography showed early filling of the venous sinus, suggestive of dural arteriovenous fistula, in 13 of 15 patients with dural arteriovenous fistula. Sensitivity and specificity of multiple high-intensity structures adjacent to the sinus wall, high-intensity areas in the venous sinus, and early filling of the venous sinus were 100% and 100%, 76% and 86%, and 87% and 100%, respectively. Although 3D TOF MR angiography failed to show the findings of retrograde cortical venous drainage and venous sinus occlusion, MR digital subtraction angiography clearly showed both findings in all five subjects. CONCLUSION: A protocol including both 3D TOF MR angiography (source images) and MR digital subtraction angiography allowed the diagnosis of moderate- to high-flow dural arteriovenous fistula. In addition, cortical venous drainage was reliably noted in a small subset of patients.  相似文献   

4.
To evaluate the efficacy and reliability of 3D time-of-flight MR angiography (TOF MRA) as a noninvasive procedure, 27 patients with acute subarachnoid haemorrhage (SAH) were studied with MRA immediately before or after intra-arterial digital subtraction angiography (DSA). 3DTOF MRA was performed with an axial slab of 60 mm centred on the circle of Willis and isotropic voxels. DSA showed 22 aneurysms and 1 dural arteriovenous fistula in 21 patients; the aneurysms ranged in size from 2 to 8 mm. MRA failed to show 2 small aneurysms, at the origin of the posterior and anterior communicating arteries. The 3D display of the intracranial vessels obtained with maximum intensity projection (MIP) or targetted MIP sometimes rendered the aneurysms better than DSA. However, due to its high spatial resolution, DSA more clearly defined the overall anatomy of the walls of the normal and abnormal vessels.1992 Scientific Award of the ESNR  相似文献   

5.
BACKGROUND AND PURPOSE: Our aim was to compare contrast-enhanced MR angiography (CE-MRA) and 3D time-of-flight (TOF) MRA at 3T for follow-up of coiled cerebral aneurysms.MATERIALS AND METHODS: Fifty-two patients treated with Guglielmi detachable coils for 54 cerebral aneurysms were evaluated at 3T MRA. 3D TOF MRA (TR/TE = 23/3.5; SENSE factor = 2.5) and CE-MRA by using a 3D ultrafast gradient-echo sequence (TR/TE = 5.9/1.8; SENSE factor = 3) enhanced with 0.1-mmol/kg gadobenate dimeglumine were performed in the same session. Source images, 3D maximum intensity projection, 3D shaded surface display, and/or 3D volume-rendered reconstructions were evaluated in terms of aneurysm occlusion/patency and artifact presence.RESULTS: In terms of clinical classification, the 2 MRA sequences were equivalent for 53 of the 54 treated aneurysms: 21 were considered fully occluded, whereas 16 were considered to have a residual neck and 16 were considered residually patent at follow-up MRA. The remaining aneurysm appeared fully occluded at TOF MRA but had a residual patent neck at CE-MRA. Visualization of residual aneurysm patency was significantly (P = .001) better with CE-MRA compared with TOF MRA for 10 (31.3%) of the 32 treated aneurysms considered residually patent with both sequences. Coil artifacts were present in 5 cases at TOF MRA but in none at CE-MRA. No relationship was apparent between the visualization of patency and either the size of the aneurysm or the interval between embolization and follow-up.CONCLUSION: At follow-up MRA at 3T, unenhanced TOF and CE-MRA sequences are similarly effective at classifying coiled aneurysms as occluded or residually patent. However, CE-MRA is superior to TOF MRA for visualization of residual patency and is associated with fewer artifacts.

Regular imaging follow-up of patients with intracranial aneurysms treated with Guglielmi detachable coils (GDCs) is necessary because of the risk of aneurysm reconfiguration (ie, coil compaction and/or growth of a residual aneurysm neck or body remnant) with time.14 Of the techniques available for monitoring the results of embolization therapy, MR angiography (MRA) has emerged as the technique of choice at most institutions. Advantages over conventional digital subtraction angiography (DSA) include minimal invasiveness with no associated risk of neurologic complications, reduced patient discomfort and inconvenience, greater cost savings, and no exposure to ionizing radiation or potentially nephrotoxic iodinated contrast media. An alternative minimally invasive procedure is CT angiography (CTA). However, whereas this technique has proved useful for aneurysm detection,59 limitations to its use for follow-up of coiled aneurysms include streak and other coil-related artifacts.1012 Moreover, CTA also requires exposure to ionizing radiation and iodinated contrast media, which may be undesirable if repeat follow-up examinations are required.Studies performed to date have shown that nonenhanced 3D time-of-flight (TOF) MRA sequences on 1.5T scanners are frequently satisfactory for the follow-up of coiled aneurysms120 but that 3D TOF MRA on 3T scanners offers improved depiction of both treated21 and untreated22 aneurysms due to the greater spatial and contrast resolution achievable at a higher magnetic field strength. Concerning the use of gadolinium contrast material, some studies have suggested that contrast-enhanced MRA (CE-MRA) provides no additional benefit compared with nonenhanced 3D TOF MRA at either 1.5T15,20 or 3T,21 whereas other studies have shown that CE-MRA permits better visualization of coiled aneurysms and of branch arteries and residual neck, particularly in large or giant aneurysms.14,2226 Recently, Nael et al27 demonstrated that CE-MRA with highly accelerated (×4) parallel acquisition at 3T provides comparable information to accelerated (×2) 3D TOF MRA at 3T for the characterization of untreated intracranial aneurysms without the known drawbacks of TOF MRA techniques (ie, prolonged acquisition time, spin saturation, and flow-related artifacts). On the other hand, Gibbs et al28 showed that with elliptic-centric imaging, 3D TOF MRA at 3T is superior to CE-MRA at 3T in terms of both image quality and detection of untreated intracranial aneurysms. Our study was performed to evaluate CE-MRA with accelerated (×3) parallel acquisition at 3T compared with accelerated (×2.5) 3D TOF MRA at 3T for the follow-up of GDC-treated intracranial aneurysms. To the authors’ knowledge, this is the first study to compare MRA sequences at 3T for follow-up of coiled aneurysms.  相似文献   

6.
7.
We compared the value of 3D time-of-flight (TOF) and phase-contrast (PC) MR angiography (MRA) for detection and grading of intracranial vascular steno-occlusive disease. Unenhanced 3D-TOF MRA and 3D-PC MRA (30–60 cm/s velocity encoding) were performed at the level of the circle of Willis in 18 patients, mean age 56 ± 10 years. Postprocessed images using a maximum-intensity projection reconstruction with multiple targetted projections were analysed. A total of 126 vessels was assessed by PC MRA and 143 by TOF MRA, with digital subtraction angiography (DSA) in 15 patients and/or transcranial Doppler sonography (TCD) in 18 as a standard. Two blinded readers reviewed the MRA, DSA and TCD examinations retrospectively. On DSA and/or TCD the two observers found 32 and 28 steno-occlusive lesions. 3D-TOF MRA was more sensitive than 3D-PC MRA (87 % and 86 % vs. 65 % and 60 %) and had a higher negative predictive value (96 % vs. 89 %). Correct grading of stenoses was achieved in 78 % by 3D-TOF and 65 % by 3D-PC MRA. Received: 24 September 1997 Accepted: 27 February 1998  相似文献   

8.
A technique is described for angiographic imaging of the renal arteries with acquisition performed over several periods of suspended respiration. The 3D Fourier transform (FT) gradient-echo angiographic sequence uses magnetization preparation and appropriately chosen delay times for background nulling and time-of-flight enhancement of the vasculature. The sequence was applied to 10 volunteers, each of whom was imaged in three ways: (i) over a series of breathholds in which feedback was provided to enable reproducible breath-holding; (ii) over a series of breathholds with no feedback; and (iii) over continuous respiration. Results were evaluated by measuring the transverse extent of the well-delineated renal vasculature and by noting the distal extent of the vasculature branching (main, segmental, and interlobar branches). The transverse extent of renal vasculature visible with breathhold feedback, breathholding, and free breathing was 6.1 ± 0.9 cm, 5.0 ±1.8 cm, and 4.0 ±1.4 cm, respectively (mean ± SD). Breathhold feedback enabled visualization of segmental renal arteries bilaterally in all 10 volunteers.  相似文献   

9.
10.
Boulin A  Pierot L 《Radiology》2001,219(1):108-113
PURPOSE: To compare three-dimensional (3D) time-of-flight magnetic resonance (MR) angiography with digital subtraction angiography (DSA) in the follow-up of intracranial aneurysms treated with selective endovascular placement of detachable coils. MATERIALS AND METHODS: Sixty-eight consecutive patients with intracranial aneurysms were included in the prospective study. The goal was to evaluate 3D time-of-flight MR angiography versus DSA for the detection of a residual aneurysm neck or residual flow inside the coil mesh. RESULTS: Eighty-one MR angiographic and 83 DSA examinations were performed; 15 patients were examined with both modalities twice. MR angiography was not possible in two patients. In another patient, the quality of MR angiography was not sufficient to assess the treated aneurysm. In 72 of the remaining 80 MR angiographic and DSA examinations, there was good correlation between the two modalities. In 54 cases, neither image type showed remnants or recurrence, but in 18, both showed residual aneurysm. In eight cases, the MR angiographic and DSA results differed. In one of these cases, MR angiography depicted residual aneurysm but DSA depicted an arterial loop. In seven cases, a small (<3-mm) remnant was not detected at MR angiography. CONCLUSION: Because very small aneurysm remnants or recurrences probably are not clinically important, MR angiography is an option for following up intracranial aneurysms treated with detachable coils and may partly replace DSA.  相似文献   

11.
12.
The combination of 3T and parallel-acquisition techniques holds promise for improved performance of contrast-enhanced MR angiography (MRA), in terms of speed, spatial resolution, and coverage. We present a comparison of 2 MRA techniques, including time-of-flight (TOF) and contrast-enhanced MRA, for detection and evaluation of intracranial aneurysms. Our results show that contrast-enhanced MRA with highly accelerated parallel acquisition at 3T does not have the known drawbacks of TOF-MRA techniques, including prolonged acquisition time, spin saturation, and flow-related artifacts, with comparable aneurysm characterization.  相似文献   

13.
Multimodal MR examination in acute ischemic stroke   总被引:6,自引:1,他引:6  
In recent years, combined diffusion-weighted imaging (DWI) with perfusion imaging (PI) has become an important investigational tool in the acute phase of ischemic stroke, as it may differentiate reversible from irreversible brain tissue damage. We consecutively examined 20 subjects within 12 h of stroke onset using a multiparametric magnetic resonance (MR) examination consisting of DWI, mean transit time (MTT) as PI parameter, and MR angiography (MRA). T2-weighted and fluid-attenuated inversion recovery (FLAIR) on day 7 were also acquired in order to obtain final infarct volume. The following MR parameters were considered: volumetric measures of lesion growth and MTT abnormalities, quantification of regional apparent diffusion coefficient (ADC) and visual inspection of MRA findings. Our results showed: (1) an acute DWI lesion was not predictive of lesion growth and the DWI abnormality did not represent the irreversibly infarcted tissue; (2) ADC values in the ischemic penumbra could not predict tissue at risk; (3) the DWI–PI mismatch did not predict lesion growth, and the PI abnormality overestimated the amount of tissue at risk; and (4) patients with proximal middle cerebral artery occlusion had greater initial and final infarct volumes. This study did not demonstrate the prognostic value of a multimodal MR approach in early ischemic stroke; MRA alone provided predictive information about the volumetric evolution of the lesion.  相似文献   

14.
目的:探讨CE-MRA在急性缺血性中风患者血管状况评估中的可行性。方法:27例大脑中动脉供血区急性缺血性中风患者在发病后6h内进行了TOF-MRA和CE-MRA检查,根据随访结果,对TOF-MRA和CE-MRA在急性缺血性中风患者血管状况的评估价值进行了对比分析。结果:①在27例患者中,有11例患者在TOF-MRA上表现为大脑中动脉完全闭塞而在CE-MRA上仍可见残余血流,随访结果与CE-MRA结果一致;②CE-MRA的扫描时间明显短于TOF-MRA;③CE-MRA可以在不增加扫描时间的情况下对颈部动脉和颅内动脉同时成像。结论:CE-MRA能够及时、准确地对急性缺血性中风患者血管状况进行评估,优于常规的TOF-MRA,由于急性缺血性中风患者需要紧急处理,在应用MR评估血管状况时CE-MRA应为首选。  相似文献   

15.

Purpose:

To test the hypothesis that texture analysis of postcontrast T1‐weighted MR images will predict hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) with better accuracy than visual evidence of contrast‐enhancement (VE).

Materials and Methods:

Thirty‐four AIS patients were examined within 3.5 ± 1.5 h after stroke. T1‐weighted MR images were acquired 19 ± 7 min postcontrast injection. HT was determined by follow‐up imaging at 24–72 h. Postcontrast images were evaluated for VE. Four second‐order textural features were extracted (f1, f2, f3, and f9) for each patient. Receiver operating characteristic (ROC) curves were constructed for VE and for textural features, with HT as the outcome measure.

Results:

The f2 for HT patients (n = 12) was significantly lower than in non‐HT patients (1058 ± 356 versus 1568 ± 527; P = 0.005); the converse was true for f3 (0.67 ± 0.12 versus 0.54 ± 0.13; P = 0.007). ROC analysis indicated that the f2 and f3 textural features were the only two significant predictors of HT (P = 0.0018 and P = 0.0042). The addition of VE to either f2 or f3 did not result in a significant improvement in accuracy.

Conclusion:

Texture analysis of postcontrast T1‐weighted images may be superior to visual evidence of enhancement for the prediction of HT. J. Magn. Reson. Imaging 2009;30:933–941. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
BACKGROUND AND PURPOSE: We report our experience with MR imaging, MR angiography, and catheter angiography in children with acute idiopathic cerebral infarction and suggest that catheter angiography may still play an important role in this setting. METHODS: During the past 8 years, 18 children with idiopathic cerebral infarction underwent MR imaging and catheter angiography; 17 were also studied with MR angiography. MR imaging was done within 34 hours after onset of hemiplegia or seizures or both. Sixteen patients underwent catheter angiography within 36 hours of MR imaging; 12 studies were performed within 22 hours. Two patients underwent catheter angiography, in both cases within 72 hours. Infarcts were compared with arterial abnormalities seen at catheter angiography, and the results of MR angiography were compared with those seen at catheter angiography. RESULTS: Comparing MR angiography with catheter angiography, we found the positive predictive value of MR angiography for arteriopathy was 100%, with a negative predictive value of 88%. MR angiography was equivalent to catheter angiography in the detection and depiction of proximal middle cerebral artery disease; however, depiction of disease in the internal carotid artery (ICA) and detection of peripheral embolic disease were better with catheter angiography than MR angiography. CONCLUSION: Basal ganglia lesions associated with ICA disease by MR angiography should probably be studied with digital subtraction angiography, as MR angiography did not depict the length and severity of ICA disease as well as catheter angiography did. Hemispheric infarcts should be studied with catheter angiography, as emboli may occur in the absence of heart disease; the circle of Willis may be uninvolved with embolic disease, and MR angiography is not sensitive to emboli in small peripheral intracranial arteries.  相似文献   

17.
18.
PURPOSE: To compare three-dimensional (3D) time-of-flight (TOF) MR angiography, contrast-enhanced MR angiography, digital subtraction angiography (DSA), and rotational angiography for depiction of stenosis. MATERIALS AND METHODS: The study had Ethics Committee approval, and each patient gave written informed consent. Forty-nine patients (18 women, mean age, 67.2 years +/- 9.1 [+/- standard deviation], and 31 men, mean age, 63.1 years +/- 8.0) with symptomatic stenosis of internal carotid artery (ICA) diagnosed at duplex ultrasonography underwent transverse 3D TOF MR angiography with sliding interleaved kY acquisition and coronal contrast-enhanced MR angiography, followed by DSA and rotational angiography within 48 hours. MR angiography was performed at 1.5-T with a cervical coil. Contrast-enhanced MR angiograms were obtained after a bolus injection of 20 mL of gadobenate dimeglumine. Maximum ICA stenosis on maximum intensity projection and source images was quantified according to NASCET criteria. Correlations for 3D TOF MR angiography, contrast-enhanced MR angiography, DSA, and rotational angiography were determined by means of cross tabulation, and accuracy for detection and grading of stenoses were calculated. Data were evaluated with analysis of variance, Wilcoxon signed rank test, and McNemar test, all at significance of P < .05. RESULTS: Ninety-eight ICAs were evaluated at contrast-enhanced MR angiography, DSA, and rotational angiography, and 97 were evaluated at 3D TOF MR angiography. Correlations for contrast-enhanced MR angiography, 3D TOF MR angiography, and DSA relative to rotational angiography were r2 = 0.9332, r2 = 0.9048, and r2 = 0.9255, respectively. Lower correlation (r2 = 0.8593) was noted for contrast-enhanced MR angiography and DSA. Respective sensitivity and specificity for detection of hemodynamically relevant stenosis relative to rotational angiography were 100% and 90% for contrast-enhanced MR angiography, 95.5% and 87.2% for 3D TOF MR angiography, and 88.6% and 100% for DSA. Four of 31 severe stenoses were underestimated at DSA, and three were underestimated at contrast-enhanced MR angiography. Three severe stenoses were underestimated at 3D TOF MR angiography, and one was misclassified as occluded. Of 13 moderate (50%-69%) stenoses, one was overestimated at contrast-enhanced MR angiography, two were underestimated and three overestimated at 3D TOF MR angiography, and two were underestimated at DSA. CONCLUSION: DSA results in an underestimation of ICA stenosis compared with rotational angiography. Contrast-enhanced MR angiography correlates best with rotational angiography.  相似文献   

19.
PURPOSE: The purpose of this work was to compare Gd-enhanced breath-hold fast imaging with steady-state precession (Gd-FISP) with unenhanced time-of-flight (TOF) sequences in evaluating internal carotid arteries (ICAs). METHOD: Thirty patients underwent three unenhanced TOF sequences [2D traveling saturation (Travelsat); 3D tilted optimized nonsaturated excitation (TONE); TOF 3D Multislab] and two breath-hold 3D Gd-FISP sequences with automated intravenous contrast agent injection (axial and coronal). ICAs were classified as normal (no stenosis); with mild (<30%), moderate (30-70%), or severe stenosis; or occluded (100%). Digital subtraction angiography (DSA) with aortic arch injection was used as a reference technique. RESULTS: DSA revealed 20 normal ICAs; 11 mild, 9 moderate, and 14 severe stenoses; and 2 occlusions. DSA and all MR angiography (MRA) sequences diagnosed the occlusion of four common carotid arteries. The TOF 2D overestimated 10 stenoses, TOF 3D TONE 9, and TOF 3D Multislab 5; Gd-FISP 3D overestimated only 2 of them, reaching the highest sensitivity and specificity for severe stenoses. Significant differences were found between the overestimation of Gd-FISP and each of the three unenhanced sequences (0.0020 < p < 0.0313, Wilcoxon and McNemar tests). Severe artifacts were observed with TOF techniques only. CONCLUSION: Gd-FISP is an interesting, largely artifact-free improvement for MRA of ICAs.  相似文献   

20.
PURPOSE: To determine whether different MR diffusion- and perfusion-weighted imaging (DWI and PWI) parameters are important in distinguishing lesion growth from the acute lesion and from oligemia. MATERIALS AND METHODS: MR DWI and PWI were acquired from thirteen patients. We defined three regions: (i) LESION - intersection of acute and final lesions, (ii) GROWTH - portion of final lesion not part of acute lesion, and (iii) OLIGEMIA - region of perfusion abnormality not part of either the acute or final lesions. We used logistic regression modeling to distinguish GROWTH from LESION and from OLIGEMIA on a voxel-wise basis using DWI- and PWI-based parameters. Final models were selected based on the Wald statistic and validated by cross-validation using the mean (+/- standard deviation) area under the curve (AUC) from receiver operating characteristic analysis. RESULTS: The final model for differentiating GROWTH from LESION included DWI, the apparent diffusion coefficient (ADC), cerebral blood flow (CBF) and tissue type (AUC = 0.939 +/- 0.028). The final model for differentiating GROWTH from OLIGEMIA included DWI, ADC, CBF, and time-to-peak (AUC = 0.793 +/- 0.106). CONCLUSION: Different MR parameters are important in differentiating lesion growth from acute lesion and from oligemia in acute ischemic stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号