首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antifungal antibiotic clotrimazole (CLT) shows therapeutic effects on cancer, sickle cell disease, malaria, etc. by inhibiting membrane intermediate-conductance Ca2+ -activated K+ channels (IKCa). However, it is unclear whether this drug would affect human cardiac K+ currents. The present study was therefore designed to investigate the effects of CLT on transient outward K+ current (Ito1), and ultra-rapid delayed rectifier K+ current (IKur) in isolated human atrial myocytes, and cloned hERG channel current (IhERG) and recombinant human cardiac KCNQ1/KCNE1 channel current (IKs) expressed in HEK 293 cells. It was found that CLT inhibited Ito1 with an IC50 of 29.5 microM, accelerated Ito1 inactivation, and decreased recovery of Ito1 from inactivation. In addition, CLT inhibited human atrial I(Kur) in a concentration-dependent manner (IC50 = 7.6 microM). CLT substantially suppressed IhERG (IC50 = 3.6 microM), and negatively shifted the activation conductance of IhERG. Moreover, CLT inhibited IKs (IC50 = 15.1 microM), and positively shifted the activation conductance of the current. These results indicate that the antifungal antibiotic CLT substantially inhibits human cardiac repolarization K+ currents including Ito1, IKur, IhERG, and IKs. However, caution is recommended when correlating the observed in vitro effects on cardiac ion currents to the clinical relevance.  相似文献   

2.
The selective estrogen receptor modulator raloxifene is widely used in the treatment of postmenopausal osteoporosis, and has cardioprotective properties. However, effects of raloxifene on cardiac ion channels are unclear. The present study was designed to investigate the effects of raloxifene and beta-estradiol on transient outward and ultra-rapid delayed rectifier potassium currents (Ito1 and IKur) in human atrial myocytes with a whole cell patch-clamp technique. Ito1 was inhibited by raloxifene in a concentration-dependent manner with an IC50 of 0.9 microM. Raloxifene at 1 microM decreased Ito1 by 40.2+/-1.9% (at +50 mV, n=14, P<0.01 vs control). Time-dependent recovery from inactivation was slowed, and time to peak and time-dependent inactivation of Ito1 were significantly accelerated, while steady-state voltage dependent activation and inactivation of Ito1 were not affected by raloxifene. In addition, raloxifene remarkably suppressed IKur (IC50=0.7 microM). Raloxifene at 1 microM decreased IKur by 57.3+/-3.3% (at +50 mV, n=10, P<0.01 vs control). However, beta-estradiol inhibited Ito1 (IC50=10.3 microM) without affecting IKur. The inhibitory effects of raloxifene and beta-estradiol on Ito1 and/or IKur were unaffected by the estrogen receptor antagonist ICI 182,780. Our results indicate that raloxifene directly inhibits the human atrial repolarization potassium currents Ito1 and IKur. Whether raloxifene is beneficial for supraventricular arrhythmias remains to be studied.  相似文献   

3.
1 It was the aim of our study to investigate the effects of the sulphonylurea glibenclamide on voltage dependent potassium currents in human atrial myocytes. 2 The drug blocked a fraction of the quasi steady state current (ramp response) which was activated positive to -20 mV, was sensitive to 4-aminopyridine (500 microM) and was different from the ATP dependent potassium current IK(ATP). 3 Glibenclamide dose dependently inhibited both, the peak as well as the late current elicited by step depolarization positive to -20 mV. The IC50 for reduction in charge area of total outward current was 76 microM. 4 The double-exponential inactivation time-course of the total outward current was accelerated in the presence of glibenclamide with a tau(fast) of 12.7+/-1.5 ms and a tau(slow) of 213+/-25 ms in control and 5.8+/-1.9 ms (P<0.001) and 101+/-20 ms (P<0.05) under glibenclamide (100 microM). 5 Our data suggest, that both repolarizing currents in human atrial myocytes, the transient outward current (Ito1) and the ultrarapid delayed rectifier current (IKur) were inhibited by glibenclamide. 6 In human ventricular myocytes glibenclamide inhibited Ito1 without affecting the late current. 7 Our data suggest that glibenclamide inhibits human voltage dependent cardiac potassium currents at concentrations above 10 microM.  相似文献   

4.
AIM: To study the properties of transient outward K+ current (Ito) and ultra-rapid delayed rectifier K+ current (IKur) in isolated human atrial myocytes from patients with congestive heart failure (CHF). METHODS: Single cells were isolated from CHF patients with collagenase and protease. Ito and IKur were recorded using whole cell patch-clamp technique. RESULTS: The activation and inactivation of I(to) were voltage-dependent and time-dependent. The half-activation and half-inactivation voltage were (15 +/- 12) mV and (-45 +/- 4) mV respectively. When membrane potential went up from -40 mV to +60 mV, the activation time constant means decreased from (6.9 +/- 2.3) ms to (1.40 +/- 0.20) ms, while the inactivation time constant means decreased from (69 +/- 17) ms to (21 +/- 14) ms. Otherwise, the mean reactivation time constants was (125 +/- 65) ms when the membrane potential was held at -80 mV, but the recovery was not complete during the interval observed. Ito showed less frequency-dependent reduction at test frequency between 0.2-2 Hz. Compared with Ito, the activation of IKur only showed voltage-dependence, without time-dependence. Its mean current densities was (3.4 +/- 0.7) pA/pF when test potential was +60 mV. The half activation voltage of IKur was (23 +/- 14) mV. No clear frequency-dependence was observed at the same frequency range of Ito either. CONCLUSION: I(to) and IKur are important outward potassium channel currents in isolated human atrial myocytes from CHF patients and they have different kinetic properties.  相似文献   

5.
1. It is unknown whether the widely used L-type Ca(2+) channel antagonists diltiazem and nifedipine would block the repolarization K(+) currents, transient outward current (I(to1)) and ultra-rapid delayed rectifier K(+) current (I(Kur)), in human atrium. The present study was to determine the effects of diltiazem and nifedipine on I(to1) and I(Kur) in human atrial myocytes with whole-cell patch-clamp technique. 2. It was found that diltiazem substantially inhibited I(to1) in a concentration-dependent manner, with an IC(50) of 29.2+/-2.4 microM, and nifedipine showed a similar effect (IC(50)=26.8+/-2.1 muM). The two drugs had no effect on voltage-dependent kinetics of the current; however, they accelerated I(to1) inactivation significantly, suggesting an open channel block. 3. In addition, diltiazem and nifedipine suppressed I(Kur) in a concentration-dependent manner (at +50 mV, IC(50)=11.2+/-0.9 and 8.2+/-0.8 microM, respectively). These results indicate that the Ca(2+) channel blockers diltiazem and nifedipine substantially inhibit I(to1) and I(Kur) in human atrial myocytes.  相似文献   

6.
RP58866对哺乳动物心室肌细胞跨膜钾电流的作用   总被引:16,自引:0,他引:16  
AIM: To determine effects of RP58866 on inward rectifier K+ current (IKl), transient outward K+ current (Ito) and delayed outward rectifier K+ current (IK) in isolated cardiac myocytes. METHODS: In isolated ventricular myocytes of guinea pig and dog, the effect of RP58866 on IKl, Ito, and IK were observed by the whole cell voltage-clamp technique. RESULTS: RP58866 decreased IKl in a concentration-dependent manner, with an IC50 of (3.4 +/- 0.8) micromol.L-1 (n = 6) at -100 mV in guinea pig ventricular cells. In dog ventricular myocytes, RP58866 inhibited Ito with IC50 of (2.3 +/- 0.5) micromol.L-1 at +40 mV. In guinea pig ventricular cells, RP58866 at 100 micromol.L-1 decreased IK: IKstep by (58 +/- 13)% at +40 mV, and IKtail by (86 +/- 17)%, respectively. RP58866 inhibited IKstep with an IC50 of (7.5 +/- 0.8) micromol.L-1, and IKtail with an IC50 of (3.5 +/- 0.9) micromol.L-1. The envelope of tail analysis suggested that both IKr and IKs were inhibited. CONCLUSION: RP58866 inhibits IKl, Ito, and IK in cardiac myocytes with a similar potency, and is not a specific IKl inhibitor.  相似文献   

7.
梁勇  孙秀梅 《中国药理学报》1999,20(11):1005-1010
AIM: To study the properties of transient outward K+ current (Ito) and inward rectifier K+ current (IKl) in immature human heart. METHODS: Ito and IKl were recorded using whole-cell patch-clamp technique in atrial myocytes isolated from 12 immature (aged from 6 months to 5 a) human hearts. RESULTS: Ito was voltage-dependent, activated and inactivated rapidly. The IC50 (95% confidence limits) of 4-AP on Ito was 0.64 (0.48-0.87) mmol.L-1. 4-AP 1 mmol.L-1 shifted V1/2 of activation from (6.6 +/- 2.0) mV to (19.8 +/- 3.0) mV (n = 4-10, P < 0.01). 4-AP 0.3 mmol.L-1 changed V1/2 of inactivation from (-49 +/- 4) mV to (-61.4 +/- 2.1) mV (n = 3, P < 0.01), but there were no obvious influence on voltage-dependent activation of Ito (P > 0.05). At the same concentration, the recovery time constant (tau value) was prolonged from (108 +/- 16) ms to (220 +/- 67) ms (n = 3-12, P < 0.01). IKl was also voltage-dependent. Its reverse potential was -40 mV. CONCLUSION: Both Ito and IKl are important K+ channel currents in immature human atrial myocytes. 4-AP can affect the inactivation and recovery of Ito at low concentration (0.3 mmol.L-1) and affect its activation at high concentration (1 mmol.L-1).  相似文献   

8.
Effects of propafenone on K currents in human atrial myocytes   总被引:5,自引:0,他引:5  
1. The class Ic anti-arrhythmic agent, flecainide is known to inhibit the transient outward K current (Ito) selectively in human atrium. We studied the effects of propafenone, another class Ic antiarrhythmic agent, on K currents in human atrial myocytes using a whole-cell voltage-clamp method. 2. Propafenone inhibited both Ito and the sustained or ultra-rapid delayed rectifier K current (Isus or Ikur) evoked by depolarization pulses. The concentration for half-maximal inhibition (IC50) was 4.9 microM for Ito and 8.6 microM for Isus. Propafenone blocked Ito and Isus in a voltage- and use-independent fashion and accelerated the inactivation time constant of Ito [from 28.3 to 6.7 ms at 10 microM propafenone]. 3. The steady-state inactivation curve for Ito was unaffected by propafenone. Propafenone did not affect the initial current at depolarizing potentials, but it did produce a block that increased as a function of time after depolarization (time constant of 3.4 ms). This suggests that propafenone preferentially blocked Ito in the open state. 4. Propafenone had no significant effect on the rate at which Ito recovered from inactivation at -80 mV suggesting that propafenone dissociates rapidly from the channel. 5. The steady-state activation curve for Isus was not affected by propafenone. Propafenone slowed the time course of the onset of the Isus tail current. This suggests that propafenone blocked Isus in the open state. 6. The present results suggest that, unlike flecainide, propafenone blocks both Ito and Isus in human atrial myocytes in the open state at clinically relevant concentrations.  相似文献   

9.
The inhibitory effects of the novel Kv1.5 channel blocker, S9947 (2'-(benzyloxycarbonylaminomethyl)biphenyl-2-carboxylic acid 2-(2-pyridyl)ethylamide), on cloned human Kv1.5 (hKv1.5), expressed in both Xenopus oocytes and Chinese hamster ovary (CHO) cells, and on native cardiac ultrarapid delayed rectifier potassium currents (IKur) in rat (ventricle myocytes) and human (atrial myocytes) were investigated. The influence of S9947 on the action potential was examined in rat ventricular myocytes. Using the two-electrode voltage-clamp technique in Xenopus oocytes and the patch-clamp technique (whole cell configuration) in CHO cells, hKv1.5 was inhibited by S9947 with IC50 values of 0.65 microM and 0.42 microM, respectively. In addition, inhibition of human Kv4.3 (hKv4.3) and HERG by 10 microM S9947 was low (approximately 20%) and absent, respectively. Using the patch-clamp technique in the whole cell configuration, IKur currents in rat ventricular (rIKur) cardiomyocytes and human atrial (hIKur) cardiomyocytes were inhibited by S9947 with IC50 values of 0.96 microM and 0.07 microM, respectively. In contrast, rat cardiac inward rectifier current (rIK1) and rat (rIto) and human (hIto) cardiac transient outward currents were only inhibited by approximately 20% with 10 microM S9947. In rat cardiomyocytes, using the patch-clamp technique, action potential duration was increased by S9947 in a concentration-dependent (0.3-10 microM) and rate-independent manner. The data show that S9947 suppresses both cloned (Kv1.5) and native (IKur) cardiac potassium currents. Furthermore, S9947 prolongs rat action potential in a rate-independent manner.  相似文献   

10.
1. The antiarrhythmic potential and electromechanical effects of liriodenine, an aporphine alkaloid isolated from the plant, Fissistigma glaucescens, were examined. 2. In the Langendorff perfused (with constant pressure) rat heart, at a concentration of 0.3 to 3 microM, liriodenine was able to convert a polymorphic ventricular tachyrhythmia induced by the ischaemia-reperfusion (EC50 = 0.3 microM). 3. In isolated atrial and ventricular muscle, liriodenine increased the contractile force and slowed the spontaneous beating of the right atrium. 4. The liriodenine-induced positive inotropy was markedly attenuated by a transient outward K+ channel blocker, 4-aminopyridine (4-AP) but was not significantly affected by prazosin, propranolol, verapamil or carbachol. 5. In rat isolated ventricular myocytes, liriodenine prolonged action potential duration and decreased the maximal upstroke velocity of phase 0 depolarization (Vmax) and resting membrane potential in a concentration-dependent manner. The action potential amplitude was not significantly changed. 6. Whole-cell voltage clamp study revealed that liriodenine blocked the Na+ channel (INa) concentration-dependently (IC50 = 0.7 microM) and caused a leftward shift of its steady-state inactivation curve. However, its recovery rate from the inactivated state was not affected. The L-type Ca2+ currents (Ica) were also decreased, but to a lesser degree (IC50 = 2.5 microM, maximal inhibition = 35%). 7. Liriodenine inhibited the 4-AP-sensitive transient outward current (Ito) (IC50 = 2.8 microM) and moderately accelerated its rate of decay. The block of Ito was not associated with changes in the voltage-dependence of the steady-state inactivation curve or in the process of recovery from inactivation of the current. Liriodenine also reduced the amplitude of a slowly inactivating, steady-state outward current (Iss) (IC50 = 1.9 microM). These effects were consistent with its prolonging effect on action potential duration. The inwardly rectifying background K+ current (IK1), was also decreased but to a less degree. 8. Compared to quinidine, liriodenine exerted a stronger degree of block on INa, comparable degree of block on IK1, and lesser extent of block on ICa and Ito. 9. It is concluded that, through inhibition of Na+ and the Ito channel, liriodenine can suppress ventricular arrhythmias induced by myocardial ischaemia reperfusion. The positive inotropic effect can be explained by inhibition of the Ito channel and the subsequent prolongation of action potential duration. These results provide a satisfactory therapeutic potential for the treatment of cardiac arrhythmias.  相似文献   

11.
The objective of this study was to determine the concentration-dependent effects of nisoldipine, a dihydropyridine Ca2+ channel blocker, on K+ currents in guinea-pig ventricular myocytes. Myocytes in the conventional whole-cell configuration were bathed in normal Tyrode's solution or K+-free Tyrode's solution for the measurement of the effects of 0.01-100 microM nisoldipine on rapidly activating delayed-rectifier K+ current (I(Kr)), slowly activating delayed-rectifier K+ current (I(Ks)), inwardly rectifying K+ current (I(K1)), and reference L-type Ca2+ current (I(Ca,L)). Nisoldipine inhibited I(Kr) with an IC(50) of 23 microM, and I(Ks) with an IC(50) of 40 microM. The drug also had weak inhibitory effects on inward- and outward-directed I(K1); the IC(50) determined for outward-directed current was 80 microM. Investigation of nisoldipine action on I(Ks) showed that inhibition occurred in the absence of previous pulsing, and with little change in the time courses of activation and deactivation. However, the drug-induced inhibition was significantly weaker at >or =+30 mV than at +10 mV.5 We estimate that nisoldipine is about 30 times less selective for delayed-rectifier K+ channels than for L-type Ca2+ channels in fully polarised guinea-pig ventricular myocytes, and several orders less selective in partially depolarised myocytes.  相似文献   

12.
BACKGROUND AND PURPOSE: This study was designed to establish the pathology-specific inhibitory effects of the IKur/Ito/IK,ACh blocker AVE0118 on atrium-selective channels and its corresponding effects on action potential shape and effective refractory period in patients with chronic AF (cAF). EXPERIMENTAL APPROACH: Outward K+-currents of right atrial myocytes and action potentials of atrial trabeculae were measured with whole-cell voltage clamp and microelectrode techniques, respectively. Outward currents were dissected by curve fitting. KEY RESULTS: Four components of outward K+-currents and AF-specific alterations in their properties were identified. Ito was smaller in cAF than in SR, and AVE0118 (10 microM) apparently accelerated its inactivation in both groups without reducing its amplitude. Amplitudes of rapidly and slowly inactivating components of IKur were lower in cAF than in SR. The former was abolished by AVE0118 in both groups, the latter was partially blocked in SR, but not in cAF, even though its inactivation was apparently accelerated in cAF. The large non-inactivating current component was similar in magnitude in both groups, but decreased by AVE0118 only in SR. AVE0118 strongly suppressed AF-related constitutively active IK,ACh and prolonged atrial action potential and effective refractory period exclusively in cAF. CONCLUSIONS AND IMPLICATIONS: In atrial myocytes of cAF patients, we detected reduced function of distinct IKur components that possessed decreased component-specific sensitivity to AVE0118 most likely as a consequence of AF-induced electrical remodelling. Inhibition of profibrillatory constitutively active IK,ACh may lead to pathology-specific efficacy of AVE0118 that is likely to contribute to its ability to convert AF into SR.  相似文献   

13.
1. Terodiline, an anticholinergic/antispasmodic drug effective in the treatment of urinary incontinence, is presently restricted due to adverse side effects on cardiac function. To characterize its effects on cardiac L-type Ca2+-channel current carried by Ca2+ (ICa, L) and Ba2+ (IBa,L), concentrations ranging from 0.1 to 100 microM were applied to whole-cell-configured guinea-pig ventricular myocytes. 2. Although sub-micromolar concentrations of terodiline had no effect on ICa,L at 0 mV, 100 microM drug reduced its amplitude to ca. 10% of pre-drug control. The estimated IC50 (15.2 microM in K+-dialysed cells, 12.2 microM in Cs+-dialysed cells; 0.1 Hz pulsing rate) is eight times higher than reported for ICa,L in bladder smooth muscle myocytes. 3. Terodiline affected ICa,L in a use-dependent manner; block increased when the pulsing rate was increased from 0.1 to 2 - 3 Hz, and when holding potential was lowered from -43 mV. The drug accelerated the decay of ICa,L at 0 mV in a concentration-dependent manner, and slowed the recovery of channels from inactivation. 4. Terodiline reduced peak IBa,L more effectively than peak ICa,L, and markedly accelerated the rate of inactivation of the current. 5. The results are discussed in terms of mechanisms of Ca2+ channel block and relation to the therapeutic and cardiotoxic effects of the drug.  相似文献   

14.
Ambasilide (LU 47110) is a new class III antiarrhythmic drug with a unique profile of action in mammals; however, the effects on human atrial repolarization are not known. We tested the effects of ambasilide on action potentials and repolarizing potassium currents in single atrial myocytes. Ambasilide delayed all phases of repolarization in a concentration-dependent manner [i.e., 10 microM prolonged the action potential duration to 90% repolarization at 1 Hz from 217.8 +/- 34.1 to 360.6 +/- 63.0 ms (p < 0.05 vs. control)]. Action-potential prolongation was independent of the applied stimulation frequency over a range of 0.5-2 Hz; the drug therefore did not display reverse use dependence. Ambasilide produced a concentration-dependent block of the inward rectifier potassium current (IK1) and the acetylcholine-activated potassium current (IKACh) with a median effective concentration (EC50) of 6.0 and 2.3 microM, respectively. Ambasilide also led to a concentration-dependent inhibition of the transient outward current (Ito1; EC50 = 5.7 microM) and the sustained potassium outward current (ISO; EC50 = 43.6 microM). The effect of ambasilide was independent of the step voltage (in the range of +20 to +60 mV) or the applied stimulation frequency (0.5-2 Hz). Inactivation kinetics were not altered. Ambasilide is a new class III antiarrhythmic drug with a distinct profile of action. Its frequency-independent prolongation of the human atrial action potential makes this group of compounds a promising alternative to currently available class III antiarrhythmic drugs.  相似文献   

15.
We investigated the effects of troglitazone, a new orally active hypoglycemic agent, on the voltage-dependent L-type Ca2+ current in single cardiac ventricular myocytes of guinea pigs by the whole-cell voltage clamp technique. Troglitazone blocked the Ca2+ currents in a concentration-dependent manner. The inhibitory effect was more potent at the holding potential (HP) of - 50 mV than at - 80 mV. The half-maximum inhibiting concentration (IC50) of troglitazone was 0.8 microM with the Hill coefficient of 0.84 at -50 mV HP. In contrast, the IC50 value was higher than 10 microM at -80 mV HP. These results suggest that troglitazone at therapeutic concentrations inhibit the Ca2+ channels and may exert cardioprotective effects in diabetic conditions.  相似文献   

16.
Cibenzoline, a class 1 (local anaesthetic-type) antiarrhythmic drug, was investigated for possible effects upon the myocardial Ca2+ inward current. In voltage-clamp experiments with isolated cardiac myocytes of guinea-pig, cibenzoline caused a concentration-dependent inhibition of the Ca2+ current, with an IC50 of 14 microM. Inhibition of the Ca2+ current by cibenzoline (2 microM) was dependent upon stimulation frequency, with a greater block occurring at 2 Hz (approximately 50%) than at 0.2 Hz (approximately 15%). The magnitude of Ca2+ current block was also potential-dependent. A markedly greater inhibition by cibenzoline (20 microM) was recorded when myocytes were depolarized (to +20 mV) from a holding potential of -35 mV than of -80 mV. At the less negative potential, cibenzoline also caused a reduction in the level of the holding current, which suggests a decrease in the inwardly rectifying K+ current. Cibenzoline also caused a concentration-dependent inhibition of KCl-induced contractures of isolated aortic strips of the rat (IC50 = 55 microM) and a reduction in contractile force of isolated, electrically-stimulated papillary muscles of the guinea-pig (IC50 = 35 microM). Thus, cibenzoline possesses Ca2+ channel blocking (class 4) properties in addition to its local anaesthetic actions.  相似文献   

17.
The effects of 7 anticancer chemotherapeutic drugs on the muscarinic acetylcholine receptor-operated potassium current (I(K.ACh)) in guinea pig atrial myocytes were investigated using the whole cell patch clamp technique. Doxorubicin, pirarubicin, and mitoxantrone inhibited the carbachol-induced I(K.ACh) in a concentration-dependent manner in atrial cells at a holding potential of -40 mV. IC50 values of doxorubicin, pirarubicin, and mitoxantrone for the carbachol-induced I(K.ACh) were 7.7 microM, 3.7 microM, and 9.1 microM, respectively. Pirarubicin inhibited the adenosine-induced and the GTPgammaS-induced I(K.ACh) in a concentration-dependent manner (IC50=6.0 and 5.1 microM, respectively). Doxorubicin and mitoxantrone up to 100 microM did not have an influence on the adenosine-induced I(K.ACh). Doxorubicin did not affect the GTPgammaS-induced I(K.ACh). Mitoxantrone 100 microM inhibited the current only by 25%. For concentrations up to 100 microM, anticancer drugs that have chemical structures entirely different from that of doxorubicin, i.e., 5-fluorouracil, 6-mercaptopurine, cyclophosphamide, and actinomycin D, did not have an influence on the carbachol-induced I(K.ACh). Doxorubicin and chemically related compounds possess anticholinergic effects mediated via an inhibitory action on I(K.ACh) by different underlying molecular mechanisms. Doxorubicin and mitoxantrone may inhibit I(K.ACh) by the blockade of muscarinic receptors, whereas pirarubicin may inhibit the current not only via blocking the muscarinic receptors but also by depressing the functions of the K+ channel itself and/or GTP-binding proteins.  相似文献   

18.
碘化N-正丁基氟哌啶醇对大鼠心室肌细胞膜钾通道的影响   总被引:1,自引:3,他引:1  
目的研究碘化N-正丁基氟哌啶醇(F2)对大鼠心室肌细胞膜瞬时外向钾通道的影响。方法采用酶急性消化法分离得到单个大鼠心室肌细胞,应用膜片钳全细胞记录技术观察F2对大鼠心室肌细胞膜瞬时外向钾电流(Ito)的影响。结果F2可剂量依赖地抑制Ito,IC50为0.28mmol·L-1。F2可使Ito的稳态失活曲线左移,半量膜电位Vmid变负,斜率因子S变大;但对激活曲线几乎无影响;对Ito灭活后再复活时程无影响。结论F2对心室肌膜Ito具有抑制作用。  相似文献   

19.
1. The effects of clomiphene (CLM) on cardiac outward K+ current components from rat isolated ventricular myocytes were investigated using the whole-cell patch-clamp technique. Clomiphene (10 micromol/L) significantly inhibited both peak (Ipeak) and end-pulse (Ilate) outward currents (elicited by a 500 msec voltage step from -40 to +50 mV in the presence of K+-containing intracellular and extracellular solutions) by approximately 37% (n = 6; P < 0.01) and 49% (n = 6; P < 0.01), respectively. In contrast, CLM had no effect on outward currents when K+-free solutions were used. 2. A double-pulse protocol and Boltzmann fitting were used to separate individual K+ current components on the basis of their voltage-dependent inactivation properties. At potentials positive to -80 mV, two inactivating transient outward components (Ito) and (IKx) and a non-inactivating steady state component (Iss) could be distinguished. 3. Clomiphene inhibited both Ito and Iss. The maximal block of Ito and Iss induced by CLM (100 micromol/L) was approximately 61% (n = 5) and 43% (n = 5) with IC50 values of 1.54 +/- 0.39 and 2.2 +/- 0.4 micromol/L, respectively. In contrast, the peak magnitude of IKx was unaltered by CLM, although its time-course of inactivation was accelerated. 4. Further experiments whereby myocytes were superfused with the vasoactive peptide endothelin (ET)-1 (20 nmol/L) revealed that CLM (10 micro mol/L) completely abolished the ET-1-sensitive component of Iss. 5. Our findings demonstrate, for the first time, the effects of CLM on distinct cardiac K+ current components and show that CLM modulates the voltage-gated K+ current components Ito and IKx and inhibits the steady state outward current Iss in rat ventricular myocytes.  相似文献   

20.
The effects of fluoxetine (Prozac) on voltage-activated K+, Ca2+ and Na+ channels were examined using the whole-cell configuration of the patch clamp technique in rat pheochromocytoma (PC12) cells. When applied to the external bath solution, fluoxetine (1, 10, 100 microM) decreased the peak amplitude of K+ currents. The K+ current inhibition by fluoxetine (10 microM) was voltage-independent and the fraction of current inhibition was 39.7-51.3% at all voltages tested (0 to +50 mV). Neither the activation and inactivation curves nor the reversal potential for K+ currents was significantly changed by fluoxetine. The inhibition by fluoxetine of K+ currents was use- and concentration-dependent with an IC50 of 16.0 microM. The inhibition was partially reversible upon washout of fluoxetine. The action of fluoxetine was independent of the protein kinases, because the protein kinase C or A inhibitors (H-7, staurosporine, Rp-cAMPS) did not prevent the inhibition by fluoxetine. Intracellular infusion with GDPbetaS or pretreatment with pertussis toxin did not block the inhibitory effects of fluoxetine. The inhibitory action of fluoxetine was not specific to K+ currents because it also inhibited both Ca2+ (IC50 = 13.4 microM) and Na+ (IC50 = 25.6 microM) currents in a concentration-dependent manner. Our data indicate that when applied to the external side of cells, fluoxetine inhibited voltage-activated K+, Ca2+ and Na+ currents in PC12 cells and its action on K+ currents does not appear to be mediated through protein kinases or G proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号