首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Ke 6 is a 17beta-hydroxysteroid dehydrogenase that is expressed in several somatic tissues as well as the female reproductive tissues. We previously correlated a dramatic reduction in the expression of the Ke 6 gene with the development of recessive polycystic kidney disease, in three murine models, the cpk, jck and pcy mice. We also determined that in one of the murine models, the cpk mouse, the female reproductive organs fail to mature properly and remain arrested at an early stage of development. In this study, we report the expression of the Ke 6 protein in normal male reproductive tissues by immunofluorescent staining. We determined in the cpk mouse that the testes similar to the immature ovaries, is also under-developed and arrested at an early developmental stage. Direct measurement of 17betaHSD activity showed a conspicuous reduction in sex steroid metabolism in the cpk/cpk testes. Our findings suggest that estrogen/androgen metabolism play an important role in the development of the urogenital system.  相似文献   

2.
The polycystic kidney diseases (PKDs) are a group of disorders characterized by the growth of epithelial cysts from the nephrons and collecting ducts of kidney tubules. The diseases can be inherited or can be provoked by environmental factors. To investigate the molecular basis of the abnormal cell growth associated with PKD, c-myc protooncogene expression was studied in a mouse model for autosomal recessive PKD. Homozygous recessive C57BL/6J (cpk/cpk) mice develop massively enlarged cystic kidneys and die from renal failure shortly after 3 weeks of age. Quantitative dot blot and RNA blot hybridization experiments in which whole kidney poly(A)+ RNA was hybridized with a c-myc RNA probe showed a 2- to 6-fold increase in c-myc mRNA at 2 weeks, and a 25- to 30-fold increase in c-myc mRNA at 3 weeks of age in polycystic mice, as compared to normal littermates. c-myc expression was also examined under two conditions in which kidney cell growth was experimentally induced in normal adult mice: compensatory renal hypertrophy and tubule regeneration following folic acid-induced renal cell injury. While compensatory hypertrophy resulted in only a small (less than 3-fold) increase in c-myc, folic acid treatment gave rise after 24 hr to a 12-fold increase in c-myc mRNA. The induction of c-myc by folic acid is consistent with increased cellular proliferation in regenerating tubules. In contrast, polycystic kidneys show only a minimal increase in cellular proliferation over that seen in normal kidneys, while c-myc levels were found to be markedly elevated. Thus, the level of c-myc expression in cystic kidneys appears to be out of proportion to the rate of cell division, suggesting that elevated and potentially abnormal c-myc expression may be involved in the pathogenesis of PKD.  相似文献   

3.
The action of estrogen in the female reproductive organs is well known in terms of the expression pattern and gene regulation of the estrogen receptor (ER). The significance of ERs in female reproduction is undisputed. The role of the androgen receptor (AR) is less clear. Clinical hyperandrogenism, a typical feature of polycystic ovary syndrome (PCOS), highlights pathological androgen production by the ovary. By contrast, the physiological impact of androgen action in female reproductive organs remains elusive. Androgens affect folliculogenesis in a variety of experimental approaches and ARs are expressed in developing follicles. Recent observations have discovered that inactivation of ARs in female mice results in premature ovarian failure (POF), indicating that normal folliculogenesis requires AR-mediated androgen action. Moreover, these results imply that POF might be caused by impairment of AR-mediated androgen action.  相似文献   

4.
J Su  M Lin  J L Napoli 《Endocrinology》1999,140(11):5275-5284
17Beta-hydroxysteroid dehydrogenases (17betaHSDs) convert androgens and estrogens between their active and inactive forms, whereas retinol dehydrogenases catalyze the conversion between retinol and retinal. Retinol dehydrogenases function in the visual cycle, in the generation of the hormone retinoic acid, and some also act on androgens. Here we report cloning and expression of a complementary DNA that encodes a new mouse liver microsomal member of the short chain dehydrogenase/reductase (SDR) superfamily and its enzymatic characterization, i.e. 17betaHSD9. Although 17betaHSD9 shares 88% amino acid identity with rat 17betaHSD6, its closest homolog, the two differ in substrate specificity. In contrast to other 17betaHSD, 17betaHSD9 has nearly equivalent activities as a 17betaHSD (with estradiol approximately = adiol) and as a 3alphaHSD (with adiol approximately = androsterone). It also recognizes retinol as substrate and represents in part the NAD+-dependent liver microsomal dehydrogenase that uses unbound retinol, but not retinol complexed with cellular retinol-binding protein. Thus, this enzyme has catalytic properties that overlap with two subgroups of SDR, 17betaHSD and retinol dehydrogenases. Inactivation of estrogen and a variety of androgens seems to be its most probable function. Because of its apparent inability to access retinol bound with cellular retinol-binding protein, a function in the pathway of retinoic acid biosynthesis seems less obvious. These data provide additional insight into the enzymology of estrogen, androgen, and retinoid metabolism and illustrate how closely related members of the SDR superfamily can have strikingly different substrate specificities.  相似文献   

5.
Progesterone and estradiol are the most potent human sex steroid hormones of placental origin and are essential to the maintenance of pregnancy, the timing of parturition, the maturation of many fetal organs, and the preparation of the maternal reproductive system. Naturally, regulatory mechanisms must be in place to coordinate the synthesis and inactivation of these two hormones. We have previously shown that the highest levels of type 1 and type 2 17beta-hydroxysteroid dehydrogenase (17betaHSD) messenger ribonucleic acids (mRNAs) occur in the placenta, particularly in the villi. However, in contrast to type 1 17betaHSD mRNA, type 2 17betaHSD mRNA was not detectable in cell cultures of human cytotrophoblasts or syncytiotrophoblasts. Using in situ hybridization, we unequivocally identified endothelial cells as the only cell type expressing the type 2 17betaHSD gene in fetal villi. Moreover, type 2 17betaHSD mRNA was specifically detected in the endothelial cells of the arterial system, and at higher levels in the villi compared with endothelial cells of the cord arteries when the two tissue sections were cohybridized. In fact, both mRNA levels and enzymatic activity are at their highest levels in arterial endothelial cells. In conclusion, the endothelial cells of the villous arterioles are the primary site of type 2 17betaHSD gene expression. This suggests a regulatory role for these cells in the control of progestin, androgen, and estrogen levels during pregnancy, thus opening a whole new way of viewing regionalization and localization of steroidogenesis in the human villi.  相似文献   

6.
The final step in the biosynthesis of testosterone is reduction of androstenedione by the enzyme 17beta-hydroxysteroid dehydrogenase/ 17-ketosteroid reductase (17betaHSD/17KSR). In this study, we have examined expression of the four known reductive isoforms of 17betaHSD/ 17KSR (types 1, 3, 5, and 7) in the developing mouse testis and have determined changes in the localization of isoform expression and testosterone secretion during development. Using RT-PCR isoforms 1, 3, and 7 were shown to be expressed in the seminiferous tubules of neonatal testis, whereas isoforms 3 and 7 were expressed in the interstitial tissue of the adult testis. The type 7 isoform is unlikely to be involved in androgen synthesis and further study concentrated on the type 3 isoform. Developmentally, isoform type 3 was expressed in the seminiferous tubules up to day 10, showed little or no expression on day 20 and from day 30 was confined to the interstitial tissue. In situ hybridization confirmed that the type 3 isoform was expressed only in the seminiferous tubules in fetal testes and in the interstitial tissue in adult testes. In accordance with the localization of enzyme messenger RNA expression 17-ketosteroid reductase enzyme activity was very low in isolated interstitial tissue from neonatal testes while interstitial tissue from adult testes showed high activity. Seminiferous tubules from both neonatal and adult testes showed high levels of enzyme activity. The major androgen secreted by the interstitial tissue of prepubertal animals was androstenedione up to day 20 while 5alpha-androstanediol and/or testosterone were the major androgens secreted from day 30 onwards. These results show that fetal Leydig cells do not express significant levels of a reductive isoform of 17betaHSD/ 17KSR and that androstenedione is the major androgen secreted by these cells. Production of testosterone up until puberty is dependent upon 17betaHSD/17KSR activity in the seminiferous tubules--a "two cell" requirement for testosterone synthesis. Expression of the 17betaHSD/17KSR type 3 isoform (the main reductive isoform in the testis) declines in the seminiferous tubules before puberty but then reappears in the developing adult Leydig cell population.  相似文献   

7.
Sex steroid-producing enzymes in human breast cancer   总被引:6,自引:0,他引:6  
It is well known that sex steroids are involved in the growth of breast cancers, and the great majority of breast carcinomas express estrogen (ER), progesterone (PR), and androgen (AR) receptors. In particular, recent studies have demonstrated that estrogens and androgens are locally produced in breast carcinoma tissues, and total blockade of in situ estrogen production potentially leads to an improvement in prognosis of breast cancer patients. Therefore, it is important to obtain a better understanding of sex steroid-producing enzymes in breast carcinoma tissues. In this review, we summarize recent studies on the expression and regulation of enzymes related to intratumoral production of estrogens (aromatase, 17beta-hydroxysteroid dehydrogenase type 1 (17betaHSD1), and steroid sulfatase (STS) etc) and androgens (17betaHSD5 and 5alpha-reductase) in human breast carcinoma tissues, and discuss the biological and/or clinical significance of these enzymes. The cellular localization of aromatase in breast carcinoma tissues still remains controversial. Therefore, we examined localization of aromatase mRNA in breast carcinoma tissues by laser capture microdissection/real time-polymerase chain reaction. Aromatase mRNA expression was detected in both carcinoma and intratumoral stromal cells, and the expression level of aromatase mRNA was higher in intratumoral stromal cells than in carcinoma cells in the cases examined. We also examined an association among the immunoreactivity of enzymes related to intratumoral estrogen production and ERs in breast carcinoma tissues, but no significant association was detected. Therefore, the enzymes responsible for the intratumoral production of estrogen may not always be the same among breast cancer patients, and not only aromatase but also other enzymes such as STS and 17betaHSD1 may have important therapeutic potential as targets for endocrine therapy in breast cancer patients.  相似文献   

8.
The 17beta-hydroxysteroid dehydrogenases (17betaHSD) gene family comprises different enzymes involved in the biosynthesis of active steroid hormones. The 17betaHSD type 3 (17betaHSD3) isoenzyme catalyzes the reductive conversion of the inactive C19-steroid, Delta4-androstenedione (Delta4- A), into the biologically active androgen, testosterone (T), in the Leydig cells of the testis. It is encoded by the 17beta-hydroxysteroid dehydrogenase type 3 (HSD17B3) gene, which maps to chromosome 9q22. Mutations in the HSD17B3 gene are associated with a rare form of 46,XY disorder of sex development referred to as 17betaHSD3 deficiency (or as 17-ketosteroid reductase deficiency), due to impaired testicular conversion of Delta4-A into T. 46,XY patients with 17betaHSD3 deficiency are usually classified as female at birth, raised as such, but develop secondary male features at puberty. Diagnosis, and consequently early treatment, is difficult because clinical signs from birth until puberty may be mild or absent. Biochemical diagnosis of 17betaHSD3 deficiency requires measurement of serum T/Delta4-A ratio after hCG stimulation test in pre-pubertal subjects, while baseline values seem to be informative in early infancy and adolescence. However, low basal T/Delta4-A ratio is not specific for 17betaHSD3 deficiency, being sometimes also found in patients with other defects in T synthesis or with Leydig cells hypoplasia. Mutational analysis of the 17HSDB3 gene is useful in confirming the clinical diagnosis of 17betaHSD3 deficiency. This review describes clinical findings, diagnosis, and molecular basis of this rare disease.  相似文献   

9.
Estrogens are critical hormones involved in reproduction and need to bind to estrogen receptors in target organs for biological activity. Fishes have two distinct estrogen receptor subtypes, alpha (α) and beta (β), with variable combinations of additional isoforms of each subtype dependent on the history of genome duplication within a taxon. The comparative expression patterns of estrogen receptor isoforms during the female reproductive cycle will provide important insights into the unique function and importance of each. The purpose of this study was to measure the mRNAs for the four estrogen receptor isoforms (erα1, erα2, erβ1, erβ2) in the liver and ovary of adult, female rainbow trout over the course of an annual reproductive cycle. The expression of estrogen receptor mRNA isoforms was measured by quantitative real-time RT-PCR. Several reproductive indices (gonadosomatic index, maximum oocyte diameter, plasma estradiol-17β, plasma vitellogenin, and ovulation) were also quantified for comparison and used in a correlation analysis to examine any inter-relationships. Of the four isoforms, the expression of erα1 was highest in the liver, and had a significant positive correlation with liver erβ1 expression. Liver expression of erα2 mRNA was the lowest, but showed a significant positive correlation with maximum oocyte diameter in the ovary. The pattern of the erβ isoforms in liver was one of initially elevated mRNA expression followed by a gradual decrease as reproductive development proceeded. In the ovary the erβ1 isoform had the highest mRNA expression of all estrogen receptor isoforms, at the beginning of the reproductive cycle, but then decreased afterward. Both ovarian erβ isoforms had a significant positive correlation with one another. In contrast, erα2 mRNA expression showed a high maximum level in the ovary near the end of the cycle along with a significant positive correlation with plasma estradiol-17β levels; the highest gonadosomatic indices, maximum oocyte diameter, and vitellogenin levels occurred then too.  相似文献   

10.
11.
12.
The estradiol-synthesizing enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17betaHSD1) is mainly responsible for the conversion of estrone (E1) to the potent estrogen estradiol (E2). It is a key player to control tissue levels of E2 and is therefore an attractive target in estradiol-dependent diseases like breast cancer or endometriosis. We selected a unique non-steroidal pyrimidinone core to start a lead optimization program. We optimized this core by modulation of R1-R6. Its binding mode at the substrate-binding site of 17betaHSD1 is complex and difficult to predict. Nevertheless, some basic structure-activity relationships could be identified. In vitro, the most active pyrimidinone derivative showed effective inhibition of recombinant human 17betaHSD1 at nanomolar concentrations. In intact cells overexpressing the human enzyme, IC50 values in the lower micromolar range were determined. Furthermore, the pyrimidinone proved its use in vivo by significantly reducing 17betaHSD1-dependent tumor growth in a new nude mouse model.  相似文献   

13.
Androgens and the androgen receptor (AR) are not only required for male reproductive function, they are also essential for female reproductive physiology. Widely expressed in female reproductive tissues, AR levels fluctuate in a regulated manner in the cycling endometrium. Female androgen production depends on the adrenal glands and expression of key enzymes in the endometrium that facilitate local androgen biosynthesis and conversion. Moreover, levels of circulating androgens, in women of reproductive age, fluctuate in a cycle-dependent manner and a mid-cycle peak is associated with conception. AR and androgen signalling have a decisive role in the differentiation of human endometrial stromal cells into decidual cells. Compelling evidence for androgen signalling in the regulation of endometrial function pertaining to implantation and pregnancy is provided by epidemiological studies demonstrating a strong association between polycystic ovary syndrome, premature ovarian failure or advanced maternal age and adverse pregnancy outcome. Thus, androgen signalling is an essential component of normal endometrial physiology and its perturbation is associated with reproductive failure.  相似文献   

14.
OBJECTIVE: To determine whether the ovary influences adrenal androgen secretion in women with polycystic ovary syndrome (PCOS). DESIGN: Six PCOS-affected patients with clomiphene resistance and gonadotrophin hyperresponsivity, and six controls with regular ovulatory cycles, matched for age and body mass index. METHODS: Bilateral ovarian wedge resection was performed to induce ovulation surgically for these refractory women with PCOS. The adrenal androgen secretions were evaluated in PCOS patients before and again 6 months after this surgery, and in the controls, using an ACTH stimulation test (0.25mg synthetic ACTH(1-24)). RESULTS: Biochemically, basal levels and the maximum net increases (Delta) of 17-hydroxyprogesterone (17-OHP) and androstenedione, Delta17-OHP/Delta progesterone and Delta androstenedione/Delta17-OHP ratios in response to exogenous ACTH were significantly higher in PCOS patients before operation than those of controls. This purely ovarian surgery in women with PCOS was found to significantly reduce their basal androstenedione, testosterone and LH levels, insulin/glucose ratio, and post-corticotrophic Delta17-OHP, Delta androstenedione, Delta17-OHP/Delta progesterone and Delta androstenedione/Delta17-OHP, without obvious changes in FSH, oestradiol, sex hormone-binding globulin, Delta dehydroepiandrosterone, Delta dehydroepiandrosterone sulphate, Delta aldosterone and Delta cortisol values. CONCLUSIONS: Ovarian hyperandrogenicity from polycystic ovary may contribute to the enhanced adrenal P450c17alpha activity and subsequent Delta(4) androgen reserve revealed by the pharmacological corticotrophin stimulation in our special PCOS cases.  相似文献   

15.
A L Lin  S A Shain 《Endocrinology》1986,119(1):296-302
Quantification of aortic androgen and estrogen receptor content and distribution in AXC/SSh rats established that the total androgen receptor content in intact young mature males (mean +/- SD, 55 +/- 13 fmol/mg DNA) was indistinguishable (P greater than 0.05) from that in proestrous females (50 +/- 3 fmol/mg DNA). However, 60% of male aortic androgen receptors were in the nuclear fraction, whereas all proestrous female aortic androgen receptors were in the cytoplasmic fraction. The total aortic estrogen receptor content of intact young mature males (70 +/- 16 fmol/mg DNA) was indistinguishable (P greater than 0.05) from that of proestrous (92 +/- 12) or diestrous (77 +/- 4) females. However, 50% of proestrous female aortic estrogen receptors were in the nuclear fraction, whereas male or diestrous female aortic estrogen receptors were restricted to the cytoplasmic fraction. To assess estrogen receptor function, we characterized aortic cytoplasmic progesterone receptors and established that the receptor content of intact male aortae (101 +/- 3 fmol/mg DNA) was not significantly different (P greater than 0.05) from that of diestrous female aortae (100 +/- 11). 17 beta-Estradiol injection of intact males failed to affect aortic progesterone receptor content (93 +/- 17 fmol/mg DNA). However, injection of orchiectomized males with 17 beta-estradiol significantly (P less than 0.05) increased progesterone receptor content to 208 +/- 24 fmol/mg DNA. This value is twice that of intact males and is not significantly different (P greater than 0.05) from the aortic cytoplasmic progesterone receptor content (190 +/- 32 fmol/mg DNA) of 17 beta-estradiol-injected oophorectomized females. These studies establish that intracellular distribution of aortic androgen and estrogen receptors of male or female AXC/SSh rats is regulated by endogenous hormones. The observation that 17 beta-estradiol modulates aortic progesterone receptor content indicates that rat aortic estrogen receptors are physiologically functional. Our data imply that steroid hormones directly regulate aspects of rat cardiovascular cell function and that sexually dimorphic differential regulation may characterize male and female aortic metabolism.  相似文献   

16.
One of the hallmarks of polycystic ovary syndrome (PCOS) is increased ovarian androgen secretion that contributes to the ovarian, hormonal, and metabolic features of this condition. Thecal cells from women with PCOS have an enhanced capacity for androgen synthesis. To investigate whether this propensity is a potential cause, rather than a consequence, of PCOS, we used an ovine prenatal androgenization model of PCOS and assessed ewes at 11 months of age. Pregnant Scottish Greyface ewes were administered 100 mg testosterone propionate (TP) or vehicle control twice weekly from d 62 to 102 of gestation, and female offspring (TP = 9, control = 5) were studied. Prenatal TP exposure did not alter ovarian morphology or cyclicity, or plasma androgen, estrogen, and gonadotropin concentrations, at this stage. However, follicle function was reprogrammed in vivo with increased proportions of estrogenic follicles (P < 0.05) in the TP-exposed cohort. Furthermore, in vitro the thecal cells of follicles (>4 mm) secreted more LH-stimulated androstenedione after prenatal androgenization (P < 0.05), associated with increased basal expression of thecal StAR (P < 0.01), CYP11A (P < 0.05), HSD3B1 (P < 0.01), CYP17 (P < 0.05), and LHR (P < 0.05). This provides the first evidence of increased thecal androgenic capacity in the absence of a PCOS phenotype, suggesting a thecal defect induced during fetal life.  相似文献   

17.
The weight of evidence gathered from studies in humans with hereditary polycystic kidney disease (PKD)1 and PKD2 disorders, as well as from experimental animal models, indicates that cysts are primarily responsible for the decline in glomerular filtration rate that occurs fairly late in the course of the disease. The processes underlying this decline include anatomic disruption of glomerular filtration and urinary concentration mechanisms on a massive scale, coupled with compression and obstruction by cysts of adjacent nephrons in the cortex, medulla and papilla. Cysts prevent the drainage of urine from upstream tributaries, which leads to tubule atrophy and loss of functioning kidney parenchyma by mechanisms similar to those found in ureteral obstruction. Cyst-derived chemokines, cytokines and growth factors result in a progression to fibrosis that is comparable with the development of other progressive end-stage renal diseases. Treatment of renal cystic disorders early enough to prevent or reduce cyst formation or slow cyst growth, before the secondary changes become widespread, is a reasonable strategy to prolong the useful function of kidneys in patients with autosomal dominant polycystic kidney disease.  相似文献   

18.
Aromatase is an enzyme that converts androgen to estrogen in the gonads and also at extragonadal sites, including the brain. In this study we developed a transgenic mouse that carries an enhanced green fluorescent protein (EGFP) gene inducible by estrogen through an estrogen response element to facilitate detection of estrogen actions in vivo. The expression of EGFP in aromatase-deficient (Ar(-/-)) female mice was significantly suppressed at the pituitary gland, ovary, uterus, and gonadal fat pad and was induced by dietary 17beta-estradiol to wild-type (Ar(+/+)) levels or higher. These results demonstrate that the expression of the EGFP gene is tissue selective and estrogen dependent in vivo. Employing this transgenic mouse, we examined whether estrogen synthesis in the extragonadal sites is necessary for reproduction in female mice. When ovaries of Ar(-/-) mice were replaced with Ar(+/+) ovaries, a significant induction of EGFP expression in the pituitary gland and uterus was observed. Histological examinations showed the presence of antral follicles in the replaced ovaries, indicating that the transplants are functional in Ar(-/-) mice. After crossing with males, three of 10 Ar(-/-)females with Ar(+/+) ovaries became pregnant and fed their pups. Collectively, these observations indicate that estrogen synthesis in the ovary is sufficient for supporting female reproduction, and that infertility of Ar(-/-) females is primarily due to a defect in estrogen synthesis in the ovary.  相似文献   

19.
In mammalian organs involved in sodium reabsorption, the 11-beta hydroxysteroid dehydrogenases (11betaHSDs) oxidize glucocorticoids (GC) from their 11-alcohol form to their 11-keto state and therefore prevent their binding to mineralocorticoid (MC) receptors (MR) and the development of a MC excess syndrome. In birds the information about 11betaHSDs and GC metabolism in such organs is scarce. Herein, we report the expression and enzymatic activity of 11betaHSDs in the kidney and colon of chickens. Both organs express 11betaHSD2-like mRNA. With NAD(+), microsomes from both tissues oxidized corticosterone (CS) into 11-dehydrocorticosterone (DHC) with K(m) of 200 and 20nM and V(max) of 13 and 2pmol/mg protein/min in the kidney and colon, respectively. Thiram, a specific 11betaHSD2 inhibitor, suppressed this oxidation in kidney. The expression and action of the putative 11betaHSD3 were also tested. The chicken colon, and to a greater extent the kidney, expressed 11betaHSD3-like mRNA. Microsomal fractions from both tissues oxidized CS into DHC in the presence of NADP(+) with K(m) of 150 and 4nM and V(max) of 5 and 0.3pmol/mg protein/min for the kidney and the colon, respectively. This oxidation was not affected when NADP(+) conversion into NAD(+) was inhibited by excess pyrophosphate or a phosphatase inhibitor cocktail. In microsomes of chicken's duodenum, where 11betaHSD1-like mRNA expression is high, NADP(+)-dependent oxidation of CS into DHC has a low-affinity K(m) of 1130nM. This study documented the expression and activity of two enzymes that convert CS into DHC, one is 11betaHSD2-like and the other is similar to the putative mammalian 11betaHSD3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号